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Abstract—In this paper, we present a new multitasking al-
gorithm for Genetic Programming (GP). Our proposed algo-
rithm (referred to as “GP-Tasking”) evolves population using
multifaceted strategy. Each individual is trained with different
training sets and evaluated with multiple fitness functions (where
each fitness function represents one task). At the beginning
of the run, GP-Tasking, randomly uses crossover operator to
facilitate knowledge transfer between different tasks and store
probability of constructive crossover operators between different
tasks. This information is used to bias the crossover between tasks
that have higher probability of producing fitter offspring. The
novelty of GP Tasking, is that it uses one population in the same
phenotype space but with different interpretations to explore
multiple genotype spaces. GP-Tasking was evaluated with 3 sets
of experiments where in each set we tested GP-Tasking ability to
solve 5 different tasks simultaneously. Results showed that GP-
Tasking evolved smaller solutions and consume significantly less
computational time.
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[. INTRODUCTION

With the current boom in big data and increasing flow
of information that needs to be processed accurately and
efficiently, the opportunity of designing new algorithms that
can solve multiple problems at once is appealing. Hence,
it is unsurprisingly that the area of multitasking is gaining
considerable attention among contemporary scientists and
practitioners who are faced with real-world problems that
require solving multiple tasks simultaneously. As depicted in
Figure 1, the term multitasking algorithm means that a single
learner receives multiple independent problems (which we call
tasks in this paper) as input, then solves them simultaneously
[10].

Many real word scenarios require multitasking. For exam-
ple, the usage of cloud servers as computational resource
where users send their tasks to be solved [9]. Here, instead
of designing a different learner for each task, a single learner
can be materialised for all tasks (or at least for tasks that
belong to same category). Multitasking is also useful for image
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Fig. 1. Multitasking is a process when a single learner receives multiple
independent problems as inputs, solving them simultaneously and returns a
single solution for each problem as an output.

processing in cases requiring the detection of several objects
in an image to take a certain action. Consider an unmanned
vehicle, for example, that needs to decide whether it is safe
to cross a traffic light or not. Here, the unmanned vehicle
captures pictures of the street to verify that A) the traffic
light is green, B) no pedestrians are crossing, and C) no other
vehicles are crossing. In this case, a single learner can process
images and check these objects. Of course, it is possible to
use multiple learners (where each learner detects one type of
objects). However, in this case, the critical requirements of
speed and accuracy necessitates a multitasking algorithm.

A common term that is closely related to multitasking, but
out of the scope of this paper is “transfer learning”. Transfer
learning is when a learner applies solutions or settings (i.e.,
relevant knowledge) from previous learning experiences to
solve new tasks [10]. Naturally, the more tasks are related
the more this knowledge become relevant to solve the new
given task. As we will see in this paper, it is possible to
transfer knowledge between tasks in multitasking algorithm
(more details in Section III).

In this paper, we propose a new algorithm called “GP-
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Tasking” which is based on standard Genetic Programming
(GP) [11] and aims at solving more than one task in a single
run. Most published research in the area of GP, focus on the
use of GP as single task solver [1]. Few works exist that
attempt to solve multiple independent problems simultane-
ously using a single population of evolving individuals. GP-
Tasking evolves the population using multifaceted strategy.
Each individual is trained with different training sets and
evaluated with multiple fitness functions (where each training
set and fitness function represents one task). During the
evolution process, for each new offspring to be produced in the
next new generation, GP-Tasking randomly selects facet/task !
then performs a standard tournament selection process (where
individuals are randomly selected to join a tournament pool
and the fittest wins). Once an individual is selected (based on
fitness values of the selected task), GP-Tasking perform either
a crossover or mutation®. For crossover, GP-Tasking uses a
form of tournament selection on tasks level to select another
task with high probability to produce a fitter offspring. The
algorithm keeps track of constructive crossover operators (i.e.,
crossover operators that produce a fitter offspring) for each pair
of tasks in a probability matrix PM. Initially, PM is set to
zeros and every time a constructive crossover operator occurs
the algorithm updates PM. Once another tasks is selected,
to join crossover the algorithm applies a standard tournament
selection process to select in individual from the selected task.

