IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 4, JULY/AUGUST 2023

2657

Genetic Programming for Dynamic Workflow
Scheduling in Fog Computing

Meng Xu
Tian Xiang

, Student Member, IEEE, Yi Mei
, Fangfang Zhang

Abstract—Dynamic Workflow Scheduling in Fog Computing
(DWSFC) is an important optimisation problem with many real-
world applications. The current workflow scheduling problems
only consider cloud servers but ignore the roles of mobile devices
and edge servers. Some applications need to consider the mobile
devices, edge, and cloud servers simultaneously, making them work
together to generate an effective schedule. In this article, a new
problem model for DWSFC is considered and a new simulator
is designed for the new DWSFC problem model. The designed
simulator takes the mobile devices, edge, and cloud servers as a
whole system, where they all can execute tasks. In the designed
simulator, two kinds of decision points are considered, which are the
routing decision points and the sequencing decision points. To solve
this problem, a new Multi-Tree Genetic Programming (MTGP)
method is developed to automatically evolve scheduling heuristics
that can make effective real-time decisions on these decision points.
The proposed MTGP method with a multi-tree representation can
handle the routing decision points and sequencing decision points
simultaneously. The experimental results show that the proposed
MTGP can achieve significantly better test performance (reduce the
makespan by up to 50%) on all the tested scenarios than existing
state-of-the-art methods.

Index Terms—Dynamic workflow scheduling, genetic program-
ming, fog computing.

1. INTRODUCTION

HE widespread use of mobile devices such as smartphones
T and intelligent robots brings a large number of requests and
data from users. These requests and data can be abstracted as
workloads, such as web applications, bags of tasks, and scientific
workflows [1]. Scientific workflows contain many dependent
tasks and can be used to support a variety of practical studies,
such as examining the structure of galaxies [2] and searching
for gravitational waves [3]. Typically, these scientific workflows
cannot be executed by the limited computational and storage

Manuscript received 5 March 2022; revised 30 August 2022; accepted 20
February 2023. Date of publication 8 March 2023; date of current version 8
August 2023. This work was supported in part by the Marsden Fund of New
Zealand Government under Grant MFP-VUW1913 and in part by the MBIE
SSIF Fund under Grant VUW RTVU1914. Recommended for acceptance by
B. DiMartino. (Corresponding author: Tian Xiang.)

Meng Xu, Yi Mei, Fangfang Zhang, and Mengjie Zhang are with the
Evolutionary Computation Research Group, School of Engineering and
Computer Science, Victoria University of Wellington, Wellington 6140,
New Zealand (e-mail: meng.xu@ecs.vuw.ac.nz; yi.mei@ecs.vuw.ac.nz; fang-
fang.zhang @ecs.vuw.ac.nz; mengjie.zhang @ecs.vuw.ac.nz).

Shigiang Zhu, Beibei Zhang, and Tian Xiang are with the Intelligent
Robotics Research Center, Zhejiang Lab, Hangzhou 311121, China (e-mail:
zhusq@zhejianglab.com; bzeecs @ gmail.com; txiang163@163.com).

Digital Object Identifier 10.1109/TSC.2023.3249160

, Senior Member, IEEE, Shigiang Zhu
, Member, IEEE, and Mengjie Zhang

, Beibei Zhang *“,
, Fellow, IEEE

capabilities of the mobile device. Cloud computing [4] tech-
nology is therefore widely used for the execution of workflows.
Tasks in a scientific workflow can be uploaded to be executed on
cloud servers. However, the upload process involves transferring
raw data to the cloud server, which produces long transmission
delays and privacy issues [5]. To reduce the transmission delay,
fog computing is proposed [6], [7], [8], which contains two
computing layers (i.e., edge and cloud). As compared to cloud
computing, fog computing brings computing resources closer to
users, enhancing location-based services [9]. The purpose of fog
computing is to handle part of the tasks on edge servers, rather
than imposing all the tasks on the cloud [10]. However, how to
allocate tasks to edge or cloud servers to make the execution
process more efficient is a challenging workflow scheduling
problem.

Workflow scheduling [11] is a process of mapping and organ-
ising interdependent tasks on distributed processing elements to
meet important objectives such as minimising makespan, load
balancing, and budget. Previous studies mainly focus on static
workflow scheduling problems in which all the information
regarding the servers and workflows is known in advance [12].
However, in the real world, the environment is dynamic and the
stream of workflows is unpredictable [13]. The information of
workflows is unknown until the workflows arrive. In addition,
current research does not consider mobile devices that release
workflows as computing resources. Many real-world applica-
tions require mobile devices to have the ability to make au-
tonomous decisions. Therefore, a new fog computing paradigm
considering the mobile device, edge, and cloud is required.
In this article, we focus on Dynamic Workflow Scheduling
(DWS) with dynamic workflows arrivals and limited computing
resources in Fog Computing (DWSFC).

The DWSFC problem is very challenging. First, the exact
methods, such as branch-and-bound [14] and mathematical pro-
gramming [15] cannot efficiently handle large-scale scenarios
and/or dynamic events because of their high computational
cost, although they can guarantee optimality for small-scale
instances. Second, the solution optimisation heuristic methods,
such as ant colony optimisation [16] and particle swarm opti-
misation [17] that can handle large-scale scenarios, still have
the limitation of high computational cost to handle dynamic
events. Scheduling heuristics have been shown as a promising
technique for solving scheduling problems [18]. Scheduling
heuristics are used to assign a priority for the available servers,
then the server with the highest priority is selected to execute

1939-1374 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:57:51 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9930-0403
https://orcid.org/0000-0003-0682-1363
https://orcid.org/0000-0002-5687-4001
https://orcid.org/0000-0002-1417-7005
https://orcid.org/0000-0003-0470-8949
https://orcid.org/0000-0001-5516-3972
https://orcid.org/0000-0003-4463-9538
mailto:meng.xu@ecs.vuw.ac.nz
mailto:yi.mei@ecs.vuw.ac.nz
mailto:fangfang.zhang@ecs.vuw.ac.nz
mailto:fangfang.zhang@ecs.vuw.ac.nz
mailto:mengjie.zhang@ecs.vuw.ac.nz
mailto:zhusq@zhejianglab.com
mailto:bzeecs@gmail.com
mailto:txiang163@163.com

2658

the ready task (i.e., the task with all the preceding tasks com-
pleted). Scheduling heuristics can make decisions based on the
latest information and can react in real-time. The state-of-the-art
scheduling heuristics for task/workflow scheduling problems
include HEFT, FCFS, MaxMin, and MinMin, which have been
widely used in the cloud and fog computing industry. However,
manually designing scheduling heuristics is time-consuming
and needs domain knowledge. The scheduling heuristics de-
signed by humans might not capture all the important factors
and complex interactions between them, and the decisions made
by manually designed scheduling heuristics are mostly greedy
decisions, which might not be good ones in the long-term
scheduling process. The existing scheduling heuristics are more
likely to be ineffective when the problem (e.g., objective and
constraints) changes, particularly with dynamic nature. Thus,
an automatic design method is needed to learn scheduling
heuristics.

Genetic Programming Hyper-Heuristic (GPHH) [19] has
been widely used to automatically generate scheduling heuristics
for many combinatorial optimisation problems, including job
shop scheduling [20], [21], [22], [23], bin packing [24], [25],
[26] and routing problems [27], [28], [29]. Some recent research
has also attempted to develop GPHH for solving DWS problems
in cloud computing [30], [31]. However, the existing studies
still have limitations. First, mobile devices are not included in
the computation network, that is, mobile devices cannot make
autonomous decisions. Second, only the cloud servers are used
as computing resources, while the mobile devices and edge
servers are not considered. Third, they assume an unlimited
number of computing resources, which are not available in
real-world applications. Lastly, they only use GPHH to evolve a
rule for selecting a processor for each task, while still using the
manual rule to sequence the tasks.

To solve the DWSFC problem, we design a new problem
model and a corresponding simulator to imitate the scheduling
process. A novel GPHH method is then proposed to solve the
DWSEC problem by handling the processor assignment and
task sequencing simultaneously. Specifically, this article has the
following contributions.

1) A new problem model taking mobile device, edge, and
cloud into consideration is presented. This new problem
model takes real-world constraints (limited computing
resources) into consideration and gives a novel comput-
ing paradigm with the mobile device, edge, and cloud,
simultaneously.

2) A new simulator is developed to imitate the scheduling
process. In this new simulator, mobile devices release
workflows and decide whether to upload the tasks to
edge/cloud. Mobile devices, edge/cloud all have process-
ing ability, which are seen as computing resources.

3) A realistic circumstance of limited computing resources
(edge and cloud servers) is considered. In this case, two
kinds of decision points are designed, one is the routing
decision point (when a task is ready), the other is the
sequencing decision point (when a processor is idle).
Then, a new scheduling heuristic with a routing rule (for
handling the routing decision points) and a sequencing rule

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 4, JULY/AUGUST 2023

(for handling the sequencing decision points) is designed
to account for busy missions.

4) A new MTGP method is proposed with a new representa-
tion, which has two trees, one represents the routing rule,
the other denotes the sequencing rule. New terminals are
designed to evolve scheduling heuristics for the DWSFC
problem.

5) Experiments are performed to show the effectiveness of
the proposed MTGP method (reduce the makespan by up
to 50%) over existing methods under different scenarios
based on the new simulator. The structure of the evolved
scheduling heuristic is analysed to gain insights from the
scheduling process.

