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Abstract—A genetic programming (GP) based algorithm is 
proposed to improve the performance of ECOC algorithms for 
multiclass microarray datasets. The individual of our GP is 
revised to solve a set of binary class problems decomposed by an 
ECOC algorithm directly, which picking up genes with 
biological significance simultaneously. Experimental results 
prove the effectiveness of our algorithm in five data sets. 
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I. INTRODUCTION 

The development of microarray technology allows people 
to classify some particular cancers using microarray datasets, 
so many researchers are devoted to developing algorithms for 
microarray data in recent years. However, as the number of 
samples in microarray data tends to be much smaller than the 
number of genes, the generalization ability of data mining 
methods is decreased. The multiclass problem is even harder 
because of heavy overlaps among different classes[1].

An efficient way to deal with a multiclass classification 
problem is to break it down into several binary classification 
problems, and the final solution is made based on the fusion 
of these problems. A typical algorithm is ECOC, whose 
framework contains a coding process to decompose a 
multiclass problem into a set of binary-class problems, and a 
decoding process to combine all the binary problems[2].
Even for the same encoding and decoding scheme, different 
feature subspaces can lead to difference class splitting 
schemes for a data dependent ECOC algorithm, so as to result 
in different final results. Some researchers used Genetic 
Algorithms to obtain higher accuracy in ECOC algorithms by 
optimizing ECOC coding matrix[3]. Although there are 
already a lot of works discussing the design of ECOC 
algorithms and its applications, the study of ECOC in 
microarray analysis research field is just in the beginning[4].

Genetic programming (GP) has been successfully applied 
in pattern recognition research field owing to its great ability 
in the discovery of implicit relationships among data[5]. And 
the individuals of GP can be applied as classifiers by 
combining important features with some special operators. 
Although there are some studies discussing the search of 
optimal coding matrix and decoding schemes using different 
algorithms, there is still no research work on search optimal 
subspace by GP. This paper proposes a GP based framework 
to select optimal feature subsets and produce robust classifier 
simultaneously for different ECOC coding schemes. The 
individual in our GP is adjusted to contain a set of trees 
(named as Forest), so as to be matched an ECOC matrix 
directly. Experiments are carried out for comparisons, and 

results prove that our GP based scheme can beat other 
classifiers in most cases.

In this paper, section 2 reviews ECOC and GP, and 
descripts the design of GP for ECOC. Section 3 shows the 
settings of experiments, and compares and discusses the 
results. Section 4 concludes this paper. 

II. METHOD

A. ECOC
    ECOC is a widely deployed framework for multiclass 
problems[2]. ECOC algorithm builds a unique "code word" 
for each class in the encoding process. The elements in the 
coding matrix of size N×M belong to the set {-1, 0, +1}. Each 
row represents a class, and there are N classes (N > 2). Let K 
denotes a set of class labels, K={k1, k2, …, kN}. Let S={(X1, 
y1), (X2, y2), …, (XL, yL) }, where S represents a set of samples, 
Xi is the features vector representing sample Si, and yi is the 
class label to which Xi belongs, yi∈K. L represents the number 
of samples. Meanwhile, each column is interpreted as a 
binary classifier, and the original class label is re-calibrated 
into binary classes, requireing a dichotomizer. Let D be a set 
of dichotomizers matching rows in a ECOC coding matrix, 
D={d1, d2, …, dM}. For a sample X*, an ECOC output makes 
up a vector V* with length L. Then, the distance between the 
output vector and code words is calculated, and the code word 
with the minimum distance will determined as its class label.

B. Genetic Programming
     GP is an extension of genetic algorithm (GA), and the 
syntax tree structure of its individual is the key to its 
achievements in many different research fields. In terms of 
classification, GP has been applied to analyze binary class 
microarray data because each individual can produce a yes/no 
answer for a classification problem by formulating important 
features. However, it is obvious that GP can’t solve multiclass 
problems directly due to the limit of individual structure. So 
far, some authors proposed different methods to apply GP to 
deal with multiclass problems. [6] applied some base 
classifiers as leaf nodes, and treated each individuals as an 
ensemble of base learners, so as to tackle binary class and 
multiclass problem at the same time. In this paper, we 
propose a new individual structure that can match different 
ECOC coding matrices, as described below.

a. The Individual Structure
The initialization settings of our GP is the same as [7]. That 

is, the Ramped Half-and-Half method is applied to produce 
first generation with an equal number of trees initialized with 
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depth ranging from 2 to the initial maximum tree depth value. 
So there are both balanced and unbalanced trees with 
different depths. The dynamic maximum tree depth technique 
is used to control the scale of trees by setting the strict depth 
limit less than the dynamic depth limit. The initial maximum 
dynamic depth limit is small, so as to lead GP to produce 
simple trees firstly before trying more complex solutions.

