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Abstract—Classification on high-dimensional data is a 
challenging task due to a large number of redundant and 
irrelevant features. Feature construction using Genetic 
Programming (GP) is an effective feature processing approach for 
classification, however, in high-dimensional applications, too many 
redundant and irrelevant features may reduce GP’s search ability 
and affect the classification performance of feature construction. In 
this paper, two feature selection and construction approaches to 
high-dimensional data are proposed. The first is a two-stage 
feature selection and construction approach named LfsFc, which 
first uses linear forword feature selection method (Lfs) to reduce 
the search space of features, and then uses a GP-based multiple 
feature construction approach (Fc) to construct multiple features. 
The second is a multi-objective GP-based feature selection and 
construction approach named MoFc which optimizes information 
gain ratio and the number of selected features, and archives elite 
individuals as constructed features. Experiments on ten high-
dimensional datasets show that LfsFc and MoFc can improve the 
classification performance compared with Fc and original features 
in four decision tree classifiers. 

Keywords-Feature Construction; Feature Selection; High-
dimensional; Classification; Genetic Programming 

I. INTRODUCTION  

Classification aims to find models learned from training data 
and predict the class labels of unknown data based on predefined 
features. Features are key factors that affect the classification 
performance. With the development of data collection 
technology, the collection of high-dimensional data has become 
increasingly easy. In text classification or biological 
classification applications, there are thousands or even tens of 
thousands of features, which have a large number of redundant 
and irrelevant features. Too many redundant and irrelevant 
features will reduce the classification performance of learned 
models and increase the training and testing time.  

Feature selection is to select an effective feature subset from 
original features so that the feature space is optimally reduced 
and it is frequently used for feature processing. In recent years, 
research methods focus on improving evaluation criteria and 
search strategies to search for effective feature subset [1]. 
However, in some high-dimensional applications, original 
features do not have adequate discriminating ability, and there 
may be some correlation between features to determine class 
labels. In recent years, feature extraction methods using deep 
learning, such as auto-encoders [2], are used to extract in-dept 
features from multi-layer neural network mapping and perform 
well on image classification applications. However, these 
methods require a significant amount of training samples, and 
designing an appropriate deep neural network usually needs trial 

or expert knowledge of the field. Genetic Programming (GP) [3] 
is an effective evolutionary computation (EC) algorithm. The 
solutions of GP can be represented as trees, where original 
features form the terminal nodes and logical or arithmetic 
operators form the internal nodes. Due to its flexible 
representation, GP can be used to solve a variety of tasks. 
Therefore, GP can be used to construct new high-level features 
to build relations between original features [4]. For some 
applications, the features constructed by GP may achieve good 
classification results. 

GP-based feature construction approaches focus on filter or 
wrapper, constructing single feature or multiple features. Most 
previous works concerning GP-based feature construction 
approaches focus on datasets with dozens or hundreds of 
features. However, in high-dimensional applications, due to the 
larger search space, solving high-dimensional applications using 
GP-based feature construction approaches is a challenging task. 
Tran et al.[4] proposed a feature construction and selection 
approach to high-dimensional data that simultaneously performs 
feature construction and feature selection. Hammami et al.[5]  
proposed a multi-objective filter-wrapper GP-based feature 
construction on high-dimensional data to solve computationally 
intensive of the wrapper evaluation. However, for high-
dimensional applications, the impact of redundant and irrelevant 
features on GP-based feature construction approaches has not 
been verified. It is necessary to investigate whether the 
classification performance of GP-based feature construction 
approaches will be affected by high-dimensional data and 
whether removing redundant and irrelevant features can 
improve the classification performance.  

Ma et al. [6] proposed to build multiple features by archiving 
multiple excellent individuals during a GP run. Later, Ma et al. 
[7] proposed to construct multiple features using the method in 
[6], and then select effective features from the constructed 
features. There has been no research on enhancing GP’s search 
ability through feature selection for high-dimensional data to 
improve the effectiveness of feature construction. 

