
Genetic Programming for Improved Cryptanalysis
of Elliptic Curve Cryptosystems

Tim Ribaric
Department of Computer Science

Brock University
St. Catharines ON

Email: tribaric@brocku.ca

Sheridan Houghten
Department of Computer Science

Brock University
St. Catharines ON

Email: shoughten@brocku.ca

Abstract—Public-key cryptography is a fundamental compo-
nent of modern electronic communication that can be constructed
with many different mathematical processes. Presently, cryp-
tosystems based on elliptic curves are becoming popular due
to strong cryptographic strength per small key size. At the heart
of these schemes is the intractability of the elliptic curve discrete
logarithm problem (ECDLP).

Pollard’s Rho algorithm is a well known method for solving the
ECDLP and thereby breaking ciphers based on elliptic curves.
It has the same time complexity as other known methods but is
advantageous due to smaller memory requirements. This paper
considers how to speed up the Rho process by modifying a
key component: the iterating function, which is the part of the
algorithm responsible for determining what point is considered
next when looking for a collision. It is replaced with an alternative
that is found through an evolutionary process. This alternative
consistently and significantly decreases the number of iterations
required by Pollard’s Rho Algorithm to successfully find a
solution to the ECDLP.

I. INTRODUCTION

Public key cryptography is the central component of present
day secured communication. This began with the Diffie-
Hellman key exchange [1], followed shortly thereafter by the
Rivest, Shamir, and Adleman (RSA) method [2] which is
actively used in present day internet communication. The basis
of these schemes is that an asynchronous key is created that
has two components: a private key and a public key. A message
is encoded with the public key and transmitted to the other
party. The other party uses the corresponding private key to
decode the message. The system is constructed in such a way
that the public key can be shared to all while it remains com-
putationally infeasible to determine the private key. Different
cryptographic schemes use different mathematical operations
to ensure that the system is reasonably secure. With RSA, the
difficult computational process is factorization of integers that
are the product of large prime numbers.

In elliptic curve cryptography this computational difficulty
is accomplished through the Elliptic Curve Discrete Logarithm
Problem (ECDLP). We represent a point Q on an elliptic
curve restricted to a field with the following notation: Q =
(Q.x,Q.y), where the point Q has x and y coordinates. Let
k represent some scalar. Then the cryptosystem is arranged
as follows: Q = kP , where point Q can represent the public
key of the system and point P can represent the private key.

It is known to be computationally difficult to determine the
value of k if only kP is provided. Finding an effective method
with a reasonable running time to solve this would effectively
crack the cryptosystem. One of the more popular forms of
solving the ECDLP is Pollard’s Rho Algorithm. With the
Rho process we seek to find the value of k by determining
two equations involving points in the field that equal one
another when multiplied by different scalar values. With this
presented notation we are attempting to find the solution to:
c
′
P + d

′
Q = c

′′
P + d

′′
Q. More precisely, we attempt to find

the scalar values of c′,c′′,d′, and d′′. Once these values are
known we can find the value of k by using a field inversion
operation and evaluating k = (c

′ − c′′)(d′′ − d′
)−1 mod n,

where n is a large prime.
This study utilizes a genetic programming approach to aid

in the calculation of the ECDLP. Specifically, the number
of iterations required by the Rho process are significantly
reduced by using an evolved genetic program in place of the
usual iterating function that is a central component of the Rho
Algorithm.

Other computational intelligence techniques have been ap-
plied in various aspects of cryptography. For example, genetic
algorithms have been employed in generating keys for elliptic
curve cryptosystems [3]. With respect to cryptanalysis, genetic
algorithms have been used in various ways to attack classical
ciphers, block ciphers and stream ciphers [4] [5] [6] [7],
and to analyze weak keys for ciphers [8]. Laskari et al [9]
provide a comprehensive overview of the application of com-
putational intelligence techniques used in cryptographic and
cryptanalysis studies. Alongside this survey, original research
is presented on a number of different experiments that treat
cryptography problems as discrete optimization tasks. Among
those presented is an experiment that considers the use of
an artificial neural network to find the least significant bit of
an ECDLP solution. Finding this value leads to a reduction
in the computation time required to calculate the rest of the
solution. Field sizes of 14, 20, and 32 bits were investigated.
This technique managed to identify the correct solution after
training at an average rate of 57%.