Section III presents further details. We evaluated our pro-
posed algorithm using 3 sets of experiments. In each exper-
iment set we tested GP-Tasking ability to solve 5 different
tasks simultaneously. In the first experiment set, we tested GP-
Tasking to solve 5 different regression tasks where all tasks
belong to same category (i.e., symbolic regression with single
variable). In second experiment set, we tested GP-Tasking to
solve 5 different binary classification tasks where each task
has different number of variables. In third experiment set, we
exposed GP-Tasking to solve 5 heterogeneous tasks where 3
tasks are single variable regression and 2 tasks are binary clas-
sification. Results showed that GP-Tasking produced similar
performance as standard GP but it evolved smaller solutions
and consume significantly less computational time (more in
Section V).

This paper is organised as follows; Section II presents
related work. Section III delves into the details of the proposed
algorithm. Sections IV and V discuss the experiments and
results. Finally, this paper conclude in Section VI with final
remarks and suggestions of future work.

II. RELATED WORK

The term evolutionary multitasking was coined, as a new
paradigm in the field of optimisation and evolutionary com-
putation, in [3] and [9]. Authors proposed a methodology
(referred to as MFEA) that was designed to use vectorial

ISince each individual is evaluated multiple times, each fitness evaluation
represents a different task which we call a facet.
2Qperators are selected based on a probability value as shown in Table L.

chromosome representation (i.e., as in standard Genetic Al-
gorithm). Their work was inspired by bio-cultural models
of multi-factorial inheritance, which explain the transmission
of complex developmental traits to offspring through the
interactions of genetic and cultural factors. In their paper,
authors presented the model as an optimiser for several single-
objective tasks simultaneously. To achieve this, a unified
search space representation was used where the length or
dimensionality of chromosomes is set to be equal to max;D;
and D; is the length of chromosomes for the 4" task. This
unified representation encourages implicit transfer of useful
genetic material between different tasks. Furthermore, each
individual initially evaluated with all tasks and is set to a
skill factor parameter. This skill factor defines which tasks
among all tasks an individual gives best fitness value. To save
computational costs, this skill factor is passed to offspring
so they get evaluated with one task only. Experiments with
several optimisation tasks reveals performance correlation with
level of intersection in the solution spaces between different
tasks.

Extension of MFEA is presented in [4], where the main
emphasis is to solve multi-objectives optimisation tasks si-
multaneously. The proposed algorithm is referred to as MO-
MFEA. Experimental results when compared against standard
NSGA-II show multitasking MFEA perform better when the
search spaces of given tasks are highly correlated. The more
intersection that exists between solution spaces the more useful
are the genetic building blocks to be exchanged between tasks
in a unified search space representation of MFEA.

Eric et. al. presented a Cartesian GP method for solving
multiple Boolean circuit synthesis tasks simultaneously, in
[12]. In this paper, authors tried to solve 9 problems (i.e.,
evolve elementary boolean functions using a primitive set
consisting of only NAND) operators. A fitness function was
used that evaluates each circuit on all tasks and average fitness
across tasks as a scalar fitness value. Also, the authors used
targeted mutation operator to mutate circuits based on their
contribution to outputs. Final evolved solutions shared the
same inputs, but had their own designated outputs. Results
revealed that multitasking Cartesian GP evolved a higher
number successful solutions in all experiments runs.

Kattan et. al. in [6] proposed a GP framework to auto-
matically split a single problem into multiple sub-problems
and solve all sub-problems simultaneously. The proposed
framework works in two levels. In the first level, training
cases are split into clusters based on their statistical properties
using multi-tree representation individuals. Each GP individual
is represented using pair of trees. The pair of trees receive
fitness cases and convert them into coordinates in a 2D
Euclidean space. Then k-mean clustering algorithm projected
coordinates into clusters. The second level solves each cluster
as an independent problem. While the authors did not attribute
this contribution to the multi-tasking research, the proposed
framework can still be seen as a multitasking algorithm in the
sense that it solves multiple problems in single run.