In this paper, we have investigated two strategies to 
removing redundant and irrelevant features for feature 
construction approaches. The first is a two-stage feature 
selection and construction method named LfsFc, which first use 
linear forward feature selection method (Lfs) [8] to remove 
irrelevant and redundant original features, so as to enhance GP’s 
search ability. Then, the multiple feature construction approach 
proposed in [6] is employed to construct multiple features. The 
second is to investigate a multi-objective GP-based feature 
selection and construction method to simultaneously reduce the 
number of selected features and improve classification 
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performance (MoFc). Our overall goal is to investigate the 
combination of feature selection and feature construction to 
solve high-dimensional classification tasks.  

II. MATERIALS AND METHODOLOGY 

A. Datasets and parameter settings 

Ten high-dimensional datasets are collected to verify the 
effectiveness of our proposed approaches. Two e-mail datasets 
involving text classification problems come from UCI machine 
learning repository [9]. Eight microarray datasets involving gene 
classification problems are collected from the website 
http://csse.szu.edu.cn/staff/zhuzx/datasets.html. The detailed 
information of the ten datasets is shown in TABLE 1. The 
dimension of these datasets is high. Datasets contains a large 
number of redundant and irrelevant features, which can be used 
to verify the effectiveness of our proposed feature selection and 
construction approaches that are designed for high-dimensional 
data. 

GP is run on ECJ library [10]. TABLE 2 shows the parameter 
settings. The function set of GP includes +, −, *, %. When the 
operator % is divided by zero, it returns zero. Other parameters 
are consistent with those in literatures [6,7]. For fair comparison, 
fixed GP’s parameters is setted. 

Four decision tree algorithms including J48, BF tree, REP 
tree and Random tree (RT) are selected as classifiers to verify 
our proposed approaches. The Weka package is used to run the 
above four classifiers. 

To obtain more convincing evaluation performance, we use 
different random seeds to generate 30 different training sets and 
testing sets. 70% of the samples are training sets and 30% are 
testing sets. To avoid the stochastic characteristics of GP, each 
algorithm runs independently 30 times on 30 training sets and 
testing sets. Training sets are used to get effective selected 
features or constructed features. Testing sets are used to test the 
experimental results using 10-fold cross validation. The 
experimental results are evaluated by the classification accuracy. 

Table 1 Dataset’s description 

Dataset Features Instances Classes 

Colon 2000 60 2 

Leukemia 7129 72 2 

Lymphoma 4026 62 3 

SRBCT 2308 83 4 

MLL 12582 72 3 

Ovarian 15154 253 2 

Lung 12600 203 5 

DLBCL 2648 77 2 

DBWorld 4702 64 2 

DBWorld_stemmed 3721 64 2 

Table 2 GP’s parameter setting 

Parameters Parameter value 

Population size 500 

Initialization Ramped half-and-half 

Maximum tree depth 17 

Terminal set Original features or selected features 

Function set +, −, ×, % (protected division) 
Number of generations 50 

Selection method Tournament method 

Mutation method Random subtree creation 

Cross-over probability 90% 

Mutation probability 10% 

B. Methodology 

Training sets are used to select and construct new features. 
Suppose a training set is represented as D, and the original 
feature set of the training set D is represented as 

 nfffF ,,, 210  , where n is the number of original features, fj 

denotes the jth original feature. The purpose of this paper is to 
propose an effective feature processing method for high-
dimensional datasets and compare with existing feature 
processing methods.  

1) The proposed LfsFc approach 
For Lfs, correlation-based evaluation method is used as 

feature evaluator. Linear forward selection [8] is used to search 
for optimal feature subsets. For Fc, we use our proposed multiple 
feature construction approach in [6], which stores top 20 
excellent individuals during GP runs. Information gain ratio 
(IGR) is used as the fitness function to evaluate the constructed 
features. Standard GP representation methods are used to 
construct features. The individuals of GP are represented as tree-
like structures. The internal nodes of an individual are randomly 
generated from a function set of {+, −, ×, %}. The terminal nodes 
of an individual are randomly generated from original features 
or selected features. 