Let F/T be the set of functions/terminals. T contains 
features and constants, and F is composed of arithmetical or 
logical functions. Terminal/nonterminal nodes of trees are 
selected from F/T sets, so trees in our GP are the set of all 
possible compositions of functions and terminals in F and T. 
So the rule embedded in a tree may take the form of: if 
max(X15,X12) > 0.731 then group 1; otherwise group 2. In 
this rule, the index number of a gene is indicated by the letter 
‘X’, so X15 and X12 refers to the 15th and 12th gene. The 
function ‘max’, two genes, logical operator ‘>’, and the 
constant 0.731 are produced by GP. The target group is set by 
one column in an ECOC coding matrix. When the maximum 
expression value of the two genes is larger than 0.731, the 
tree generates ‘yes’ (+1) and assigns the sample to the first 
group; otherwise, it is assigned to the second group.

Figure 1. The structure of a Forest

In most cases, the class unbalance problem unavoidably 
deteriorates performances of classifiers in microarray data, so 
the fusion of three trees are deployed to the classification task 
in our algorithm based on majority voting scheme. In this way, 
3×M trees are combined as an individual in our GP (named 
as Forest), as shown in Fig. 1. For the trees marked as i1, i2 
and i3, they are combined as the i-th ensemble, solving the 
binary classification problem matching the i-th column of an 
ECOC matrix. So each Forest can solve a multiclass problem 
directly. The combination of answers from a Forest produce 
a vector, which is then compared with all codewords in the 
coding matrix. And an unknown sample is assigned to the i-

th class if the i-th codeword obtains the shortest distance.  

b. The Fitness Function
Due to the small training sample size, 5-fold cross 

validation (CV) is applied to evaluate the generalization 
ability of trees in each subgroup system. For the i-th column, 
the sample size in each group would be unequal in most cases. 
To solve the skewing data distribution problem, assume that 
the sample size in positive/negative group for the is Ni,p/Ni,n, 
and the correctly classified sample size is Ci,p/Ci,n, then the 
fitness function is set as:

ݏݏ݁݊ݐ݂݅ = ∑ ஼೔,೛×ఠ೔,భା஼೔,೙×ఠ೔,మ

஼೔,೛×ே೔,೛ା஼೔,೙×ே೔,೙

ெ
௜ୀଵ                (1)

where ωi,1=Ni,n/(Ni,p+Ni,n), and ωi,2=Ni,p/(Ni,p+Ni,n). ωi,1 and 
ωi,2 act as weights, encouraging base classifiers to identify 
more samples in the small-size group. As a result, this fitness 
function guides GP to evolve towards a balanced covering in 
respective two-class problems. For each Forest, the final 
fitness value is the average fitness value of all trees in it. So 
the individual with high fitness value is preferred. Due to the 
huge search space, only the individuals with top fitness 
values are kept, so as to accelerate the evaluation process. 
When two or more individuals obtain the same fitness score, 
the one with smaller size would be selected.

III. EXPERIMENT RESULTS AND DISCUSSIONS

    In our experiments, three ECOC methods in ECOC 
library[8] are employed for comparisons: DECOC, forest-
ECOC, and ECOC-One. Hamming distance is applied for 
decoding. Default settings are applied for other parameters. 
To simplify discussion, only t-test is applied by keeping top 
100 features. For the i-th class, measures are named as true 
positives (TP୧), true negatives (TN୧), false positives (ܨ ௜ܲ) and 
false negatives (FN୧). Fscore is defined as shown in formula 
(2)-(4) with β=1. Accuracy is also used for comparisons, as 
shown in (5).

݈݈ܽܿ݁ݎ = ݃ݒܽ ቀ∑ ்௉೔
௉೔

௡
௜ୀଵ ቁ                    (2)

݊݋݅ݏ݅ܿ݁ݎ݌ = ݃ݒܽ ቀ∑ ்௉೔
்௉೔ାி௉೔

௡
௜ୀଵ ቁ          (3)

݁ݎ݋ܿݏܨ = ݃ݒܽ ቀ∑ ൫ఉమାଵ൯∗௣௥௘௖௜௦௜௢௡೔∗௥௘௖௔௟௟೔
ఉమ∗௣௥௘௖௜௦௜௢௡೔ା௥௘௖௔௟௟೔

௡
௜ୀଵ ቁ    (4)

ݕܿܽݎݑܿܣ = ∑ ்௉೔ା்ே೔
೙
೔సభ

∑ ்௉೔ା்ே೔
೙
೔సభ ାி௉೔ାிே೔

         (5)

    Table I shows the primary parameters used in our GP, and 
Table II shows the details about five microarray datasets used 
in experiments. The datasets and the preprocessing methods 
are the same as those in [4]. From Table III, it is found that 
different ECOC algorithms require different numbers of base 
learners because these ECOC algorithms are data dependent. 
Usually the larger size of coding matrix requires more base 
learners, leading to higher performance. However, in our 
experiments, it is found that even for DECOC that requires 
only N-1 base learners, can still achieve high performance in 
most cases, as shown in Table III. This observation proves the 
great discriminant ability of our algorithm. 