Jaskowski et. al. in [5] showed a proof of concept for
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code reuse in GP to solve different tasks simultaneously.
GP evolves, in parallel, separate populations designated to
particular tasks. A standard crossover is used to swap sub-
trees from different tasks (referred to as crossbreeding). To
allow unified search space in cases where terminal sets are
different between tasks a relabeling mechanism is proposed
where some terminals are replaced if it is not being used in the
target task. Experiments showed that when using 3 classes of
boolean problems, higher performance than standard GP was
achieved in some case. The authors did not test performance
in relation to the level of overlap in solutions spaces of target
tasks.

Zhong et. al. in [13] present the first work of multitasking
GP. In this work, authors proposed multi-factorial genetic
programming (MFGP). They used a scalable gene expression
representation (referred to as SC-ADF) as a single representa-
tion across different tasks’ domains that may involve unique
functions and terminals. Each individual is represented as
chromosomes of integers and can be converted into a stan-
dard tree expression. Integers within each chromosomes are
mapped to functions, automatically defined functions (ADFs),
and terminals in each task. Also, MFGP applies a crossover
process that encourages implicit transfer of useful genetic
material across tasks. Performance of MFGP was tested using
5 experiments in which MFGP was required to solve 2
symbolic regression problems simultaneously. Results showed
that MFGP was able to outperform SL-GEP [14]® only when
problems were similar.

From the above literature review the main advantage of mul-
titasking in evolutionary algorithms is that no prior knowledge
is needed about how information might be exchanged across
different tasks. Also, it goes without saying that multitasking
algorithms perform better when there is an overlap in the
solution spaces of target tasks. In most of the experimental
works presented in current research, algorithms were tested to
solve a pair of tasks only. The only algorithm that was tested
to solve more than 2 tasks simultaneously was Cartesian GP
(namely 9 tasks) [12].

III. GP-TASKING

GP-Tasking is designed to solve multiple tasks using a
single population. Similar to canonical GP [11], GP-Tasking
works in four stages. Namely,

1) Population initialisation

2) Evaluation

3) Selection

4) Reproduction

The main differences in GP-Tasking reside in the evaluation
and selection stages.

A. Population Initialisation and Evaluation

Let the set of independent tasks defined as 7' =
{tl,tg,...tn} where Vt, € T : t; = Fi(T'j,,'Ui). Here, F;, 7,

3SL-GEP [14] is a GP variant that uses similar to scalable gene expression
representation used in MEGP and it is a single task solver.

Fylryvy) =

Falryvy) =1,

Falryvs) =1,

Fig. 2. Individual are treated using multifaceted strategy.

and v; are fitness function, training set, and validation set of
the i*" tasks, respectively. The algorithm starts by initialiaing
a population P = {I4,...,I,,} of trees using ramp half-and-
half [11] where VI, € P : I, = {F1(r1,v1), ..., Fn(rn,vn) }.
Thus, individuals are evaluated against all tasks and assigned
a vector of fitness values. This allows the same individual to
be multifaceted and fall in different locations in each genotype
space corresponding to each task in 7.

Note that GP-Tasking uses a single population to represent
multiple genotype search space. The relationship between
these search spaces is not necessarily known in advance. To
simplify this population representation, imagine a diamond
with several facets. Each time you rotate this diamond a new
surface will be visible (see figure 2).

B. Selection and Reproduction

Now, once population is initialised and evaluated, where
each individual is evaluated multiple times with each task in
the set 7', GP-Tasking prepares new offspring population to
join generation g + 1. To this end, as illustrated in figure 3,
fitness values of all tasks for all individuals are represented in
a matrix M,, «,. Remember, m is size of population and n
is number of tasks. The selection process works in two steps.
First, it randomly selects a task t; € T called first t. Secondly,
it selects an individual /; using standard tournament selection.
Hence, the selection process will randomly pickup a column
in matrix M, then preform selection based on the best fitness
of the selected task. Individuals are randomly selected to fill
tournament pool. Selected individuals compete based on their
fitness values and winner joins a reproduction operator. Here,
all individuals are compared based on their fitness values in a
particular task.