The rest of this article is as follows. Section II introduces the
background, including the workflow scheduling problems, and
GPHH. The related work is introduced in Section III. Section IV
describes the definition of the new DWSFC problem. The pro-
posed simulation model and method are described in Sections
V and VI, respectively. Section VII describes the experimental
design and results. Further analyses are shown in Section VIII.
Finally, Section IX concludes this article.

II. BACKGROUND
A. Workflow Scheduling

Workflow scheduling problems can be classified into two
categories according to the available information of workflows
and environments, which are static problems and dynamic prob-
lems [32]. For static problems, the information about workflows
and environments is known in advance. For dynamic problems,
the scheduling process needs to meet some dynamic events,
such as the dynamic arrival of workflows [13] and computing
resources failure [33]. Dynamic arrival of workflows is the most
commonly happened dynamic event in the real world. Once a
task becomes ready for allocation, a scheduling heuristic will be
used to select a computing resource to process it based on the
real-time information [34]. There has been extensive research
on static workflow scheduling problems, while the studies on
dynamic workflow scheduling problems are limited. In addition,
the current workflow scheduling problems are studied in cloud
computing environments [32], an extension in fog computing
environments is needed as the low latency requirements. Also,
some studies [31] assume that the cloud provider has unlimited
computing resources which are unavailable in practice. The
limited computing resources will make the scheduling process
busy, sometimes the uploaded tasks have to wait to be executed
in the waiting queue.

Beyond that, the existing scientific workflows [1] used for
workflow scheduling studies have only a few types of workflows
with different Directed Acyclic Graph (DAG) structures, task
data, and processing time. However, in real life, there are many
different applications, which can be abstracted as many different
workflows.

Therefore, in this article, we consider a more complex dy-
namic workflow scheduling problem with limited computing
resources, in which the computing resources include the mobile
device, edge, and cloud and they all have the execution ability. In

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:57:51 UTC from IEEE Xplore. Restrictions apply.

XU et al.: GENETIC PROGRAMMING FOR DYNAMIC WORKFLOW SCHEDULING IN FOG COMPUTING

(start }—'| Population initialisation
Training I Fitness evaluation
set

Breeding (reproduction,
crossover and mutation)

I

Selection |

(a) Traditional GPHH

(b) Tree

Fig. 1. The flowchart of the traditional GPHH method and an example of
tree-based representation.

addition, we consider workflows with many different task data
and processing times.

B. Genetic Programming Hyper-Heuristics

Hyper-heuristic methods aim to select or generate heuristics
to efficiently tackle hard computational search problems in the
heuristic space rather than the solution space [35]. GPHH, with
the advantages of flexible representations, has attracted much
attention [36], [37], [38]. The whole process of GPHH can be
divided into two phases, which are the training process and the
test process [39]. The output of the training process is a heuristic.
Then, the heuristic is used as the input to the test process,
which allows for measuring its performance. The flowchart of
the traditional GPHH method can be seen in Fig. 1(a).

It can be seen that the training process involves four parts.
In the beginning, initialisation is done to generate a population
size of individuals. Each individual is randomly generated based
on a designed representation. For example, the tree-based struc-
ture [40] is widely used. An example of tree-based representation
is shown in Fig. 1(b). The tree is composed of terminals (e.g.,
WIQ, PT, TIS) and functions (e.g., +, —), where WIQ denotes
the work of the tasks in the queue, PT represents the processing
time of the task, and TIS is the time that the task has been in
the system. After initialisation, the fitness evaluation process
estimates the fitness of each individual by applying it to the
training set. The fitness obtained by the evaluation process indi-
cates the performance of each individual and plays a significant
role in guiding the search direction. After fitness evaluation, the
selection is held as the process of selecting individuals based on
fitness. After a round of selection to get a well-adapted parent,
the breeding process performs a genetic operator on the parents
to generate offspring. The commonly used genetic operators
in the evolutionary process include crossover, mutation, and
reproduction.

III. RELATED WORK

A. Simulators

Widely used simulators for task scheduling include Grid-
Sim [41], CloudSim [42], WorkflowSim [43] and iFogSim [44].
GridSim supports modeling and simulation of heterogeneous
grid resources. Some research [45], [46] propose scheduling
algorithms based on GridSim. Although GridSim is capable of
modeling and simulating the Grid application behaviors in a

2659

distributed environment, it is unable to support the infrastruc-
ture and application-level requirements arising from the cloud
computing paradigm [47]. CloudSim is implemented at the next
level by programmatically extending the core functionalities
exposed by the GridSim. CloudSim is proposed to model and
simulate cloud computing systems and application provisioning
environments. Cloud computing offers services at the infras-
tructure level that can scale to the Internet of Things storage
and processing requirements. WorkflowSim extends the existing
CloudSim simulator by providing a higher layer of workflow
management. iFogSim is proposed to overcome the limitation of
CloudSim with low latency. It extends CloudSim by including
the edge of the network to decrease the latency and network
congestion.

All these simulators have contributed to the research of
task scheduling problems. However, as technology advances,
mobile devices are expected to have high processing speeds
and autonomous decision-making capabilities, which are not
considered in these simulators. To this end, a novel simulator is
developed in this article.

B. Methods

Currently, there are mainly three kinds of methods used
for workflow scheduling problems, which are exact methods,
heuristic methods, and hyper-heuristic methods.

In the early years, exact methods, such as branch-and-
bound [14], [48] and mathematical programming [49] are de-
signed for solving static task scheduling problems. These meth-
ods can obtain optimal solutions. For small-scale problems, the
computational time of such methods is acceptable. However,
they are not applicable for large-scale problems, due to their
high computational complexities.

Heuristic methods, as an efficient way of searching for
reasonably good solutions, have been used for solving task
scheduling problems. Genetic algorithm [50], [51], [52] is one
of the most widely studied heuristic methods for task scheduling
problems. Other heuristic methods, such as particle swarm op-
timisation [53] and ant colony optimisation [54], have also been
investigated for grid and cloud environments. These methods can
obtain good performance by the evolution process. However,
they still have the limitation of high computational cost and
handling dynamic events [32].

Different from the above heuristic methods, scheduling
heuristics have been designed to make a decision in real-time. As
a greedy method, scheduling heuristics can give each candidate
processor/task a priority quickly. Then, the processor/task with
the highest priority is selected. Heterogeneous Earliest Finish
Time (HEFT) [55], First Come First Serve (FCFS) [56], MIN-
MIN [57] and MAXMIN [58] are manually designed schedul-
ing heuristics which have obtained reasonable performance for
task scheduling problems. However, these methods are only
designed for specific scenarios and the design of effective
scheduling heuristics heavily relies on domain expertise and
is time-consuming. To address this issue, an automatic design
method is needed to generate an effective scheduling heuristic.

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:57:51 UTC from IEEE Xplore. Restrictions apply.

2660

TABLE I
NOTATIONS USED IN THE PROBLEM FORMULATION
Notation Description
W; The +-th workflow
T;j The j-th task in the i-th workflow
pred(T;;) | The set of preceding tasks of T;;
succ(T;;) | The set of succeeding tasks of T;;
©ij The workload of task 75,
Dzj All the input data of task T5;
Diij All the output data of task Tj;
t; The release time of workflow W;
P, The k-th processor
Yk The processing rate of Py,
B The bandwidth between the processor P,
kym and the mobile device processor Py,
The processing time of task T;; on
Tijk processor Pj,
T The upload time of all the relavent data of
Tijk task Tj; to the processor Py
N The download time of all the relavent data
Tijk of task T;; from the processor P,

In [30], GPHH was used for the first time to solve the DWS
problem. In this article, each individual has one tree which is
used to select a processor for each task. Each individual is evalu-
ated based on the WorkflowSim simulator. In [31], new terminals
and functions are designed to help GPHH get better performance
than traditional GPHH. However, the current GPHH methods
for DWS problems do not consider sequencing decision points
which are as important as the routing decision points.

IV. PROBLEM DESCRIPTION
A. Workflow Model

The workflows W are released by the mobile devices over
time. Each workflow W; € W is generated by a mobile device
P,,, at time ¢;, and has a set of tasks 7; and their dependencies
can be represented as a DAG. Specifically, each task T;; € 7; has
a set of preceding tasks pred(T;;) C 7T; and a set of succeeding
tasks succ(T;;) C T;. A task with no preceding task is called
an entry task, and a task with no succeeding task is called an
exit task. A workflow is completed after all the exit tasks are
completed.

Each task T;; has its workload ¢;;. To process a task Tj;,

certain input data D,Tj is required. The process generates output

data ij that serves as the input data for the succeeding tasks.

B. Processor Model

In DWSFC, there are a set of cloud servers P¢, a set of edge
servers P¢, and a set of mobile devices PZ. They are statically
provisioned and can all be processors. Each processor Py €
P U P UP? has a processing rate 7. Each mobile device
P,, € P%is linked with each edge/cloud server P, € P°U P°¢,
and the bandwidth between them is denoted as B,, ,, which
is assumed to be unaffected by the amount of data transfers
in progress. If a task 7T;; is allocated to be processed by an

edge/cloud server Py, then the upload time ng %> download time

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 4, JULY/AUGUST 2023

Tjj «» and processing time 7;;, can be calculated as follows.

1 !
I Y
- R e = 2
Uk Bkl Y% Bk ’ Vi

If a task T} is to be processed by the mobile device P,,, itself,

L =1t =0.

then 7 wim

igm;

C. Constraints and Assumptions

The goal of DWSFC is to find a schedule with the allocation of
each task of each workflow to the processors, and the start time
of each task on its processor, subject to the following constraints
and assumptions.

e The information of each workflow is not known until it is

released.

