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Abstract—Genetic Network Programming (GNP) which has
been developed for dealing with problems in dynamic envi-
ronments is a newly proposed evolutionary approach with the
data structure of directed graphs. GNP has been used in many
different areas such as data mining, extracting trading rules
of stock markets, elevator supervised control systems, etc and
has obtained some outstanding results. Focusing on GNP’s
distinguishing expression ability of the graph structure, this
paper proposes a method named Genetic Network Program-
ming with General Individual Reconstruction (GNP with GIR)
which reconstructs the gene of randomly selected individuals
and then undergoes the special genetic operations by using the
transition information of better individuals. The unique indi-
vidual reconstruction and genetic operations make individuals
not only learn the experiences of better individuals but also
strengthen exploration and exploration ability. GNP with GIR
will be applied to the tile-world which is an excellent benchmark
for evaluating the proposed architecture. The performances
of GNP with GIR will be compared with conventional GNP
demonstrating its superiority.

I. Introduction

A lot of research achievements in evolutionary com-
putation have been obtained, such as Genetic Algorithm
(GA)[1][2], Genetic Programming (GP)[3][4], Evolutionary
Programming (EP)[5][6] and Evolution Strategies (ES)[7].
The essential concept of all of the above approaches is
originated from Darwin’s Evolution Theory. However the
difference between them is about their distinct methodolo-
gies. The gene of GA is represented as a string structure.
Traditionally, solutions are represented in binary as strings
of 0s and 1s. But, for different problems, other encodings
such like real number encoding and integer encoding are
also available. GP extends GA’s expression ability by its
tree structure which can be easily evaluated in a recursive
way. Each inner node of the tree has an operator function
and every terminal node has an operand, as a result, for
example, mathematical expressions are very easy to represnt.
Fogel used finite state machines for EP as predictors and
evolved them. The finite state machine is a model of behavior
composed of a finite number of states, transitions between
those states, and actions.
Recently, a novel method named Genetic Network Pro-

gramming (GNP) [8][9][10] has been proposed. GNP is
devised to deal with problems in dynamic environments
effectively and efficiently [11][12]. In GNP, the structure
of directed graph is used to represent the gene. The node
transition of the directed graph begins from a start node
and transfers based on the judgments on the nodes and node

connections, and the agent takes concrete actions according
to the functions on the nodes. Compared with the classical
evolutionary approaches, GNP has some unique character-
istics due to its distinguished directed graph structure: 1)
The gene structures of GNP individuals are composed of a
number of nodes which execute simple judgment/processing,
and these nodes are connected by directed links to each
other. 2) The graph structure enables GNP to re-use nodes,
thus the structure can be very compact. GP has a tree
structure which brings a problem that the size of the tree
is uncontrollable, if the problem complexity is unexpectedly
high. However, GNP’s directed graph structure can carry out
some repetitive processes. That is to say, the reusability of
nodes makes GNP’s structure more compact than that of GP.
3) The node transition of GNP is executed according to its
node connections without any terminal nodes. Concretely
speaking, the node transition of GNP begins from a start
node and transfers based on the judgments on the nodes
and node connections, thus it can be said that, for example,
agent’s actions in the past are implicitly memorized in the
network flow of the graph. GNP has been used in many
areas such as data mining, forecasting stock markets, elevator
supervised control systems, etc. and has obtained outstanding
performances in these areas.
However, it is generally found that not all of the GNP

nodes and connections but only a part of them is used by
agents. So the route of GNP which consists of the used
successive GNP transitions from node to node is just the
behavior regulation to guide the agent’s action upon the
environment. Thus, our goal is to extract and accumulate
the information of GNP route that agents took and make
general use of them to guide the evolutionary process. In
the proposed method, the genes of a part of individuals are
reconstructed by using route information and also the route
information will guide the process of crossover and mutation.
In order to verify the effectiveness of the proposed method
we report the experimental results using the tile-world.
This paper is organized as follows: Section 2 introduces

the basic concept of GNP. Section 3 explains the details of
the proposed method. Section 4 describes the experimental
environments and reports the simulation results. Section 5 is
the conclusion part.

II. Genetic Network Programming

In this section, the basic concept of GNP including the
gene structure and genetic operators is introduced. Generally
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speaking, GNP having a directed graph structure is an
extension of GA and GP. The aim of developing GNP is to
deal with dynamic environments efficiently by using directed
graph structures which have more general representation
ability than that of strings in GA and trees in GP. The
GNP genetic operators reproduce offspring by exchanging
and randomly modifying the gene information of parents and
this kind of concept is similar to GA and GP.

A. Directed Graph Structure of GNP

An individual of GNP contains a fixed number of nodes
which are classified into 2 categories: Judgment Node and
Processing Node. Judgment Node judges the current state
on the environments, and according to the judgement result,
the agent selects the following node. In concrete, Judgment
Node has multiple branches connecting to different nodes,
and after the judgement, a decision should be made to
select one branch and move to the next node. Processing
Node takes some actions and changes the current state
according to some regulations. Different processing nodes
take different actions. Therefore, Processing Node has only
one branch connecting to the following node. Fig. 1 shows
an example of a GNP individual. We can see that in the
example, the GNP individual has totally 6 nodes including 1
start node, 3 judgement nodes and 2 processing nodes. And
each judgement node has 2 branches connecting to 2 nodes,
respectively.