Once an individual is selected, GP-Tasking will decide
whether to reproduce this selected individual using a crossover
or mutation operator. If a mutation operator was selected, then
we allow the search to explore the same search space. On the
other hand, if a crossover operator was selected then we allow
the system to exchange genetic material from different tasks.
Of course, there is no guarantee that exchanging genetic ma-
terial from another task will always produce better offspring.
Thus, to increase chances of successful crossover, GP-Tasking
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Fig. 3. Individuals’ fitness values (in generation g) are stored in matrix
format. Each row stores fitness values of one individual. Each column stores
population fitness values for one task.

keeps track of constructive crossover operators for each pair of
tasks in a probability Matrix called PM of size n x n. Initially,
PM is set to zeros. If a crossover operator was selected, the
algorithm performs a tournament selection on tasks level to
pick up a second t where 2 tasks are randomly selected and
one with higher constructive crossover probability with first ¢
is selected. Then, a standard tournament selection is performed
on second t to selected choose in individual to join crossover.

The advantage of GP-Tasking that there is no need to
have this knowledge before hand. Another advantage of GP-
Tasking is that selection is performed interdependently for
each task and we don’t need a scaler function for fitness values
of different tasks. GP-Tasking unifies population phenotypic
space while using different interpretations that yield different
genotypic spaces. This unification can be viewed as a higher
order abstraction space wherein genetic building blocks are
hybrid-cubes that encode knowledge across tasks. Also, there
exists no prior knowledge of any inter-task dependencies
between tasks. Any intersection between different genotype
spaces is deemed significant opportunity to exchange knowl-
edge between corresponding phenotype spaces to improve
search performance.

It is important to highlight that during the search process
GP-Tasking stores the best evolved individuals for each task.
Thus, it returns multiple solutions. Namely, one solution for
each tasks.

IV. EXPERIMENTS SETTINGS

To test GP-Tasking, we performed 3 different sets of ex-
periments. All 3 sets were given same population settings
as presented in table I. In each set, GP-tasking was tested
against standard GP using 5 different problems. Note that one
run of GP-Tasking solves all 5 problems while standard GP
needs 5 different independent runs. For each set, we collected
performance results of GP-Tasking using 30 different runs,
and for standard GP we collected its results from 30 different
runs for each problem (i.e., 150 runs in total). Standard GP
received the same settings as in table I.

o First Set: 5 Symbolic Regression Problems

TABLE I
GP-TASKING SETTINGS

\ Setting \ Value |
Population size 200
Generations 100
Initialisation Algorithm Ramp half and half
Function set +,—, [/,
Crossover & Mutation rates | 0.5 crossover and mutation

Symbolic Regression Problems

b

B e e b Lt Y RS -

Qutputs of functions F2, and F4
Outputs of functions F1, F3, and F5

—F2  —F4 --F1  -F3  —F5

Fig. 4. Figure illustrates space of 5 symbolic regression problems in 20, 000
uniformly distributed points within [—1, 1]. Functions F'2, and F'4 (outputs
visualised in primary x axis). Functions F'1, F'3 and F'5 (outputs visualised
in secondary x axis).

In the first set, we test GP-tasking to solve 5 different
symbolic regression problems simultaneously selected from
Keijzer and Korns benchmarks [7] and [8]. Problems are
presented in table II.

Training examples take the form of {x.,y.}, z =
{1,...,q}, where y € R is the response variable and x € R?
is a vector of explanatory variables *. The goal is to find
a function F'(x) that maps x to y, such that over the joint
distribution P(z,y) the expected value of a fitness function
Fitness(y, F(x)) minimised:

Yoie [F (i) — wil
q

We used a training set of size 50, validation set of size 50,
and a testing set of size 200. All sets are disjoint and uniformly
distributed within the input interval. To reduce over fitting
probability, both GP-Tasking and standard GP use the training

Reg_Fitness = €))]

4We set d = 1 in these experiments

TABLE II
SYMBOLIC REGRESSION PROBLEMS

[ Function | Equation [ Input Interval |

F1 0.3z x sin(2mx) 0:1

F2 213.80940889 — (213.80940889 % 0:1
0547237485422

F3 3 X e~ % x cos(x) x sin(z) x 0:1
(sin(z)? * cos(x) — 1)

F4 1.57 + 24.3z 0:1

F5 3 +a% 4 0:1
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TABLE III
BINARY CLASSIFICATION PROBLEMS

Description quoted from [2]

The dataset describes diagnosing of cardiac Single Proton
Emission Computed Tomography (SPECT) images. Each of
the patients is classified into two categories: normal and
abnormal

100 volunteers provide a semen sample analysed according
to the WHO 2010 criteria. Sperm concentration are related to
socio-demographic data, environmental factors, health status,
and life habits.