® A task can be processed only after all the preceding tasks
have been completed and all the input data for the task has
been transferred to the processor.

e Scheduling process is non-preemptive, that is, the process-
ing of a task cannot be stopped or suspended once it is
started.

e Each task can only be processed by the edge/cloud servers
or the mobile device that releases it, while can not be
processed by other mobile devices due to privacy and
security concerns.

Each processor can process up to one task at a time.

The inherent characteristics of each processor, that is the
processing rate and bandwidth, are not changed throughout
the whole work, and the processor will not break down.

Note that, in practice, there is a chance of other dynamic
events happening, such as disconnection, which could affect the
execution time of a workflow. However, it would not happen
frequently. Since this study mainly focuses on the event of
dynamic workflow arrivals, we ignore this situation to simplify
the problem.

D. Objective

The objective is to minimise the makespan, which is calcu-
lated as follows:

makespan = max{l'; | W; € W} — rq, (2)

where I'; is the completion time of the workflow W; in the
schedule and ry denotes the release time of the first released
workflow Wy. The notations used in the problem formulation
are shown in Table I.

V. THE NEW SIMULATOR
A. The Main Framework

The main framework of the proposed simulator can be seen in
Fig. 2. This simulator has three main parts which are the device
center, edge center, and cloud center.

In the device center, each mobile device can be seen as a
relatively independent system that shares common edge/cloud
resources but makes its own decisions. Each mobile device can
release new workflows, store existing workflows, schedule tasks,

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:57:51 UTC from IEEE Xplore. Restrictions apply.

XU et al.: GENETIC PROGRAMMING FOR DYNAMIC WORKFLOW SCHEDULING IN

FOG COMPUTING 2661

Select task
from waiting
queue

Select task
from waiting
queue

[

Cloud
process
immediately

Task
completed

F—

Task Edge process
o P diately
1

W Objective
Download&] Upload to Edge Download [Q Upload to Cloud %]
from Edge Routing rule "} from Cloud & Routing rule ~7

Edge and Cloud provider
A

All required workflows

Yes
Al

Device releases
workflows based
on a Poisson
process with rate 4

Workflows
in system

No

Select
processor to
process this
task

Routing rule

llocate to Edge/Cloud

completed?

Device
process
immediately

Select task
from waiting
queue

Task
completed

Fig. 2. The framework of the proposed simulator.

process tasks, upload data, and download data. Note that each
mobile device can only process tasks that are released by itself
but not those of other mobile devices. At the beginning of the
scheduling process, the mobile device releases the workflow
with the DAG structure. The mobile device keeps checking for
ready tasks. Once a task becomes ready (routing decision point),
the routing rule will be used by the mobile device to select the
processor (a cloud/edge server, or the device itself) to process
the task. If the decision is to process the task by the mobile device
itself, the mobile device will check if it is idle. If it is idle, the
mobile device will process the task immediately. If not, the task
will be put into the waiting queue and waiting to be processed
later. Once the mobile device becomes idle (sequencing decision
point), it will use the sequencing rule to select a task from the
waiting queue to process as the next task.

If the decision is to upload the task to one of the edge or
cloud servers, then a similar process will be done after the
task is uploaded to the selected edge/cloud server. After all
the workflows are completed, the simulation process is stopped
and the objective value is calculated from all the completed
workflows. The detailed execution process is described in the
next subsection. !

B. The Execution Process of Scheduling Heuristic on the
Simulator

The simulation is designed as a discrete event-driven
simulation process. It consists of workflow arrival event
(WorkflowArrivalEvent), task visit event (TaskVisit

1.The source code of the simulation, which is implemented in
JAVA, can be found in https://github.com/MengBIT/Fog-Computing/tree/
multiDeviceDebug.

Authorized licensed use limited to: Wikipedia. Downloaded on June

Event), process startevent (ProcessStartEvent), and process
finish event (ProcessFinishEvent). Each event has its trigger
time, and an event can generate and/or trigger other events.
The scheduling heuristic makes a decision on each decision
point to make the scheduling process continue. In this article,
a scheduling heuristic has a routing rule and a sequencing rule.
The routing rule has the ability to handle the routing decision
points, while the sequencing rule is used for the sequencing
decisions.

The simulation maintains an event queue, which is repre-
sented as a priority queue of events (where the trigger time is
the priority) as shown in (3).

A=18,E1..., &,] 3)

Each eventis represented as &, = (., We, Tt Pe, 7), where
ae € {0,1,2,3} is the event type, and W, T, and P, are the
workflow, task and processor involved in this event. 7. is the
trigger time of the event.

® WorkflowArrivalEvent (o, = 0): the workflow W, is
released by a mobile device at time 7. It can be denoted as
(0, We, —, —, 7), where “—” means empty value (null).
TaskVisitEvent («, = 1): the task 7. of the workflow
W, is arrived at its selected processor P, at time 7.. It can
be denoted as (1, W, T, Pe, Te).

ProcessStartEvent (o, = 2): the processor P, starts to
process the task T, of the workflow W, at time 7.. It can
be denoted as (2, W, T., P., 7).

ProcessFinishEvent (a. = 3): the processor P, fin-
ishes processing the task T, of the workflow W, at time
7. It can be denoted as (3, W,, T,, P, e).

Normally, each workflow will go through the process as
shown in Fig. 3 once it is released.

22,2024 at 14:57:51 UTC from IEEE Xplore. Restrictions apply.

https://github.com/MengBIT/Fog-Computing/tree/multiDeviceDebug
https://github.com/MengBIT/Fog-Computing/tree/multiDeviceDebug

2662
Al tasks
completed?
Workflow Arrival Event Process Finish Event
Task Visit Event Process Start Event
Fig. 3. The flowchart of the workflow execution process.

Algorithm 1: DWSFC Simulation.

Input: A DWSFC instance, a routing rule h(-), a sequencing
rule hs(+)
Output: A DWSFC schedule
1 Set the schedule p = {}, event queue Q@ = {};
2 foreach W; € W do

3 | Create a WorkflowArrivalEvent & and Q = QU E;;
4 end
5 while 2 is not empty do
6 Get the next event &, from ;
7 if ae = 0 then
// Trigger the WorkflowArrivalEvent
8 Calculate the priority hr(Py,T') of each processor Py,
for each ready task 7" by the routing rule h.(-);
9 Select the processor P* with the highest priority and
create a TaskVisitEvent £and Q = QUE;
10 else if o = 1 then
// Trigger the TaskVisitEvent
11 if P* is not idle then
12 | Add T to the waiting queue of P*;
13 else
14 ‘ Create a ProcessStartEvent £ and Q = QU E;
15 end
16 else if a. = 2 then
// Trigger the ProcessStartEvent
17 Calculate the processing 7 and download time 7+;
18 Create a ProcessFinishEvent £ and Q = QU E&;
19 else if ac = 3 then
// Trigger the ProcessFinishEvent
20 if the queue of P* is not empty then
21 Calculate the priority hs (T, P*) of each task T" in
queue by the sequencing rule hs(-);
22 Select the task 7 with the highest priority and
create a ProcessStartEvent £ and Q = QUE;
23 end
24 if W* is not completed then
25 Calculate the priority hr(Py,T') of each processor
Py, for each ready task 7" of workflow W* by the
routing rule A, () ;
26 Select the processor P* with the highest priority
and create a TaskVisitEvent £ and Q = QU E;
27 end
28 end
29 end

30 return the obtained schedule p;

The execution process of the scheduling heuristic on the
proposed simulator is shown in Algorithm 1. The DWSFC
simulation starts once the first workflow arrived (line 3). The
simulation continues until all the workflows are completed or
the event queue A is empty (line 5). The scheduling process
goes on by triggering each event based on its event type (line
6). When triggering the WorkflowArrivalEvent, the tasks
without preceding tasks are ready tasks, the routing rule will
be used to calculate the priority of each processor for each ready
task (line 8). When triggering the ProcessFinishEvent, after
the current task is completed by the processor, the processor
becomes idle. If the waiting queue of the idle processor is

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 4, JULY/AUGUST 2023

Individual: two trees .
. sequencing
routing _ -~ ~_
” ~

\ ~
i \1
| Population initialisation |\/‘\C§2 oﬁib ’

-~ _

Training
set
Test set

Fitness evaluation with
the novel developed
Simulation Model
¥
| Selection |
]

Breeding (reproduction,
crossover and mutation)

ho teration yes
stop?

The flowchart of the MTGP method.

Fig. 4.

not empty, the sequencing rule will be used to calculate the
priority of each task for the processor to process next (line 21).
Otherwise, the processor stays idle. Additionally, the completed
task can make some successor tasks ready to be processed. In
this case, the routing rule is used to calculate the priority of each
processor for each ready task (line 25).

Based on the above description, the differences between the
iFogSim simulator and the developed simulator are as follows.
First, in the iFogSim, the edge layer is an intermediate network
connecting the mobile devices and the cloud layer. However,
in the new simulator, both the edge layer and the cloud layer
communicate directly with the mobile devices, which improves
the fault-tolerance of the network and enables autonomous
decision-making by mobile devices. Second, in the traditional
iFogSim, the mobile devices release workflows and transmit
them to the edge/cloud layer for processing, the mobile devices
do not have the processing ability. In the new simulator, mobile
devices can also process the jobs themselves.