The method used in the current study is to employ genetic
programming to reduce ECDLP calculation time of an estab-
lished method (Pollard’s Rho Algorithm) that effectively has a

978-1-5090-4601-0/17/$31.00 c©2017 IEEE
419

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:19:59 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. y2 = x3 − 4x+ 4

success rate of 100%, as explained in the following section. To
the best of our knowledge there have been no similar studies
to the one presented in this paper.

II. BACKGROUND

A. Elliptic Curve Discrete Logarithm Problem (ECDLP) and
Cryptography

The use of Elliptic Curve Cryptography was first proposed
independently by Koblitz [10] and Miller [11]. These proposed
systems made use of an elliptic curve E that is defined as
the set of solutions (x, y) where a, b ∈ Z to the following
equation:

y2 = x3 + ax+ b (1)

The values a, b must be chosen so that 4a3 + 27b2 6= 0.
If this requirement is not met then the resulting curve will be
unsuitable for cryptographic use [12]. Additionally if the curve
used fulfills this criteria then the Rho Algorithm, described
in the following section, will always successfully find the
solution to the ECDLP [10]. Fig. 1 shows an example curve
plotted on a Cartesian plane.

The curve is symmetric about the x-axis. Due to this
symmetry many properties arise. For instance any line between
two distinct points on the curve will intersect the curve at most
once. It is possible to define an addition operation to add two
points on the curve. In all cases the first step is to draw a
line between the two points. In total there are four different
scenarios:
• Points are both at the origin: A tangent is drawn to the

origin and is said to extend to infinity.
• Points share the same x-coordinate: A line is drawn

between the two points and it is said to extend to infinity.
• Line between the points does not intersect the curve:

In this case as well the line is said to extend to infinity.
• Line between the points intersects the curve: Here

the addition is calculated using the chord and tangent
method. If P,Q are points on E and P 6= Q (i.e. not
any of the previously defined scenarios) then one simply
draws a line between the two points and it will intersect

Fig. 2. Demonstration of Point Addition

the curve at a third point −R, which is reflected in the
x-axis to produce R. This is demonstrated in Fig. 2.

In order to complete this definition so that it constitutes a
group, an identity element O called the point at infinity is
introduced. This element satisfies P + O = P for every P .
What this means is that adding any two points on the curve will
always result in a point on the curve or the point at infinity.
With this point the group is closed under point addition. In
summary elliptic curves form a finite Abelian group when
defined over Fn, where n is a large prime number.

Another operation, point negation, is easy to calculate. If
P = (P.x, P.y) then −P is defined as (P.x,−P.y).

It is possible to define the addition operation explicitly so
that it can be calculated without explicitly knowing all of the
points on the curve. If P = (x1, y1) and Q = (x2, y2) are
points on E neither of which is O then P + Q = (x3, y3)
where:

x3 = λ2 − x1 − x2
y3 = λ(x1 − x3)− y1

If P = Q then

λ =
3x21 + a

2y1
(2)

If P 6= Q then

λ =
y2 − y1
x2 − x1

(3)

It is possible to define a multiplication operation over
points as well. In fact this operation can be seen as multiple
applications of point arithmetic defined above, for example
2P = P + P . This operation is often referred to as point
doubling when the scalar value is 2, while in all other cases
this operation is referred to as point multiplication.