To build a FRMTC model, 748 blood donors selected at
random from the donor database. Each one included R
(Recency - months since last donation), F (Frequency - total
number of donation), M (Monetary - total blood donated in
c.c.), T (Time - months since first donation), and a binary
variable representing whether he/she donated blood in March
2007 (1 stand for donating blood; O stands for not donating
blood).

There are 9 predictors, all quantitative, and a binary dependent
variable, indicating the presence or absence of breast cancer.

[ Problem [ Attributes | Instances \

SPECT 44 276

Heart

Fertility 10 100

Blood Trans- | 4 748

fusion

Breast Can- | 9 699

cer

Tic-Tac-Toe 9 958

This database encodes the complete set of possible board
configurations at the end of tic-tac-toe games, where “x” is
assumed to have played first. The target concept is “win for
x” (i.e., true when “x” has one of 8 possible ways to create

a “three-in-a-row”)

set to calculate the fitness function (see Equation 1), then in
each generation the individual that yielded best fitness value
is tested with the validation set. The individual that yielded
best validation value across all generations is used with the
testing set and presented as best evolved solution.

In this experiment set, we exposed GP-tasking to solve
similar problems. Figure 4 visualises outputs of the 5 symbolic
regressions with 20000 inputs from the range [—1 : 1]. We
can see there are some intersections between F'1 and F'3.
These signify the importance of setting the right level of
exchanging genetic materials between different tasks (using
crossover operator described in Section III-B). Too much
crossover would drift the search in the wrong direction, while
too little crossover may cause losing opportunity of improving
the search results.

o Second Set: 5 Classification Problems
In the second set, we test GP-tasking to solve 5 different binary
classification problems simultaneously. Problems are selected
from UCI Machine Learning Repository [2] and presented in
table III.

Each dataset was split into 40% training set, 25% validation
set, and 35% testing set. If trees output is less than 0.5
then data instance is classified as class 1, otherwise class 2.
Fitness function was simply based on the average number of
misclassified samples. Fitness function can be formalised as
follows:

Y F(X) = vil
q

Where X; is a data instance and represented as a vector of

attributes from the classification problem and y; is the class

of the *" data instance where y = {0,1}. Similar to first

experiment set, the training set was used to drive evolution,

Class_Flitness =

@

validation set was used to find best generalisation, and the
testing set measured the performance of best evolved solution.

GP-Tasking automatically maps attributes in biggest prob-
lems to attributes in smaller problems in same phenotypic
representation in cyclic manner. For example, the Spect Heart
problem have 44 attributes represented as x1, x2, ..., v44. Any
variable at higher dimension than other problem will be be
mapped to z; then the one after to x5 and so on in cyclic
manner.

o Third Set: Mix of 3 Symbolic Regression and 2
Classification Problems

In the third set, we used 3 symbolic regression problems
and 2 classification problems. Namely, functions F'1, F2,
F'3, Spect Heart, and Blood Transfusion. In this experiment
set we stress GP-Tasking to solve heterogeneous problems
simultaneously where little commonality between solutions
spaces exists. The difference here is that GP-Tasking uses a
fitness functions for each task’s category (i.e., classification or
regression).

V. RESULTS

We looked at the results from two perspectives: Performance
and Execution time. In the next three subsections, we will
present performance and execution time results for each ex-
periment set.

1) First Experiment set: 5 Symbolic Regression Problems.:
Starting with the first experiment set, Table VII summaries
results of 30 independent runs for GP-Tasking and 150 inde-
pendent runs for Standard GP (SGP hereafter). As mentioned
previously, GP-Tasking solves all 5 problems in single run
while SGP solves 1 problem in single run. Hence, to allow
a fair comparison, we extracted the best evolved solutions
from each GP-Tasking run (one solution for each task) and
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compared them against best solved solution in each SGP run
for each task (5 SGP runs in our case). As can be seen GP-
Tasking outperform SGP with marginal differences in 4 out
of 5 tasks in terms of mean, and best. Moreover, GP-Tasking
outperform SGP in 3 tasks in terms of median.