VI. THE NEwW GP APPROACH

A. The Overview

The overview of the Multi-Tree Genetic Programming
(MTGP) method is shown in Fig. 4. Different from the traditional
GPHH methods for workflow scheduling problems, the main in-
novation in this article is the new representation of the individual,
the fitness evaluation based on the new proposed simulator, and
the new terminals related to the DWSFC problem. In this article,
the routing rule and the sequencing rule share the same terminal
set. The proposed MTGP is expected to automatically extract
important terminals from the terminal set for the routing rule
and the sequencing rule, respectively.

Apart from these, the MTGP method has the same process as
the traditional GPHH, including population initialisation, fitness
evaluation, selection, and breeding. The pseudo-code of MTGP
can be seen as Algorithm 2 and the details about each process
are shown as follows.

1) Representation: To evolve a scheduling heuristic with two
rules for the DWSFC problem, an individual is designed with two

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:57:51 UTC from IEEE Xplore. Restrictions apply.

XU et al.: GENETIC PROGRAMMING FOR DYNAMIC WORKFLOW SCHEDULING IN FOG COMPUTING

Algorithm 2: Pseudo-Code of MTGP.

// Population initialisation
1 while N;,,4 < Popsize do

2 foreach Individual do

3 Initialise the tree for routing rule and sequencing rule
by ramp half-and-half;

4 end

5 end

6 while Stopping criteria not met do

// Fitness evaluation

7 Evaluate the individuals based on the proposed simulator
as Algorithm 1;

// Elitism selection

8 Copy the elites to the new population;

// Parent selection

9 Select individuals based on fitness value;

// Breeding

10 Generate offspring by applying

crossover/mutation/reproduction operators;

11 end
2 return the best individual (scheduling heuristic);

Ju

trees, one for the routing rule and the other for the sequencing
rule. The structure of the individual can be seen in Fig. 4.

2) Initialisation: In the beginning, a number of individuals
are initialised by random selecting and combining the termi-
nals and functions with the ramped-half-and-half method (line
4) [59]. That is, half of the individuals are initialised with the
maximum depth set in advance, while the other half of the
individuals are initialised randomly within the maximum depth.

3) Fitness Evaluation: Given the training instance, we can
evaluate the fitness of an individual by applying it to the exe-
cution process as shown in Algorithm 1 (line 7). After fitness
evaluation, each individual has a fitness that represents its qual-
ity.

4) Selection: The proposed MTGP method uses the classical
tournament selection [60] to select parents for genetic operators
(line 9). First, a set of individuals are sampled from the popula-
tion randomly as candidates. Then, the individual with the best
fitness is selected as the parent.

5) Breeding: The proposed MTGP uses reproduction, sub-
tree mutation, and tree swapping crossover operators [20] (line
10). For reproduction, the selected parent based on tournament
selection is directly inherited to the next generation. For subtree
mutation, a new subtree is randomly generated by selecting and
combining terminals and functions. Then we randomly select
a node from the parent and replace the subtree under the node
with the newly generated subtree. For tree swapping crossover,
for one tree, we randomly select nodes from each parent and
then swap the subtrees under the nodes. For the other tree, we
simply swap the whole tree. The process of subtree mutation
and tree swapping crossover can be seen in Figs. 5 and 6.

B. The Designed Terminals

In this article, ten terminals, which are set as the features that
indicate the characteristics related to the processors, tasks, and
workflows. The terminal set of MTGP is shown in Table II and
the detailed description is as follows.

NIQ represents how many tasks are waiting to be processed
in the waiting queue of the processor. WIQ denotes the total

2663

Parent
Tree 1 Tree 2

Mutation
% ;)oint >
" Random ,g%\’\—/rep'lace

subtree |

Offspring
Tree 1 Tree 2

Fig. 5. The process of the subtree mutation.
Parent A Offspring A
Tree 1 Tree 2 Tree 1 Tree 2
Tree 1 Tree 2
Fig. 6. The process of the tree swapping crossover.
TABLE II
THE TERMINAL SET
Notation Description
NIQ The number of tasks in the waiting queue.
WIQ The remaining work in the waiting queue.
MRT The ready time of server/device.
uT The upload time of the task.
DT The download time of the task.
PT The processing time of the task.
TTIQ The total remaining time in the waiting queue.
TIS The time in system: t - releaseTime.
TWT The waiting time of the task.
NTR The number of tasks remaining of the workflow.
TABLE III
DIFFERENT TYPES OF WORKFLOW
Tvpe Number of tasks
yP Class A Class B Class C
CyberShake 30 50 100
Epigenomics 24 46 100
Inspiral 30 50 100
Montage 25 50 100
Sipht 30 60 100

processing time that all the tasks in the waiting queue would cost
by this processor. MRT is the earliest idle time after finishing the
current process. TTIQ represents the total processing time plus
the upload and download time that all the tasks in the waiting
queue would cost by this processor. UT denotes the upload time
of the task. DT represents the download time of the task. PT
represents the processing time of the task. TWT is the waiting
time of the task. TIS represents how much time the workflow
has been stored in the system when it is released. NTR denotes
how many tasks have not been processed in the workflow.

The above terminals are extracted from the scheduling process
which can describe the system state clearly.

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:57:51 UTC from IEEE Xplore. Restrictions apply.

2664 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 4, JULY/AUGUST 2023

(a) Cybershake (b) Epigenomics

Fig. 7. The structure of five types of workflow.

TABLE IV
DIFFERENT TYPE OF SERVERS

(c) Inspiral

(d) Montage

TABLE VI

(e) Sipht

THE PARAMETER SETTINGS OF MTGP

type bandwidth processing rate
mobile device - [125, 250]
fog server 1024 [250, 500]
cloud server 128(20%)/256(80%)/512(20%) [500,1000]

TABLE V
THE SCENARIOS OF DIFFERENT SCALES

Mobile Edge/

Scenario Num Workflow type device Cloud
small 1 10/20 Class A 1 20/20
small 2 10/20 Class A 2 20/20
small 3 10/20 Class A 3 20/20
medium1 15/30 Classes A and B 1 30/30
medium 2 15/30 Classes A and B 2 30/30
medium 3 15/30 Classes A and B 3 30/30
large 1 25/50 Classes A, B, and C 1 60/60
large 2 25/50 Classes A, B, and C 2 60/60
large 3 25/50 Classes A, B, and C 3 60/60

" The number of warm-up workflows/considered workflows.

VII. EXPERIMENT STUDIES
A. Datasets

For the new simulator, workflows will be released by the
mobile device over time according to a Poisson process [11],
[13]. Each workflow has a different structure and a different
number of tasks as shown in Table III. The workload of each
task is randomly generated with the range [5000,15000]. The
input and output data of each task is assigned by a uniform
discrete distribution between 5,220 and 20,680. The information
about processors, including processing rate and bandwidth, are
randomly initialised according to Table I'V.

We design nine scenarios with three kinds of scales, which
cover small, medium, and large, as shown in Table V. The
structure of all the workflow types can be seen in Fig. 7 and
Table III gives the number of tasks of workflow for different
classes (A, B, and C). The small-scale scenarios consider 20
workflows with the number of tasks from class A. The medium
scenarios consider 30 workflows with the number of tasks from
classes A and B. The large scenarios consider 50 workflows with
the number of tasks from classes A, B, and C. At the same time,
for the same scale scenario, we consider different numbers of

Parameter Value
Population size 1000
Number of generations 51
Method for initialising population ramped-half-and-half
Initial minimum /maximum depth 2/6
Elitism 10
Maximal depth 8
Crossover rate 0.80
Mutation rate 0.15
Reproduction rate 0.05

Parent selection

Tournament selection

Terminal/non-terminal selection rate 10% / 90%

the mobile device from 1 to 3. In addition, for each scenario,
the half number of workflows considered in the scenario is used
as warm-up workflows to obtain a stable scheduling system.
The simulation stops when the warm-up workflows and the
considered workflows are completed.

B. Parameter Setting

The set of functions is as {+,—, X, <+, max,min}. The
arithmetic operators take two arguments. The “=- operator is
protected and returns 1 if divided by zero. The “max’ and “min”
functions take two arguments and return the maximum and
minimum of their arguments, respectively. The other parameters
of MTGP are shown in Table VI.

C. Test Performance

The effectiveness of the proposed MTGP algorithm is veri-
fied with a comparison to seven manually designed scheduling
heuristics [55], [61], [62], [63], [64]. In order to make the
seven scheduling heuristics more suitable for solving DWSFC
problems with the objective of minimising the makespan, their
scheduling principles are listed as follows:

e HEFT [55]: at each routing decision point, it selects the
processor with the earliest execution finish time. At each
sequencing decision point, it selects the task with the
highest upward rank which is the length of the critical path
from the task to an exit task.

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:57:51 UTC from IEEE Xplore. Restrictions apply.