TABLE I. THE SETTING OF PRIMARY GP PARAMETERS IN ALL EXPERIMENTS
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Parameter Setting 

Terminal set (T) All gene expression values and constants 

Function set (F) Boolean/mathematical operators: gt(>), 
le(<=), max, min, times(×), minus(-), plus(+). 

Maximum Generation 100

Population Size 100

Crossover probability 0.7

Mutation probability 0.5 

Termination criteria Fitness score reaches 1 or gets 100 generations

Dynamic maximum 
tree depth limit 5

Strict depth limit 10 

TABLE II. DETAILS ABOUT DATASETS IN EXPERIMENTS

Dataset No. of 
classes

No. of 
genes

No. of training/test 
samples References

Breast 5 9216 54/30 [10]

Cancers 11 12,533 100/74 [11]

DLBCL 6 4026 58/30 [12]

Leukemia 3 7129 38/34 [13]

Lung 3 7129 64/32 [14]

TABLE III. COLUMNS NUMBERS PRODUCED BY DIFFERENT ALGORITHMS

Dataset ECOC-One Forest-ECOC DECOC

Breast 8 12 4

Cancers 12 30 10

DLBCL 8 15 5

Leukemia 4 6 2

Lung 12 18 2

    The results listed in Table III prove that our GP based 
classifier guarantees the performance of different ECOC 
algorithms. From the results, it is obvious that in the case of 
hard datasets, ECOC algorithms can’t always produce 
balanced results. Take Cancer data as an example, Forest-
ECOC and DECOC get very low scores in cancer data 
because there are less than 10 samples in two classes. 
However, owing to the great generalization ability, ECOC-
One can still achieve high Fscore scores with the application 

of GP. And in most cases, our algorithm can obtain achieve 
high performance in both measurements.

TABLE IV. RULES AND FITNESS VALUES BASED ON FOREST-ECOC

Learner Rules in the classifier Fitness 

Ensemble 
1

X136< 4.89e3 0.489

times(min(X190,X188),X136)< 1.93e8 0.500

min(X143,X131) > 3.13e4 0.846

Ensemble 
2

X151 > 3.59e4 0.630

X152 > 2.55e4 0.648

min(X169,min(X145,X182)) > 1.650e4 0.853

Ensemble 
3

X162 > 4.46e4 0.662

X143 > 4.26e4 0.769

min(X119,X131) > 3.54e4 0.807

Ensemble 
4

min(X145,X182) > 1.73e4 0.828

min(max(X137,min(X145,X182)),times(X116,X
168)) > 2.42e4

0.829

min(min(X145,X182),plus(X132,X136)) > 
1.71e4

0.834

Ensemble 
5

min(X65,plus(X152,X137))< 2.58e4 0.754

min(X65,plus(X152,plus(X152,X137)))< 3.25e4 0.764

min(max(X137,min(X169,plus(X137,X182))),ti
mes(X116,X168)) > 2.78e4

0.854

Ensemble 
6

X138 > 2.41e4 0.845

min(minus(X80,X170),min(X105,X20)) > -
6.80e3

0.861

min(max(X137,min(X169,plus(X137,X182))),ti
mes(X116,X182)) > 2.95e3

0.865

Figure 2. The comparisons of our algorithm with SVM 

TABLE III. DETAILS ABOUT DATASETS IN EXPERIMENTS
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Dataset Measures ECOC-One Forest-ECOC DECOC

Breast
Fscore 0.932 0.856 0.906

Accuracy 0.943 0.835 0.970

Cancers
Fscore 0.976 0.487 0.534

Accuracy 0.834 0.855 0.864

DLBCL Fscore 0.987 0.814 0.711

Accuracy 0.957 0.965 0.978

Leukemia
Fscore 0.981 0.901 0.882

Accuracy 0.962 0.967 0.952

Lung
Fscore 0.985 0.568 0.769

Accuracy 0.956 0.927 0.951

      For further comparisons, we also illustrate the results of 
accuracies obtained by applying SVM as base learner for 
each ECOC algorithm (linear kernel with default settings[9]) 
in Fig. 2. It is found that our algorithm can always obtain 
much higher accuracies compared with those obtained by 
SVM. And the same conclusions can also be drawn in the 
Fscore values, confirming the robustness of our algorithm.
      Table IV gives an example for Leukemia data based on 
Forest-ECOC. There are 18 rules for this classification task 
in all. As each rule represents the relationship among gene 
expression values and constant values, it can be found that 
gene 182, 152, 137, 136 and 145 are of great biological 
significance in discriminate some cancer subtypes. Although 
some rules can’t produce high fitness values, as those 
included in Ensemble 1, this Forest can still reach a high 
accuracy score 0.881, revealing the power of ensemble and 
the error correction ability of ECOC algorithms.

IV. CONCLUSION

    In this paper, we propose a Forest based individual 
structure to match different ECOC algorithm. Since each 
individual contains a small scale ensemble, this algorithm can 
help to enhance the generalization ability of ECOC 
algorithms. Experiment results prove that our algorithm can 
obtain balanced results in most cases despite of the 
imbalanced microarray data. And the comparisons with SVM 
further confirm the performance of our algorithm.
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