However, what we see as niche of GP-Tasking is in its
execution time and resistance of the bloat phenomena (more
details about the bloat phenomena in [11]). Thanks to the
design of GP-Tasking that permit one population to be treated
as multifaceted (see Section III) allows achieving the same
exploration and exploitation as SGP search. Table IV shows
time required (in seconds) for both GP-Tasking and SGP
to find solutions. The time required for GP-Tasking to find
solutions for all 5 tasks is on average 22% faster than SGP. To
further verify the significance of the non-deterministic results
produced by the experiments, we used the non-parametric
Two-sample Kolmogorov-Smirnov test. The P value was
4.241e~ 1 which is statistically significant at 5% level. If we
look at evolved tree sizes (illustrated in figure 5) we can clearly
see that GP-Tasking evolves considerably smaller trees than all
SGP run. We believe that the exchange of genetic materials
between different tasks showed significant effects on diversity
and thus slowing down the bloat phenomena.

We also looked the amount of exchanged genetic materials
across different tasks. Figure 6 visualise the PM (see sec-
tion III-B) for all 5 tasks (generation-by-generation averaged
over 30 runs). Remember, GP-tasking biases crossover to
be between tasks with highest probability of constructive
crossover. We can see that tasks FI1-F3, FI-F5 and F2-F5 have
higher probability than other tasks of producing fitter offspring
when exchanging knowledge between them. The compatibility
between these particular tasks is no surprise if we look at these
functions spaces in figure 4. Of course, there is a considerable
amount of destructive crossover in each generation, which
is also show that not every exchange of genetic materials
between tasks is beneficial to the search.

2) Second Experiment set: 5 Binary Classification Prob-
lems: Performance results of second experiment are sum-
marised in table VIII. Here GP-Tasking outperform SGP in
terms of mean 1 out of 5 problems and ties in terms of
median on 4 problems. In terms of minimum, GP-Tasking
wins the comparison in 2 out of 5 and ties in 3 problems.
The fitness performance difference between both systems is
very minor in all cases (i.e., < 0.05). However, if we look at
execution time presented in table V, we can clearly see that
GP-Tasking in 14% faster than SGP and this is further verified
by the non-parametric Two-sample Kolmogorov-Smirnov test
P value less than 5% significance level. Moreover, if we
look at tree sizes in figure 7, we can see that GP-Tasking is
evolving smaller trees than standard GP in all problems. We,
also, studied the pairwise probability of constructive crossover
between all pairs of tasks/problems. Figure 8 illustrates a
strong correlation between tasks 4-5, namely the Breast-
Cancer’s fitness landscape intersects with the Tic-Tac-Toe’s
fitness landscape. Interestingly, these two particular problems
have similar number of attributes out of the 5 test problems

in this experiment set.

Unlike the first experiment set, where 3 pairs of tasks (out
of 10 possible pairs) shown high probability of constructive
crossover, here only 1 pair are aligned. This experiment set
shows that GP-Tasking evolves smaller trees and has faster
execution time regardless of the level of intersection between
fitness landscapes in different tasks. However, performance
of evolved solutions is getting better when there exist higher
intersection level between different tasks.

3) Third Experiment set: Mix of 3 Symbolic Regression and
2 Classification Problems: In this experiment set, we tested
GP-Tasking to solve regression functions F'/, F2, and F3 (see
table III) and binary classification problems Breast Cancer, and
Tic-Tac-Toe. The performance results, summarised in table
VIII, shows that GP-Tasking outperformed standard GP in
terms of mean in 3 out of 5 problems and in median and
minimum in 2 out of 5 problems. Both systems tie in terms
of mean, median, and minimum in 1 problem.