XU et al.: GENETIC PROGRAMMING FOR DYNAMIC WORKFLOW SCHEDULING IN FOG COMPUTING

2665

TABLE VII
THE MEAN (STANDARD DEVIATION) RESULTS OF TEST PERFORMANCE OF 30 INDEPENDENT RUNS OF MTGP AND BASELINE METHODS FOR NINE SCENARIOS

Scenario Algorithm
HEFT FCFS MaxMin MinMin SDLS BWAWA CEAS MTGP
small 1 1061.98(0) 4073.99(0) 5069.91(0) 4718.63(0) 4195.05(0) 26702.13(0) 23666.55(0) 2397.09(65.63)()
small 2 394361(0) 3208.41(0) 5008.89(0) 4651.75(0) 4019.07(0) 21381.84(0) 15179.14(0) 1702.01(80.56)(-)
small 3 4625.65(0) 2802.89(0) 5160.01(0) 4724.87(0) 4508.39(0) 16348.69(0) 10932.41(0) 1491.17(83.16)(-)
medium 1 6037.21(0) _ 5789.95(0) 7177.32(0) 6778.37(0) 6015.81(0) 55420.12(0) 50289.77(0) 3636.68(463.95)()
medium 2 5546.62(0) 4574.06(0) 7223.89(0) 7008.76(0) 5802.42(0) 42186.26(0) 3194847(0) 2265.32(66.98)(-)
medium 3 6967.15(0) 4376.07(0) 8183.54(0) 7928.81(0) 7260.67(0) 31847.55(0) 22540.78(0) 1930.73(68.85)(-)
large 1 9815.000) 932327(0) 11581.32(0) 11500.43(0) 9485.03(0) 136872.23(0) 126783.45(0) 6242.00(876.82)()
large 2 9404.16(0) 7344.98(0) 12350.29(0) 12219.01(0) 9488.37(0) 89333.21(0) 78027.79(0) 3562.01(189.46)(-)
large 3 10066.59(0) 6514.15(0) 13701.21(0) 12996.36(0) 10235.10(0) 66391.26(0) 56011.41(0) 2633.26(113.09)(-)
e FCFS [61]: at each routing decision point, it selects the Small Medium Large
. . .. S 3000 | 7000-
first idle processor. At each sequencing decision point, it . 4000 5000]
selects the first arrived task. 8 2500 35001 5000]
. 3000-
e MAXMIN [61]: at each routing decision point, it selects % 2000- 2500] 4000 N
the first idle processor. At each sequencing decision point, 15001% LT o0 e 3000—‘“'-.7___‘____1___‘_____‘_
it selects the task with the longest processing time. 0 1020 %0 40 500 10 20 56 40 500 1020 30 40 50
e MINMIN [61]: at each routing decision point, it selects the mobile device: - 1 -~ 2 - 3
first idle processor. At each sequencing decision point, it
selects the task with the shortest processing time. Fig. 8. Convergence curves of test fitness on nine scenarios.
e SDLS [62]: at each routing decision point, it selects the
processor with the highest stochastic dynamic level, de- '
fined as the task’s stochastic upward rank minus the task’s Modhn
earliest execution start time, plus the varying computation o
capacity of the processor. At each sequencing decision %3000
point, it selects the task with the highest stochastic upward 0
I‘ank 2000
* BWAWA [63]: it is designed to minimise the makespan B R R T L A B
. obile device
without affecting the increase in energy consumption. To
make it focus on minimising makespan, this article mod- Fig. 9. Box plots and curve of test fitness on ten medium scenarios.

ifies it by ignoring the features related to energy in the
priority function. At each routing decision point, it selects
the processor with the shortest transport time. At each
sequencing decision point, it selects the task with the lowest
downward rank which is the length of the critical path from
an entry task to the task.

e CEAS [64]: it is proposed to minimise the execution cost
and reduce energy consumption. To make it focus on min-
imising makespan, we modify it by ignoring the features
related to execution cost and energy in the priority function.
Ateach routing decision point, it selects the processor with
the shortest processing time plus the longest transport time.
At each sequencing decision point, it selects the task with
the earliest release time plus the shortest processing time.

For the MTGP algorithm, 30 independent runs are done for
each scenario and the evolved scheduling heuristics are tested on
30instances. A Wilcoxon rank-sum test with a significance level
of 0.05 is then used to validate the performance of the proposed
algorithm [65]. The “—/+/=""indicates that the corresponding
result is significantly better than, worse than, or similar to the
comparison algorithm.

As listed in Table VII, we can conclude that the proposed
MTGP method performs significantly better than all the baseline
methods on all nine scenarios. The makespan obtained by the
baseline methods is basically two or three times worse than the
proposed MTGP method.

Fig. 8 gives the convergence curves of the proposed MTGP
method. Based on these convergence curves, we can see some
phenomena. First, as the scale of the scenario increases, the
makespan is gradually increasing. This is because large-scale
scenarios consider more workflows and workflows often contain
more tasks, which leads to high execution time. Second, in the
early stage, the convergence speed is faster and after about 20
generations, the convergence speed decreases and tends to level
off after about 40 generations. Third, as the evolutionary process
goes on, the results converge incrementally, and even if there are
fluctuations in the middle of the process, eventually it converges
to a good and stable solution.

D. Analysis About the Number of Mobile Devices

In this section, we analyse the influence of the number of
mobile devices by testing the proposed method on ten medium
scenarios with different numbers of mobile devices. As seen
from Fig. 9, when other hyperparameters are fixed and only
the number of mobile devices varies (increase from 1 to 10), the
makespan decreases. In the early stages, the decline in makespan
is dramatic (in particular, the number of mobile devices changes
from 1 to 2), while in the later stages the decline tapers off and
flattens out. Although more mobile devices mean more intensive

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:57:51 UTC from IEEE Xplore. Restrictions apply.

2666

TABLE VIIT
THE EVOLVED ROUTING RULE AND SEQUENCING RULE SIZES

routing rule size sequencing rule size

Scenarios min mean(std) min mean(std)
small 1 31.00 57.60(18.93) 1.00 16.53(9.03)
small 2 27.00 52.47(16.97)(=) 1.00 17.53(13.15)(=)
small 3 31.00 60.27(13.72)(=)(+) 1.00 17.27(11.81)(=)(=)

medium 1 21.00 55.53(15.57) 3.00 13.93(7.44)

medium 2 29.00 55.67(16.33)(=) 3.00 18.33(13.91)(=)
medium 3 25.00 57.47(1643)(=)(=) 1.00 22.60(15.30)(+)(=)
large 1 25.00 47.27(18.27) 3.00 18.20(11.30)
large 2 25.00 50.60(14.65)(=) 1.00 21.33(15.86)(=)
large 3 29.00 55.40(20.70)(=)(=) 5.00 22.20(15.12)(=)(=)
Small Medium Large
g 60-
Z 50 50 50-
izlo— 40- 40
c
"‘g 30- 30- q 307

. 20-, . , , , .
10 20 30 40 50 O 10 20 30 40 50

0 10 20 30 40 50 O

Q

N

[

2

=

2

(=)

£

%]

c

[

3

- l

® 0 10 20 30 40 50 O 10 20 30 40 50 O 10 20 30 40 50

Generation
mobile device: ~ 1 -2 - 3
Fig. 10. Curves of routing and sequencing rule size on nine scenarios.

workflow arrival times, the processors without upload/download
time (the mobile devices) are added to the system which can help
improve the overall processing speed. The MTGP method can
learn from the evolutionary process to evolve a good scheduling
heuristic for this situation.

However, for the baseline methods, like the HEFT, MAXMIN,
and MINMIN, the scheduling principle is not changed when the
scenarios vary. They use the same policy for all the scenarios,
so increasing the number of mobile devices can even increase
the makespan, as shown in Table VII. Therefore, we can see
that the manually designed scheduling heuristics cannot handle
different scenarios well. On the other hand, the proposed MTGP
method can obtain good performance on different scenarios with
the evolved scheduling heuristics.

VIII. FURTHER ANALYSES

A. Rule Size

A smaller rule (fewer nodes in the tree) tends to have better
interpretability [66]. The mean (standard deviation) of routing
rule size and sequencing rule size of 30 independent runs of
MTGP for nine scenarios are shown in Table VIII. For the three
scale scenarios, the latter results are compared with the former
results based on a Wilcoxon rank-sum test with a significance
level of 0.05. Fig. 10 shows the convergence curves of routing
rule size and sequencing rule size.

Based on Table VIII and Fig. 10, we can see that, for all the
scenarios, the routing rules have larger sizes than the sequencing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 4, JULY/AUGUST 2023

small, devices =2

o
/:

k
0
5§28

small, devices = 1

Q‘t fl)
e‘sfft
devi

small, devices =3

é‘
9§

Times

large, devices = large, devices =

Eog o AO
568Ec R85 8

Terminal

Fig. 11. Frequency of terminals in routing rules.

small, devices = 1

small, devices = 2 small, devices =3

Times

large, devices =

k o g
o 3 IS
e$“*t§°§

Terminal

Fig. 12. Frequency of terminals in sequencing rules.

rules (more than 2 times). More specific analysis results show
that, for the small-scale scenarios, the routing rules on the small
1 scenario have significantly smaller rule sizes than that on the
small 3 scenario, For the medium-scale scenarios, the sequenc-
ing rules on the medium 1 scenario have significantly smaller
rule sizes than that on the medium 3 scenarios. For the large-scale
scenarios, both the size of the routing rules and sequencing rules
are not sensitive to the number of mobile devices.

In summary, we can see that the routing rules evolved for
DWSFC are usually more complex than the sequencing rules.
Neither the routing rule sizes nor the sequencing rule sizes
are sensitive to the number of mobile devices on most of the
scenarios.

B. Feature Analysis

Figs. 11 and 12 show the number of times each terminal is
used in the routing rules and sequencing rules from the same
evolved scheduling heuristics in the 30 runs on small-scale
and large-scale scenarios. Based on these results, the following
observations can be obtained.

® Most terminals are used more frequently in the routing

rules than that in the sequencing rules.

e Fortherouting rule, PT is the most frequently used terminal

among the 10 terminals, indicating that the processing time
of processors plays a key role when selecting the processor

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:57:51 UTC from IEEE Xplore. Restrictions apply.