The idea of LfsFc is to first remove redundant and irrelevant 
features using Lfs, and then construct multiple features using Fc. 
The purpose of LfsFc is to verify whether redundant and 
irrelevant original features affect GP’s search performance for 
feature construction on high-dimensional applications. Our 
proposed LfsFc is divided into two-stages. The framework of 
LfsFc is shown in Figure 1. 

In the first stage, the original features  nfffF ,,, 210   
are reduced to a smaller feature subset  ss fffF ,,, 21  by 

Lfs, where s is the number of selected features. In the second 
stage, top β constructed features are stored using Fc during a GP 
run. In this paper, β is set to 20. The impact of parameter β on 
experimental results is shown in [6]. Suppose the constructed 
features are denoted as  2021 ,,, cccc fffF  ,where fcj denotes 

the jth constructed feature. The terminal nodes of GP individuals 
are generated from selected features  ss fffF ,,, 21  . 

According to the constructed features Fc, the testing sets are 
transformed into new testing sets, and are used to evaluate the 
classification performance using 10-fold cross validation. 
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Figure 1. The framework of LfsFc 

2) The proposed MoFc approach 
The idea of MoFc is to use multi-objective Genetic 

Programming (MOGP) to simultaneously improve the 
discriminative ability of constructed features and reduce the 
number of selected features. We employed the evolutionary 
strategy of NSGA-II to develop MOGP. Our MOGP is used to 

maximize   IGRxF 1 and minimize    xfxF s2 , subject 

to x is a GP individual (constructed feature), and fs(x) is the 
number of terminal nodes (selected features) in a GP individual. 
In order to maintain consistency with LfsFc, we also archives 20 
elite individuals which have the highest IGR values during GP 
runs. The training sets are used to obtain elite individuals which 
are transformed to constructed features Fc. Then, the testing set 
are used to evaluate the classification performance of the 
constructed features. The Pseudo-Code of MoFc is shown in 
Figure 2. 

With the evolution of MoFc, using MOGP to optimize IGR 
performance and the number of selected features will generate a 
large number of overlapping individuals, which makes GP 
converge too early and reduces GP’s search space. To solve this 
problem, from the second generation, the genetic operators of 
crossover and mutation is used to generate the offspring 
population. Then, the overlapping individuals are removed from 
the offspring and the merged offspring and parent population. In 
order to guarantee the fixed number of population, crossover-
mutation is executed again to generate more new individuals to 
add into new population. Then, the overlapping individuals are 
removed again. Generating new individuals by crossover-
mutation and removing overlapping individuals are repeatedly 
executed until the merged offspring and parent population has 
no overlapping individuals and retains a fixed number of 
individuals. Each subsequent generation performs the same 
operation above, so that there are no overlapping individuals 
during the evolution process of MOGP. The program codes for 
overlapping individual removal can be seen on lines 20 to 27 in 
Figure 2. 

III. RESULTS AND DISCUSSION 

A. Comparisons of LfsFc, MoFc and FULL, Fc  

The experimental results of our proposed LfsFc and MoFc 
approaches with FULL and Fc [6] are shown in TABLE 3. In 

the able, "F" denotes the number of features generated by 
different feature processing methods. The "Wtest" column 
denotes the Wilcoxon significance test with a P-value of 0.05 for 
the corresponding methods of different classifiers and the FULL. 
"=" denotes their results are similar, and "−" or "+" denotes the 
experimental result is significantly worse or better than FULL.  