If we look at execution time presented in table VI, we see
clearly that GP-Tasking is faster than SGP 25% on average
and this is verified by the small P < 0.05 value produced by
the Kolmogorov-Smirnov test. Also, similar the previous two
experiment sets, GP-tasking evolve smaller trees (see figure
9). The pairwise PM illustrated in figure 10 shows almost
the same beneficial relation of exchanging genetic materials
in first experiment set between F/ and F3 which is a clear
indication that fitness landscape between different problems is
almost static relation and will appear in any run. Moreover,
the heat map shows to a less degree a beneficial relation of
exchanging genetic materials between F/ and F2. This is not
a surprise since all F1,F2, and F3 belong to the same category
(i.e., symbolic regression). Interestingly, the algorithm did not
find any beneficial relation between any pair combine the
regression with classification. This proofs the solid behaviour
of GP-Tasking under different circumstances.

VI. CONCLUSIONS

This paper present one of few works in the area of GP
multitasking. GP-Tasking is multitasking algorithm based on
GP. It uses multifaceted strategy to evaluate its population
where each individual is evaluated multiple times using dif-
ferent fitness functions. GP-Tasking allows knowledge to be
transferred between different tasks using high-level tourna-
ment selection of tasks based on probability of constructive
crossover to emphasis potential intersection between different
genotype spaces.

GP-Tasking is well suited for problems where the absence
of prior knowledge about the inter task synergies (which
is often the case), and tries to reduce chances of transfer-
ring destructive genetic materials. This happens by bias the
crossover operators to be between tasks with higher probability
of producing fitter offspring.

We tested GP-Tasking with 3 sets of experiments where in
each set we tested GP-Tasking ability to solve 5 different tasks
simultaneously. Each experiment set exposed GP-Tasking to
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Fig. 5. First Experiment set: Tree sizes over generations. Figure plot average
tree sizes generation-by-generation averaged over 30 independent runs.

Tree size
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Fig. 7. Second Experiment set: Tree sizes over generations. Figure plot
average tree sizes generation-by-generation averaged over 30 independent
runs.
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of Constructive Crossaver

Ganaratiors

Pairwise Tasks

Fig. 6. First Experiment set: visualisation of PM shows the probability
of constructive crossover operators for each pairwise tasks represented in
heat map. Dark red colour indicates highest correlation value while blue is
lowest. Constructive operators are defined as the operators produce offspring
with better fitness than its parents. All numbers are collected generation-by-
generation and averaged over 30 independent runs.

Probabil

of Constructive Crossover

Ganaratiors

Pairwise Tasks

Fig. 8. Second Experiment set: visualisation of PM shows the probability
of constructive crossover operators for each pairwise tasks represented in
heat map. Dark red colour indicates highest correlation value while blue is
lowest. Constructive operators are defined as the operators produce offspring
with better fitness than its parents. All numbers are collected generation-by-
generation and averaged over 30 independent runs.

Probability of C i
st A

Constructive Ci

Ganaratiors

Pairwise Tasks

Fig. 9. Third Experiment set: Tree sizes over generations. Figure plot average Fig. 10. Third Experiment set:visualisation of PM shows the probability

tree sizes generation-by-generation averaged over 30 independent runs.

of constructive crossover operators for each pairwise tasks represented in
heat map. Dark red colour indicates highest correlation value while blue is
lowest. Constructive operators are defined as the operators produce offspring
with better fitness than its parents. All numbers are collected generation-by-
generation and averaged over 30 independent runs.
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TABLE IV
FIRST EXPERIMENT SET: RUN TIME IN
SECONDS TO SOLVE ALL 5 SYMBOLIC
REGRESSION TASKS