XU et al.: GENETIC PROGRAMMING FOR DYNAMIC WORKFLOW SCHEDULING IN FOG COMPUTING

2667

Fig. 13. An example of routing rule.

Fig. 14.

An example of sequencing rule.

for the ready tasks. In addition, DT, NTR, TTIQ, UT,
and WIQ are also important criteria for the selection of
a processor.

e For the sequencing rule, when there is only one mobile
device, most of the terminals are used frequently. When
there are two or three mobile devices, the distribution of
terminal frequency is different from the scenarios with one
mobile device, NTR is the most frequently used terminal
among the 10 terminals, and DT is used less frequently,
especially on the small 3 scenario.

e The distribution of the terminal frequency is different
between small and large scenarios, even with the same
number of mobile devices. For example, for the routing
rule, the terminal usage frequency of NTR, TIS, and TWT
in large-scale scenarios is smaller than that in small-scale
scenarios.

In summary, it can be seen that PT and DT play very important
roles on the routing rule, while these two terminals are not used
frequently on the sequencing rule. However, NTR is important
criteria for the sequencing rule.

C. Structure Analysis of the Evolved Scheduling Heuristic

To further understand the behaviour of the scheduling heuris-
tic evolved by the proposed MTGP, an evolved scheduling
heuristic is selected to do further analysis. Figs. 13 and 14
show a routing rule and a sequencing rule which come from the
same scheduling heuristic. The selected scheduling heuristic has
promising test performance.

In terms of the routing rule, it is a combination of four
terminals (DT, PT, WIQ, and NTR), where PT is the most
frequently used terminal in this rule, which has been used 11
times. It is followed by DT which is used 7 times and WIQ
which is used 5 times. NTR, on the other hand, is used only

(a) The workflow 0. (b) The workflow 1.

Fig. 15. The DAG structures of two workflows.
once. Additionally, the subtree % is used 6 times, and the

subtree max{WIQ), PT} is used 4 times. The routing rule can
be simplified to Ry as shown in (4).
_ DT*

2
RO = W X maX{WIQ,PT}

{PT
X Max § ——

57 WIQ x NTR}.)

This rule suggests that if there are many tasks remaining in the
waiting queue, i.e., the work remaining (WIQ) is larger than the
processing time (PT) of the current ready task, then this routing
rule can be further simplified as R; ~ w, where
NTR (the number of tasks remaining of the workflow this ready
task belongs to) is determined by the ready task. Because NTR
will not be changed by the candidate processors, the routing rule
means that the selection strategy is mainly based on the down-
load time (DT), work remaining in the waiting queue (WIQ), and
the processing time (PT) of the processors. If the work remaining
(WIQ) of the server is smaller than the processing time (PT) of
the current ready task or there is no task remaining in the waiting
queue, this routing rule can be further simplified as Ry ~ DT?3,
which means that the selection strategy is mainly based on the
download time (DT) of the processors. In other words, this
routing rule indicates that the processor with a smaller download
time and smaller work remaining is preferred. This is almost
consistent with our intuition that the processors which are not
busy and have short transportation time are good choices.

In terms of the sequencing rule, it is a combination of six
terminals (WIQ, MRT, NIQ, TWT, TTIQ, and TIS), where
WIQ and MRT are the most frequently used terminals in this
rule, which are both used 3 times. The sequencing rule can be
simplified to Sy as shown in (5).

max{WIQ x TWT, 1<

max{NIQ + MRT, L&}

x min{ M RT,WIQ}

1Q x TWT
= WIQ xTW + (MRT — NIQ)

max{NIQ + MRT, ZH&}

x min{ M RT, WIQ}. (5)

So + (MRT — NIQ)

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:57:51 UTC from IEEE Xplore. Restrictions apply.

2668

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 4, JULY/AUGUST 2023

Cloud 1
Cloud 0
Edge 1
Edge 0
Device 1
Device 0

Cloud 1
Cloud 0
Edge 1

Edge 0
Device 1
Device 0

(b) The schedules with mobile devices that do not have processing ability.

Fig. 16.

This rule shows that the selection strategy is mainly based on
the waiting time of the task (TWT) and the time in the system
of the task (TIS). This is because for all the tasks in the waiting
queue, the ready time of the processor (MRT), the number of
tasks in the waiting queue (NIQ), the work remaining in the
waiting queue (WIQ), and the total remaining time in the waiting
queue (TTIQ) which are related to the idle processor are all the
same and will not be changed by the candidate tasks. Therefore,
this sequencing rule can be further simplified as S; ~ TWT

when (NIQ + MRT) > TTTIISQ, or So =~ TWT x TI1S when

(NIQ+ MRT) < TTTIISQ . In other words, this sequencing rule
tends to select tasks with smaller waiting time (TWT) and
smaller time in the system (TIS).

Overall, based on the above analysis of this scheduling heuris-
tic, we can see that, for the routing decisions, the attributes
of the server, such as the bandwidth, play a decisive role in
the selection. For the sequencing decisions, the information of
tasks, such as the time in the system since the tasks are released,
plays a decisive role. This phenomenon is almost consistent with
our intuition that processors which are not busy and have short
transportation time are good choices to process ready tasks and
tasks that stay in the system for a long time should be completed
as soon as possible to speed up processing. Based on the feature
analysis and this visual presentation of the tree structure, we can
identify the importance of different terminals for different rules
and allow for a more intuitive understanding of the scheduling
heuristics that evolved by the proposed MTGP method.

D. Case Study

In order to give a further understanding of the scheduling
process, we give two simple scheduling processes using an
evolved scheduling heuristic as shown in Figs. 13 and 14. Two
workflows released by two mobile devices are scheduled on a
network with two edge servers and two cloud servers. The two
workflows have the structure as Fig. 15 and the scheduling results
are shown in Fig. 16. Fig. 16(a) gives the scheduling results on
the scenario with mobile devices that have processing ability,

The schedules generated by the scheduling heuristic in Figs. 13 and 14 on scenario with workflows in Fig. 15.

while Fig. 16(b) shows the scheduling results on the scenario
with mobile devices that do not have processing ability.

When the mobile devices have the ability to process tasks, as
shownin Fig. 16(a), each mobile device releases a workflow with
a DAG structure (workflow 0 is released by mobile device 0, and
workflow 1 is released by mobile device 1). In the beginning,
there is only one workflow released by mobile device 0, and
mobile device 0 decides to upload task 0 of workflow 0 (0.0) to
edge 0 to be processed. Then, after the completion of this task,
the output data is downloaded from edge 0, and then, the mobile
device 0 decides to upload the next ready tasks to edge 0 and edge
1 to be processed, simultaneously. When workflow 1 is released
by mobile device 1, mobile device 1 decides to upload all the
ready tasks to edge 1 to be processed. As we can see, when there
are two workflows in the network, they are not processed one by
one but processed at the same time to get a smaller makespan.
Finally, after the final task of workflow 1 is completed, the whole
work is finished, and we can get the makespan of the process
to be about 983 s. Additionally, during the whole process stage,
cloud 0 and cloud 1 are not used because of the large upload
and download time, while each mobile device is used to process
certain tasks. When the mobile devices do not have the ability to
process tasks, it can be seen from Fig. 16(b) that, this scheduling
heuristics decide to use edge 0 and edge 1 to process most of
the tasks and use cloud 1 to process a few tasks. In this case, it
takes about 1,174 s to finish the execution of the two workflows,
which costs more time.

In conclusion, we can see that the proposed MTGP method
can get scheduling heuristics that help mobile devices make de-
cisions. Also, the proposed simulator can emulate the scheduling
process in the fog computing environment well. In addition, tak-
ing mobile devices as processors can help improve the efficiency
of scheduling.

IX. CONCLUSION

In this article, we present a new DWSFC problem, in which
mobile devices have the ability to make autonomous decisions

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:57:51 UTC from IEEE Xplore. Restrictions apply.

XU et al.: GENETIC PROGRAMMING FOR DYNAMIC WORKFLOW SCHEDULING IN FOG COMPUTING

and process tasks, for simulating real-world applications. To
solve the new DWSFC problem, the goal of this article is to
design a suitable simulator and evolve effective routing rules and
sequencing rules simultaneously. This goal has been success-
fully achieved by the newly proposed simulator and novel MTGP
method with newly designed terminals. The proposed simula-
tor is designed as a discrete event-driven simulation process,
which simulates the scheduling process by making decisions
on two kinds of decision points (i.e., routing decision points
and sequencing decision points). The proposed MTGP method
can evolve routing rules and sequencing rules simultaneously to
meet these decision points. MTGP is examined and compared
with four classical scheduling heuristics on nine scenarios. The
results suggest that the MTGP method can outperform all the
compared approaches in terms of test performance. Addition-
ally, the representative scheduling heuristic gives us a general
understanding of which terminals can play a key role. Overall,
the newly designed simulator can greatly support studies for the
DWSFC problem and the proposed MTGP can obtain effective
test performance and potentially good interpretable scheduling
heuristics.

In the future, we will combine our approach with other tech-
niques to improve performance, such as the surrogate model and
transfer learning techniques. In addition, we will consider ap-
plying this MTGP method for solving multi-objective DWSFC
problems, such as minimising makespan, load balancing, and
budget, simultaneously.

REFERENCES

[1] S.Bharathi, A. Chervenak, E. Deelman, G. Mehta, M. H. Su, and K. Vahi,
“Characterization of scientific workflows,” in Proc. IEEE 3rd Workshop
Workflows Support Large-Scale Sci., 2008, pp. 1-10.