Fig. 1. The directed graph structure of GNP

B. Genetic Operators of GNP

GNP also has its own genetic operators which are similar
to that of GA: mutation and crossover. Mutation is to
change the gene of the selected individual. And crossover
is to exchange the corresponding part of 2 selected parent
individuals and obtain 2 offspring having new genes.
1) Mutation: Mutation operator affects only one individ-

ual. All the gene information of each node are changed
randomly by mutation rate of Pm, and one offspring is
generated. The mutation refers to the change of genetic
information on connections Ci j of each node in GNP by
the predefined probability Pmc, and decides the connection.
Therefore, the genetic information Ci j is modified in the
range of the node number, randomly. The example of the
mutation is shown in Fig. 2. Before carrying out the mutation,
the first branch of node 2 and the second branch of node
7 are connected to node 3 and node 4, respectively. After

carrying out the mutation, the first branch of node 2 and the
second branch of node 7 are connected to node 5 and node
8, respectively.
2) Crossover: Crossover undergoes between two parents

and produces two offspring. The connections of the uni-
formly selected corresponding nodes in two parents are
swapped with each other by crossover rate of Pc, and two
offspring are generated. Fig. 3 shows an example of one point
crossover in GNP, where node 4 is selected as a crossover
point randomly and the whole genetic information separated
by its node is exchanged. So, the node types, node functions
and node connections from node 4 to node 9 of the offspring
are different from their parents.

C. The Algorithm of GNP

GNP follows the evolutionary algorithm which is similar
to that of GA. First, we initialize the population whose indi-
viduals have randomly generated node connections. Then, the
evolution process is done iteratively generation by generation
until the optimal solution is obtained. Fig.4 shows the flow
of GNP.

Initialization of population

Evaluate

 Elite selection
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Yes

No

Start

End

Fig. 4. Flow chart of GNP

III. GNP with General Individual Reconstruction

Conventional GNP has a kind of feature that some of GNP
nodes and connections may not be used by agents during its
transition. For example, Fig. 5 shows such a case that the
agent follows a transition 1-2-3-5-4. The connections from
node 2 to node 6, from node 3 to node 4, from node 5 to
node 6 and from node 6 to node 1 are not used.
For further explanation, the definition of GNP route is

given as follows.
Definition 1 (GNP route).
GNP route is a path on which the agent travels in a GNP

individual. It consists of all the nodes and connections that
the agent passes by. As shown in Fig. 5, in this example, the
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Fig. 2. Mutation of GNP
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Fig. 3. Crossover of GNP

GNP route is 1−2−3−5−4 consisting of all the used nodes
and connections. In concrete, the GNP route is coded in a
string structure, where the node number and the connection
index of nodes are coded bit by bit.

Because an individual’s fitness value is calculated only
by the GNP route. As a result, GNP route could be con-
sidered essential to obtain good fitness values. The aim
of the proposed method, GNP with GIR, is to collect the
information on the routes of GNP individuals and make use
of them to guide the evolution process and finally to get
better individuals. Compared with conventional GNP, GNP
with GIR has a new genetic operator named reconstruction
which modifies the gene structures of individuals by using
GNP route information. In addition to the reconstruction, the

mutation and crossover of GNP with GIR reproduce offspring
by using route information, too. In each generation, the
elites are directly reserved to the next generation, and then
the genetic operators: reconstruction, mutation and crossover
undergo the population. Fig.6 shows the flow of GNP with
GIR.

A. Reconstruction

In the individual reconstruction, 2 individuals, for exam-
ple, Indi and Ind j are randomly selected. If

f itnessi/ f itness j ≥ α, α > 1 (1)

where f itnessi and f itness j are the fitness values of Indi
and Ind j, respectively and α is a threshold, we use the route
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Fig. 6. Flow chart of GNP with GIR

information of Indi to reconstruct Ind j. For example, if the
GNP route of Indi is shown in Fig.7 which indicates a route
from Node I to Node J via the bthi branch, from Node J to
Node K via the bthj branch, etc., the gene of Ind j will be
modified by this route. (i.e: in Ind j, Node I will connect to
Node J via the bthi branch, Node J will connect to Node K
via the bthj branch, etc.)