TABLE V
SECOND EXPERIMENT SET: RUN TIME IN
SECONDS TO SOLVE ALL 5 SYMBOLIC
REGRESSION TASKS

TABLE VI
THIRD EXPERIMENT SET: RUN TIME IN
SECONDS TO SOLVE ALL 5 BINARY
CLASSIFICATION TASKS

‘ Run Time | ‘ Run Time | | Run Time ]
GP-Tasking | SGP | GP-Tasking | SGP | GP-Tasking | SGP
Run: 0 830 1067 Run: 0 2180 1889 Run: 0 1350 1838
Run: 1 821 1030 Run: 1 2629 2022 Run: 1 1064 2061
Run: 2 768 1083 Run: 2 1726 1890 Run: 2 1455 1746
Run: 3 875 1003 Run: 3 1593 1843 Run: 3 1468 1987
Run: 4 756 940 Run: 4 1702 1705 Run: 4 1315 1667
Run: 5 791 977 Run: 5 2134 1729 Run: 5 1526 2030
Run: 6 893 1040 Run: 6 1821 1887 Run: 6 1577 1920
Run: 7 778 987 Run: 7 1396 1771 Run: 7 1553 1961
Run: 8 803 1037 Run: 8 1627 2230 Run: 8 1967 2013
Run: 9 756 940 Run: 9 1839 1688 Run: 9 1530 1937
Run: 10 880 944 Run: 10 1391 1855 Run: 10 1589 1761
Run: 11 726 987 Run: 11 1545 2103 Run: 11 1667 1600
Run: 12 692 976 Run: 12 1152 2184 Run: 12 1462 1735
Run: 13 765 1030 Run: 13 1199 1721 Run: 13 1526 1639
Run: 14 716 957 Run: 14 1415 1642 Run: 14 1234 1932
Run: 15 828 1196 Run: 15 1741 2022 Run: 15 1182 1995
Run: 16 1002 1111 Run: 16 1346 1588 Run: 16 1503 2220
Run: 17 724 975 Run: 17 1256 2236 Run: 17 1579 2062
Run: 18 775 994 Run: 18 1836 1846 Run: 18 1285 1514
Run: 19 774 850 Run: 19 1537 2032 Run: 19 930 1994
Run: 20 933 1023 Run: 20 1868 1696 Run: 20 1303 1749
Run: 21 763 1005 Run: 21 1884 1816 Run: 21 1317 1756
Run: 22 754 1085 Run: 22 1608 2123 Run: 22 1066 1679
Run: 23 729 1112 Run: 23 1617 1998 Run: 23 1592 1735
Run: 24 766 1014 Run: 24 1412 1816 Run: 24 1265 2081
Run: 25 713 1036 Run: 25 1569 1908 Run: 25 1578 1569
Run: 26 906 1014 Run: 26 1603 2126 Run: 26 1246 2078
Run: 27 784 1092 Run: 27 1541 2163 Run: 27 1152 1936
Run: 28 794 1081 Run: 28 1597 1950 Run: 28 1317 1679
Run: 29 727 1021 Run: 29 1305 1595 Run: 29 1096 1679
Mean 794.07 1,020.23 Mean 1,635.63 1,902.47 Mean 1,389.80 1,851.77
Median 774.50 1,017.50 Median 1,600.00 1,888.00 Median 1,402.50 1,879.00
Minimum 692.00 850.00 Minimum 1,152.00 1,588.00 Minimum 930.00 1,514.00

*Bold numbers are the lowest
*Two-sample Kolmogorov-Smirnov test

P =4.241e" 15 P =0.0002237

different level of complexity. In the first set we tested GP-
Tasking with symbolic regression tasks. In the second set, we
tested GP-Tasking with less correlated binary classification
tasks. In the third set, we mixed symbolic regression with
binary classification tasks in such a way to stress the algorithm
solving heterogeneous problems. Experiments revealed the
following 3 facts about GP-Tasking:

1) GP-Tasking is faster than the standard GP. Thanks to the
multifaceted strategy that allows GP-Tasking to solve
multiple tasks simultaneously.

2) GP-Tasking evolves smaller trees than standard GP.
Thanks to biasing crossover based on data driven ap-
proach.

3) Despite the speed and smaller solutions of GP-Tasking,
performance of evolved solutions is not far from stan-
dard GP and slightly better in some cases.

Most of experiment works presented in multitasking re-
search, algorithms were tested to solve a pair of tasks only.
Here we tested GP-Tasking with 5 tasks. In future research we
will explore GP-Tasking with real world applications. Also, we
will look into ways to improve performance of GP-Tasking.

*Bold numbers are the lowest
*Two-sample Kolmogorov-Smirnov test

*Bold numbers are the lowest
*Two-sample Kolmogorov-Smirnov test
P = 6.84464e~10

Moreover, we will study of GP-Tasking with surrogate model
to further improve the speed.
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