[2] 1. Taylor, M. Shields, and I. Wang, “Distributed P2P computing within
triana: A galaxy visualization test case,” in Proc. IEEE Int. Parallel Distrib.
Process. Symp., 2003, pp. 1-8.

[3] D. A. Brown, P. R. Brady, A. Dietz, J. Cao, B. Johnson, and J. McNabb,
“A case study on the use of workflow technologies for scientific analysis:
Gravitational wave data analysis,” in Workflows for e-Science, Berlin,
Germany: Springer, 2007, pp. 39-59.

[4] N. Antonopoulos and L. Gillam, Cloud Computing, vol. 51. Berlin,
Germany: Springer, 2010.

[5] B. Zhang, T. Xiang, H. Zhang, T. Li, S. Zhu, and J. Gu, “Dynamic DNN
decomposition for lossless synergistic inference,” in Proc. IEEE Int. Conf.
Distrib. Comput. Syst. Workshops, 2021, pp. 13-20.

[6] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the Internet of Things,” in Proc. Ist Ed. MCC Workshop Mobile
Cloud Comput., 2012, pp. 13-16.

[7]1 F. Bonomi, “Connected vehicles, the Internet of Things, and fog comput-
ing,” in Proc. 8th ACM Int. Workshop Veh. Inter- Netw., Las Vegas, USA,
2011, pp. 13-15.

[8] F. Bonomi, “Cloud and fog computing: Trade-offs and applications,” in
Proc. Int. Symp. Comput. Architecture, EON Workshop (ISCA), Jun. 2011.

[9] D. Tychalas and H. Karatza, “A scheduling algorithm for a fog

computing system with bag-of-tasks jobs: Simulation and perfor-

mance evaluation,” Simul. Modelling Pract. Theory, vol. 98, 2020,

Art. no. 101982.

X.Q.Pham,N.D.Man, N.D.T. Tri, N. Q. Thai, and E. N. Huh, “A cost-and

performance-effective approach for task scheduling based on collaboration

between cloud and fog computing,” Int. J. Distrib. Sensor Netw., vol. 13,

no. 11, pp. 1-16, 2017.

J. Liu et al., “Online multi-workflow scheduling under uncertain task

execution time in IaaS clouds,” IEEE Trans. Cloud Comput., vol. 9, no. 3,

pp. 1180-1194, Third Quarter 2021.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

2669

Y. Yu, Y. Feng, H. Ma, A. Chen, and C. Wang, “Achieving flexible
scheduling of heterogeneous workflows in cloud through a genetic pro-
gramming based approach,” in Proc. IEEE Congr. Evol. Comput., 2019,
pp. 3102-3109.

V. Arabnejad, K. Bubendorfer, and B. Ng, “Dynamic multi-workflow
scheduling: A deadline and cost-aware approach for commercial clouds,”
Future Gener. Comput. Syst., vol. 100, pp. 98-108, 2019.

K. Kofler, I. U. Haq, and E. Schikuta, “A parallel branch and bound
algorithm for workflow QoS optimization,” in Proc. IEEE Int. Conf.
Parallel Process., 2009, pp. 478—485.

S. Mohammadi, L. PourKarimi, and H. Pedram, “Integer linear
programming-based multi-objective scheduling for scientific workflows
in multi-cloud environments,” J. Supercomputing, vol. 75, no. 10,
pp. 6683-6709, 2019.

Z. Chen et al., “Multiobjective cloud workflow scheduling: A multiple
populations ant colony system approach,” IEEE Trans. Cybern., vol. 49,
no. 8, pp. 2912-2926, Aug. 2019.

C.Jian, M. Tao, and Y. Wang, “A particle swarm optimisation algorithm for
cloud-oriented workflow scheduling based on reliability,” Int. J. Comput.
Appl. Technol., vol. 50, no. 3/4, pp. 220-225, 2014.

J. Branke, S. Nguyen, C. W. Pickardt, and M. Zhang, “Automated design of
production scheduling heuristics: A review,” IEEE Trans. Evol. Comput.,
vol. 20, no. 1, pp. 110-124, Feb. 2016.

J.R. Koza and R. Poli, “Genetic programming,” in Search Methodologies.
Berlin, Germany: Springer, 2005, pp. 127-164.

F. Zhang, Y. Mei, and M. Zhang, “Genetic programming with multi-tree
representation for dynamic flexible job shop scheduling,” in Proc. Aus-
tralas. Joint Conf. Artif. Intell., 2018, pp. 472-484.

H. Fan, H. Xiong, and M. Goh, “Genetic programming-based hyper-
heuristic approach for solving dynamic job shop scheduling problem with
extended technical precedence constraints,” Comput. Operations Res.,
vol. 134, 2021, Art. no. 105401.

S. Shady, T. Kaihara, N. Fujii, and D. Kokuryo, “Evolving dispatch-
ing rules using genetic programming for multi-objective dynamic job
shop scheduling with machine breakdowns,” Procedia CIRP, vol. 104,
pp. 411-416, 2021.

F. Zhang, Y. Mei, S. Nguyen, and M. Zhang, “Correlation coefficient-
based recombinative guidance for genetic programming hyperheuristics
in dynamic flexible job shop scheduling,” IEEE Trans. Evol. Comput.,
vol. 25, no. 3, pp. 552-566, Jun. 2021.

E. K. Burke, M. R. Hyde, and G. Kendall, “Evolving bin packing heuristics
with genetic programming,” in Parallel Problem Solving From Nature-
PPSN IX. Berlin, Germany: Springer, 2006, pp. 860-869.

K. Sim and E. Hart, “Generating single and multiple cooperative heuristics
for the one dimensional bin packing problem using a single node genetic
programming island model,” in Proc. Conf. Genet. Evol. Comput., 2013,
pp. 1549-1556.

E. K. Burke, M. R. Hyde, G. Kendall, and J. Woodward, “Automating
the packing heuristic design process with genetic programming,” Evol.
Comput., vol. 20, no. 1, pp. 63-89, 2012.

T. Weise, A. Devert, and K. Tang, “A developmental solution to (dynamic)
capacitated arc routing problems using genetic programming,” in Proc.
Conf. Genet. Evol. Comput., 2012, pp. 831-838.

M. A. Ardeh, Y. Mei, and M. Zhang, “Genetic programming with knowl-
edge transfer and guided search for uncertain capacitated arc routing
problem,” IEEE Trans. Evol. Comput., vol. 26, no. 4, pp. 765-779,
Aug. 2022.

S. Wang, Y. Mei, and M. Zhang, “A two-stage multi-objective genetic
programming with archive for uncertain capacitated arc routing problem,”
in Proc. Genet. Evol. Comput. Conf., 2021, pp. 287-295.

K.-R. Escott, H. Ma, and G. Chen, “Genetic programming based hyper
heuristic approach for dynamic workflow scheduling in the cloud,” in Proc.
Int. Conf. Database Expert Syst. Appl., 2020, pp. 76-90.

Y. Yang, G. Chen, H. Ma, M. Zhang, and V. Huang, “Budget and SLA aware
dynamic workflow scheduling in cloud computing with heterogeneous
resources,” in Proc. IEEE Congr. Evol. Comput., 2021, pp. 2141-2148.
F. Wu, Q. Wu, and Y. Tan, “Workflow scheduling in cloud: A survey,”
J. Supercomputing, vol. 71, no. 9, pp. 3373-3418, 2015.

A. Caminero, A. Sulistio, B. Caminero, C. Carrién, and R. Buyya, “Ex-
tending gridsim with an architecture for failure detection,” in Proc. IEEE
Int. Conf. Parallel Distrib. Syst., 2007, pp. 1-8.

L. Zeng, B. Veeravalli, and X. Li, “SABA: A security-aware and budget-
aware workflow scheduling strategy in clouds,” J. Parallel Distrib. Com-
put., vol. 75, pp. 141-151, 2015.

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:57:51 UTC from IEEE Xplore. Restrictions apply.

2670

[35]
[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 4, JULY/AUGUST 2023

E. K. Burke et al., “Hyper-heuristics: A survey of the state of the art,”
J. Oper. Res. Soc., vol. 64, no. 12, pp. 1695-1724, 2013.

J.R. Koza, “Genetic programming as a means for programming computers
by natural selection,” Statist. Comput., vol. 4, no. 2, pp. 87-112, 1994.
S.Nguyen, Y. Mei, B. Xue, and M. Zhang, ““A hybrid genetic programming
algorithm for automated design of dispatching rules,” Evol. Comput.,
vol. 27, no. 3, pp. 467-496, 2019.

F.Zhang, Y. Mei, S. Nguyen, and M. Zhang, “Evolving scheduling heuris-
tics via genetic programming with feature selection in dynamic flexible
job-shop scheduling,” IEEE Trans. Cybern., vol. 51, no. 4, pp. 1797-1811,
Apr. 2021.

F. Zhang, Y. Mei, S. Nguyen, K. C. Tan, and M. Zhang, “Multitask genetic
programming-based generative hyperheuristics: A case study in dynamic
scheduling,” IEEE Trans. Cybern., vol. 52, no. 10, pp. 10515-10528,
Oct. 2022.

H. Jabeen et al., “Review of classification using genetic programming,”
Int. J. Eng. Sci. Technol., vol. 2, no. 2, pp. 94-103, 2010.

R.Buyyaand M. Murshed, “GridSim: A toolkit for the modeling and simu-
lation of distributed resource management and scheduling for grid comput-
ing,” Concurrency Comput. Pract. Exp.,vol. 14, no. 13/15, pp. 1175-1220,
2002.