 
Figure 2. The Pseudo-Code of MoFc  

1) Comparisons between LfsFc, MoFc, Fc and FULL 
The Wtest in TABLE 3 shows that Fc, LfsFc and MoFc are 

significantly better than FULL in almost all decision tree 
classifiers. As shown in TABLE 3, Fc can achieve much higher 
classification accuracy than FULL in almost all the decision tree 
classifiers. For example, for the J48 classifier, the classification 
accuracy of Fc are 3.89%, 17.22%, 6.45%, 17.41%, 26.11% and 
6.29% higher than those of FULL respectively on Colon, 
Leukemia, Lymphoma, SRBCT, MLL and Lung datasets, the 
classification accuracy of LfsFc are 3.70%, 16.48%, 6%, 
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25.37%, 32.59% and 7.71% higher than those of FULL 
respectively on Colon, Leukemia, Lymphoma, SRBCT, MLL 
and Lung datasets, and the classification accuracy of MoFc are 
5.55%, 19.81%, 8.23%, 19.81%, 28.79% and 2.31% higher than 
those of FULL respectively on Colon, Leukemia, Lymphoma, 
SRBCT, MLL and Lung datasets. In addition, Fc, LfsFc and 
MoFc can reduce the dimension of datasets from thousands or 
tens of thousands to twenty. The experimental results of feature 
construction methods, including Fc, LfsFc, and MoFc, verify 
that feature construction methods can discover hidden relations 
between features and achieve good classification performance in 
high-dimensional applications.  