I bi J bj K bk

Fig. 7. GNP Route Coding

B. Mutation

The mutation in GNP with GIR randomly changes the
route part of the parent individual. It means the change only
occurs on the route of the parent individual. Fig. 8 shows an
example of how mutation in GNP with GIR works. Before

mutation, the first branch of node 1 connects to node 3 and
after mutation, connects to node 4.
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Fig. 8. Mutation in GNP with GIR

C. Crossover

In crossover, 2 parents Pi and Pj produce 2 offspring Oi
and Oj. Oj will be reconstructed by the route information
of the parents, but Oj will be reconstructed by the non-route
information of the parents as much as possible. It means
to enhance both the exploitation and exploration abilities.
Fig. 9 shows an example of the crossover between Pi and
Pj. Because f itnessi > f itness j, GNP route and non-route
part of Pi has the higher priority to reconstruct Oi and Oj,
respectively.
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Fig. 9. Crossover in GNP with GIR

IV. Simulations
A. Experimental Environments

We use the tile-world, a good architecture to evaluate agent
oriented systems, as an experimental environment [13]. A
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tile-world contains agents, floors and walls (obstacles). On
the floors there are a number of tiles and holes dispersing
on different positions, respectively. The agents try to find
the positions of tiles and holes. They should pick up tiles
and carry them until they reach the holes. Then, they cover
the holes with tiles. When agents are moving, they have to
avoid the obstacles and uncovered holes. Since each agent
can carry only one tile at a time, the agents will continue to
move until all the holes are covered by tiles or they use up
all allowable steps. So the objective of agents is to cover all
the holes with tiles using as few steps as possible.
In our simulations, we trained GNP for the agents in 10

different worlds. Each world has 3 agents, 3 tiles and 3 holes.
The positions of holes, obstacles and agents are the same in
the 10 worlds. However, the positions of tiles are different
from each other. Fig. 10 shows the environments for training.

Fig. 10. Training environments

After training, we tested the trained GNP in 8 new
different environments, where the positions of tiles, holes and
obstacles are totally different. Fig. 11 shows the environments
for testing.

Fig. 11. Testing environments

B. Programming Configuration

In our program, there are 8 kinds of Judgment Nodes.
Agents can find out what exists in front of each agent, in
the same way, right, left and back of each agent. Agents
can also find out the rough direction from the agents to the
place where the nearest tile is, where the second nearest tile
is and where the nearest hole is. Furthermore, they can find
out the rough direction from the nearest tile of the agent to
the nearest hole. These different judgements help agents to
make a decision in the following step.

And there are 4 kinds of Processing Nodes: to go forward,
to turn left, to turn right and to stay. Once the agent takes an
action, it consumes one step. In our program, totally, there
are 60 allowable steps.

Each individual contains 60 nodes including 40 Judgement
Nodes (5 for each kind of Judgement Nodes) and 20 Pro-
cessing Nodes (5 for each kind of Processing Nodes). Each
Judgement Node has 5 branches and each Processing Node
has only one branch.

We used population of 201 individuals and tournament
selection in the experiments, with crossover rate = 0.1,
mutation rate = 0.01 and the threshold α = 1.4 in equation
1. And all cases are carried out for 50 random rounds. Table
1 shows other parameter configurations.
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TABLE I
Parameter Configuration

Reconstruction size Mutation size Crossover size Elite size
20 110 70 1

Threshold α 1.4 Number of generations 500

Fitness function is calculated as follows:

Fitness = Ctile × DroppedTile
+Cdist ×

�
t∈T
(InitialDistt − FinalDistt)

+ (TotalS tep − UsedS tep),
(2)

where, DroppedTile is the number of tiles that the agents
have dropped in holes, InitialDistt is the initial distance of
the tth tile from the nearest hole, FinalDistt is the final
distance of the tth tile from the nearest hole, UsedS tep is
the number of used steps and T is the set of suffixes of
tiles. Ctile, Cdist and TotalS tep are parameters configured
by the designer. In our simulation, Ctile=100, Cdist=20 and
TotalS tep = 60.

C. Simulation Results

Fig. 12 shows the average best fitness curve of training
results of GNP and GNP with GIR over 50 random rounds.
The average best performance of GNP and GNP with GIR
is 3681 and 3992 after 500 generations, respectively.

Fig. 12. Fitness curve of training results

Table II shows the average best testing fitness results of
GNP and GNP with GIR per tile-world over 50 random
rounds in the 8 new worlds, respectively. We can see that in
new environments, where the agents have never been trained
before, GNP with GIR can obtain better testing results than
GNP. Only in the World 15, GNP with GIR performed more
poorly than GNP and GNP with GIR performed better than
the conventional GNP in all of the other cases. The testing
results indicate that GNP with GIR not only can perform
better than GNP in the trained environments, but also GNP
with GIR has more generalization ability than GNP in the
new environments.

TABLE II
Testing results of GNP and GNP with GIR

Individuals GNP GNP with GIR
World 11 153 176
World 12 149 194
World 13 215 268
World 14 78 115
World 15 134 106
World 16 -36 92
World 17 198 234
World 18 112 154
Average 141 214

V. Conclusion

We proposed a method of GNP with General Individual
Reconstruction (GNP with GIR) which shows an improve-
ment of GNP. The genetic operators of the proposed method
modify the gene structures of the individuals by using the
information of GNP routes in order to enhance the conven-
tional GNP. The simulation results in the tile-world shows
the superiority of GNP with GIR over the conventional GNP
both in training and testing phase.
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