R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya,
“CloudSim: A toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,” Softw.
Pract. Exp., vol. 41, no. 1, pp. 23-50, 2011.

W. Chen and E. Deelman, “WorkflowSim: A toolkit for simulating scien-
tific workflows in distributed environments,” in Proc. IEEE Int. Conf. E-
Sci., 2012, pp. 1-8.

H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “iFogSim: A
toolkit for modeling and simulation of resource management techniques
in the Internet of Things, edge and fog computing environments,” Softw.
Pract. Exp., vol. 47, no. 9, pp. 1275-1296, 2017.

K. Etminani and M. Naghibzadeh, “A min-min max-min selective algo-
rithm for grid task scheduling,” in Proc. IEEE/IFIP Int. Conf. Central Asia
Internet, 2007, pp. 1-7.

S. Parsa and R. Entezari-Maleki, “RASA: A new grid task scheduling
algorithm,” Int. J. Digit. Content Technol. Appl., vol. 3, no. 4, pp. 91-99,
2009.

R. Buyya, R. Ranjan, and R. N. Calheiros, “Modeling and simulation of
scalable cloud computing environments and the cloudsim toolkit: Chal-
lenges and opportunities,” in Proc. IEEE Int. Conf. High Perform. Comput.
Simul., 2009, pp. 1-11.

D. Sirisha and G. Vijayakumari, “Exploring the efficacy of branch and
bound strategy for scheduling workflows on heterogeneous computing
systems,” Procedia Comput. Sci., vol. 93, pp. 315-323, 2016.

H. Tian and J. Chen, “Analysis of overall assignment and sorting of tasks in
heterogeneous computing systems based on mathematical programming
algorithms,” Wireless Pers. Commun., vol. 126, pp. 2283-2301, 2022.

S. K. Misra and P. Kuila, “Energy-efficient task scheduling using quantum-
inspired genetic algorithm for cloud data center,” in Proc. Adv. Comput.
Paradigms Hybrid Intell. Comput., Springer, 2022, pp. 467-477.

L. Cui, J. Zhang, L. Yue, Y. Shi, H. Li, and D. Yuan, “A genetic algorithm
based data replica placement strategy for scientific applications in clouds,”
IEEE Trans. Serv. Comput., vol. 11, no. 4, pp. 727-739, Jul./Aug. 2018.
Z. Chen, K. Du, Z. Zhan, and J. Zhang, “Deadline constrained cloud
computing resources scheduling for cost optimization based on dynamic
objective genetic algorithm,” in Proc. IEEE Congr. Evol. Comput., 2015,
pp- 708-714.

S. Pandey, L. Wu, S. M. Guru, and R. Buyya, “A particle swarm
optimization-based heuristic for scheduling workflow applications in
cloud computing environments,” in Proc. IEEE Int. Conf. Adv. Inf. Netw.
Appl., 2010, pp. 400-407.

W. Chen and J. Zhang, “An ant colony optimization approach to a grid
workflow scheduling problem with various QoS requirements,” /EEE
Trans. Syst., Man, Cyber, C. (Appl. Rev.), vol. 39, no. 1, pp. 2943,
Jan. 2009.

H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective and low-
complexity task scheduling for heterogeneous computing,” IEEE Trans.
Parallel Distrib. Syst., vol. 13, no. 3, pp. 260-274, Mar. 2002.

W.Zhao andJ. A. Stankovic, “Performance analysis of FCFS and improved
FCFS scheduling algorithms for dynamic real-time computer systems,” in
Proc. IEEE Real-Time Syst. Symp., 1989, pp. 156—157.

J. Blythe et al., “Task scheduling strategies for workflow-based applica-
tions in grids,” in Proc. IEEE Int. Symp. Cluster Comput. Grid, 2005,
pp. 759-767.

[58] T.D. Braun et al., “A comparison of eleven static heuristics for mapping
a class of independent tasks onto heterogeneous distributed computing
systems,” J. Parallel Distrib. Comput., vol. 61, no. 6, pp. 810-837, 2001.

[59] S. Luke and L. Panait, “A survey and comparison of tree generation
algorithms,” in Proc. Genet. Evol. Comput. Conf., 2001, pp. 81-88.

[60] T. Blickle, “Tournament selection,” Evol. Comput., vol. 1, pp. 181-186,
2000.

[61] P. Salot, “A survey of various scheduling algorithm in cloud computing
environment,” Int. J. Res. Eng. Technol., vol. 2, no. 2, pp. 131-135, 2013.

[62] X. Tang et al., “Cost-efficient workflow scheduling algorithm for appli-
cations with deadline constraint on heterogeneous clouds,” IEEE Trans.
Parallel Distrib. Syst., vol. 33, no. 9, pp. 2079-2092, Sep. 2022.

[63] R. Medara and R. S. Singh, “Energy efficient and reliability aware work-
flow task scheduling in cloud environment,” Wireless Pers. Commun.,
vol. 119, no. 2, pp. 1301-1320, 2021.

[64] B. Dougani and A. Dennai, “Makespan optimization of workflow ap-
plication based on bandwidth allocation algorithm in fog-cloud environ-
ment,” PREPRINT (Version 1) available at Research Square, Jul. 6, 2022,
doi: 10.21203/rs.3.rs-1809172/v1.

[65] R. Jain, The Art of Computer Systems Performance Analysis. Hoboken,
NJ, USA: Wiley, 2008.

[66] Y. Mei, S. Nguyen, and M. Zhang, “Constrained dimensionally aware ge-
netic programming for evolving interpretable dispatching rules in dynamic
job shop scheduling,” in Proc. Asia-Pacific Conf. Simulated Evol. Learn.,
2017, pp. 435-447.

Meng Xu (Student Member, IEEE) received the BSc
and MSc degrees from the Bejing Institute of Technol-
ogy, Beijing, China, in 2017 and 2020, respectively.
She is currently working toward the PhD degree in
computer science with the School of Engineering and
Computer Science, Victoria University of Welling-
ton, Wellington, New Zealand. Her current research
interests include evolutionary computation, hyper-
heuristic learning/optimisation, job shop scheduling,
and workflow scheduling.

Yi Mei (Senior Member, IEEE) received the BSc
and PhD degrees from the University of Science
and Technology of China, Hefei, China, in 2005 and
2010, respectively. He is an associate professor with
the School of Engineering and Computer Science,
Victoria University of Wellington, Wellington, New
Zealand. His research interests include evolutionary
computation for combinatorial optimisation, genetic
7 programming, and hyper-heuristic, etc. He has more
VA than 180 fully referred publications, including the top
journals in EC such as IEEE Transactions on Evolu-
tionary Computation, IEEE Transactions on Cybernetics, Evolutionary Compu-
tation Journal, European Journal of Operational Research, ACM Transactions
on Mathematical Software. He is an associate editor of IEEE Transactions on
Evolutionary Computation, and a guest editor of the Genetic Programming
Evolvable Machine Journal.

Shigiang Zhu received the BSc degree in mechani-
cal engineering from Zhejiang University, Hangzhou,
China, in 1988, the MSc degree in mechatronic en-
gineering from the Beijing Institute of Technology,
Beijing, China, in 1991, and the PhD degree in me-
chanical engineering from Zhejiang University, in
1995. He became a faculty with Zhejiang University,
in 1995 and was promoted to the rank of professor, in
2001. He is also the director of Zhejiang Laboratory.

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:57:51 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.21203/rs.3.rs-1809172/v1

XU et al.: GENETIC PROGRAMMING FOR DYNAMIC WORKFLOW SCHEDULING IN FOG COMPUTING

Beibei Zhang received the BSc (Hons) degree in
information technology from The Hong Kong Poly-
technic University, in 2017 and the ME degree from
the Department of Electrical and Computer Engineer-
ing, University of Toronto, in 2020. He is currently
a research engineer in Zhejiang Lab, Hangzhou. His
research interests include distributed systems, cloud
computing, and peer-to-peer networks.

Tian Xiang received the BSc degree in electrical
engineering from Sichuan University, in 2008 and
the PhD degree from the College of Information Sci-
ence & Electronic Engineering, Zhejiang University,
in 2013. She is currently a senior researcher with
Zhejiang Lab, Hangzhou. Her research interests are
in the areas of edge computing, artificial intelligence,
and scheduling.

2671

Fangfang Zhang (Member, IEEE) received the BSc
and MSc degrees from Shenzhen University, China,
and the PhD degree in computer science from the
Victoria University of Wellington, New Zealand,
in 2014, 2017, and 2021, respectively. She is cur-
rently a postdoctoral research fellow in computer
science with the School of Engineering and Com-
puter Science, Victoria University of Wellington,
New Zealand. She has more than 45 papers in refereed
international journals and conferences. Her research
interests include evolutionary computation, hyper-

heuristic learning/optimisation, job shop scheduling, surrogate, and multitask

Mengjie Zhang (Fellow, IEEE) received the BE and
ME degrees from Artificial Intelligence Research
Center, Agricultural University of Hebei, Hebei,
China, and the PhD degree in computer science
from RMIT University, Melbourne, VIC, Australia,
in 1989, 1992, and 2000, respectively. He is a pro-
fessor of computer science, head of the Evolutionary
Computation Research Group. His research interests
include evolutionary computation, genetic program-
ming, multi-objective optimization, job shop schedul-
ing. He is a fellow of Royal Society of New Zealand,

a fellow of Engineering New Zealand, an IEEE CIS distinguished lecturer.

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:57:51 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