Table3 The experimental results of different feature construction methods 

Dataset     Method  #F    A-J48       A-BF       A-REP      A-RT     Wtest 

Colon 

FULL  2000 67.78±15.67  66.67±7.17   67.22±5.04  
58.33±11.72 

Fc     20   71.67±12.94 69.63±13.36  68.70±9.24  
68.89±12.22  + + + + 

LfsFc  20   71.48±15.96 70.37±12.70  70.19±9.46  
71.30±11.39  + + + + 

MoFc  20   73.33±11.24 70.00±12.31  72.41±9.13  
73.52±10.21  + + + + 

 
Leuke

mia 
 

FULL 7129 67.78±17.59 66.30±10.14  67.41±7.13  
64.81±11.77 

Fc    20   85.00±10.06 83.89±13.25  78.70±12.68 
83.33±10.24  + + + + 

LfsFc  20   84.26±9.08  83.52±10.59  78.15±10.73 
86.11±8.93   + + + + 

LfsFc  20   87.59±9.26  85.56±13.12  82.78±10.58 
87.04±7.77   + + + + 

Lymp
homa 

FULL 4026 84.44±8.49  77.56±6.32   78.44±3.30  
86.00±8.32 

Fc    20   90.89±4.71  85.78±5.09   78.44±3.30  94.22±6.38   
+ + + + 

LfsFc  20   90.44±5.33  84.44±5.37   78.67±2.67  94.89±4.77   
+ + + + 

MoFc  20   92.67±4.34  83.11±6.14   78.00±3.06  96.00±4.42   
+ + + + 

SRBC
T 

FULL 2308 52.78±13.13 55.19±13.60  30.19±9.04  
44.07±9.62 

Fc    20   70.19±8.90  65.74±10.35  57.59±8.78  72.78±8.53   
+ + + + 

LfsFc  20   78.15±6.92  72.41±10.70   57.59±6.70  
79.26±10.08  + + + + 

MoFc  20   72.59±8.28  72.72±7.22    77.95±3.08  
75.38±4.81   + + + + 

MLL 

FULL 12582 46.67±14.53 38.70±14.66  27.22±12.03  
48.33±11.03 

Fc    20   72.78±10.58 70.37±18.11  62.41±17.90  
72.41±12.63 + + + + 

LfsFc  20   79.26±8.23  81.67±8.74   73.15±9.84   
80.74±8.08  + + + + 

MoFc  20   75.46±8.50  72.22±7.10    74.84±8.59  
79.74±6.78   + + + + 

Ovaria
n 

FULL 15154 94.89±3.23  96.13±2.93   94.18±2.89   
79.11±4.91 

Fc    20    94.98±2.52  95.73±2.78   95.51±2.49   95.20±3.76   
= = = + 

LfsFc  20   96.58±2.33  97.33±2.31   96.40±2.94   
97.51±2.11  + = + = 

MoFc  20   97.38±1.77  98.22±1.70   98.18±1.74   
98.22±1.55  + + + + 

Lung 

FULL 12600 75.25±15.18 70.37±14.39  69.20±13.62  
69.20±13.68 

Fc    20    81.54±4.07  82.96±4.91   80.43±3.16   79.75±4.83  
+ + + + 

LfsFc  20    82.96±5.67  82.59±5.67   79.63±3.97   
80.62±5.23  + + + + 

MoFc  20   77.56±4.36  79.26±4.18   78.58±3.05   
75.43±6.14  + + + + 

DLBC
L 

FULL 2648 86.48±16.77 94.44±17.86   79.63±14.93  
72.96±15.83 

Fc    20   83.33±9.94  85.93±7.82    81.67±2.55   84.07±10.51 
− − + + 

LfsFc  20   85.56±11.71 85.56±8.19    81.67±2.55   
87.22±7.34  − − + + 

MoFc  20   90.00±6.48  93.15±7.95    82.59±1.89   
90.93±6.49  + = + + 

DBWo
rld 

FULL 4702 72.00±19.81 64.00±18.10   63.11±14.17  
63.78±14.78 

Fc    20   67.33±14.23 70.22±15.08   65.11±13.52  
70.22±16.21 − + = + 

LfsFc  20   76.67±13.42  75.11±14.60   71.33±13.13  
74.22±13.85 + + + + 

MoFc  20   69.78±14.37  68.44±13.66   64.00±8.36   
72.44±11.77 − + = + 

DBWo
rld_S 

FULL 3721 69.33±22.08 62.44±20.76   63.33±17.95  
63.33±14.17 

Fc    20   71.56±10.60  70.00±13.42   66.22±9.88   
72.44±11.38 + + + + 

LfsFc  20   78.00±12.78  75.78±14.55   74.44±14.10  
74.00±14.44 + + + + 

MoFc  20   72.00±14.54  70.22±14.88   67.33±13.48  
73.78±14.39 + + + + 

2) Comparisons between LfsFc, MoFc and Fc  
From TABLE 3, we can see that LfsFc can improve the 

classification performance of Fc on Colon, Leukemia, SRBCT, 
MLL, Ovarian, DLBCL, DBWorld and DBWorld_S datasets in 
all decision tree classifiers, and LfsFc can achieve equivalent 
classification performance comparing with Fc on Lymphoma 
and Lung datasets. For example, the classification accuracy of 
LfsFc are 6.48%, 11.3%, 10.74% and 8.33% higher than those 
of Fc respectively in the J48, BF, REP and RT decision tree 
classifiers on MLL dataset. The experimental results confirm 
that in high-dimensional data, too many redundant and irrelevant 
features affect GP’s search performance, and removing 
ineffective features in advance can improve the searching ability 
of GP and increase the classification performance of Fc. 

From the experimental results in TABLE 3, we can see that 
MoFc can achieve equivalent classification performance as Fc 
on Lymphoma, Lung, DBWorld and DBWorld_S datasets, and 
MoFc can achieve higher classification performance than Fc on 
other datasets. For example, the classification accuracy of MoFc 
is 2.40%, 6.98%, 20.36% and 2.60% higher than Fc in the J48, 
BF, REP and RT decision tree classifiers on SRBCT dataset. 
MoFc improves the classification performance of constructed 
features while reduces the number of selected features. The 
experimental results show that MoFc can also reduce the impact 
of ineffective features on classification performance and achieve 
higher classification performance than Fc.  

IV. CONCLUSIONS 

This paper proposes two feature selection and construction 
approaches to address the impact of high-dimensional data on 
feature construction methods. The first is a two-stage feature 
selection and construction approach (LfsFc), which first uses a 
linear forward feature selection method (Lfs) to remove 
redundant and irrelevant features from high-dimensional data, 
then employs a multiple feature construction approach (Fc) to 
construct multiple features. The second is a multi-objective GP-
based feature construction (MoFc) which optimizes 
classification performance and the number of selected features 
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at same time. Experiments on ten high-dimensional datasets 
show that LfsFc and MoFc are all effective methods to improve 
the classification performance comparing with using Fc.  
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