Let E be an Elliptic Curve defined over Fn, where n is
a large prime. Let P ∈ E be a point of prime order q. Let
〈P 〉 be the prime order subgroup of E generated by P . If
Q ∈ 〈P 〉 then Q = kP for some scalar k where 0 ≤ k ≤ q.
The problem is then finding k given P , Q, and the parameters

420
Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:19:59 UTC from IEEE Xplore. Restrictions apply.

of curve E. The ECDLP can be thought of as the elliptic
curve variant to the more common logarithm problem. For
example with y = nx, it is easy to calculate y given n and
x. However when given y and n it is difficult to calculate x.
When calculating this logarithm the result is often a real value.
When calculating the logarithm over a field, as in the case of
the ECDLP, the resulting value is a member of the field, or
in other words it is composed of an x and y coordinate that
are both integers. Calculating a logarithm in a field is often
referred to as the discrete logarithm problem.

B. Pollard’s Rho Algorithm

The original method, proposed by Pollard [13], was used
to find the prime roots of a composite number, and was
constructed in such a way that it could be coded into a
programmable calculator. Soon after a slightly revised method
was proposed by Pollard [14] that was meant to compute the
index of any integer to a given primitive root of a prime p.
The additional benefit of the Rho algorithm is that it has the
best run-time of any known method of solving the discrete
logarithm problem. Similarly the memory requirements are
also negligible, making the algorithm very appealing to use.

C. Pollard’s Rho Algorithm for Elliptic Curves

Algorithm 1 Pollard’s Rho Algorithm for Elliptic Curves [12]
Input: P ∈ E(Fq) of prime order n, Q ∈ 〈P 〉
Input: Partition function EvoH : 〈P 〉 → {1, 2, ..., L}

1: for j from 1 to L do
2: Select aj , bj ∈R [0, n− 1]
3: Compute Rj = ajP + bjQ
4: end for
5: Select c′, d′ ∈R [0, n− 1]
6: Compute X ′ = c′P + d′Q
7: X ′′ ← X ′, c′′ ← c′, d′′ ← d′

8: repeat
9: j = EvoH(X ′)

10: X ′ ← X ′ +Rj

11: c′ ← c′ + aj mod n
12: d′ ← d′ + bj mod n
13: for i from 1 to 2 do
14: j = EvoH(X ′′)
15: X ′′ ← X ′′ +Rj

16: c′′ ← c′′ + aj mod n
17: d′′ ← d′′ + bj mod n
18: end for
19: until X ′ = X ′′

20: if d′ = d′′ then
21: return False
22: else
23: k = (c′ − c′′)(d′′ − d′)−1 mod n
24: return k
25: end if

The method used for this experiment is a modified version
of the Rho presented in Hankerson et al. [12] and seen in

Algorithm 1. The inputs supplied to the algorithm are two
points P , Q. The point Q is expressed as kP , some scalar
multiple of point P . The value of k is the solution to our
discrete logarithm problem. Next, we require a hash function
that will allow us to map any random point to a value between
1 and L, where L is the number of sections into which the
curve will be divided while we are searching for the value of
k. Pollard’s original formulation of the Rho algorithm used 3
sections. In most constructions of the Rho algorithm the hash
function is simply implemented with (P.x) mod L+ 1.

The purpose of the current study is to instead use genetic
programming to determine a more effective hash function
EvoH . This study fixed the value of L, i.e. the number of
sections, at 32. This value was selected as it is a common
choice for implementations of the Rho Algorithm [12].

The algorithm begins by filling a random buffer R of L
values in the range 1 to L. These values are pairwise multiplied
with L random points in the curve. Next two random values
c′ and d′ are chosen from the interval. Then X ′ is calculated,
which is comprised of the sum of point multiplications of c′P
and d′Q. For the first iteration c

′
is set to the same value

as c
′′

and similarly d
′

and d
′′

are set to the same value.
The Rho algorithm then proceeds by calculating two different
sequences of points; this process is more commonly known
as Floyd’s cycle detecting algorithm [15]. When these two
sequences yield the same point (line 19), the process then
attempts to find the value of k (line 23) which, as described
earlier, will always be successful due to the construction of
the ECDLP problem. What is worth noting is that the EvoH
hash function guides the choice of what intermediate point is
considered next.

The current study examines whether making the hash func-
tion distribute values more randomly will reduce the runtime
of the Rho Algorithm, i.e. to find the value of k in fewer
iterations. Specifically, an evolved genetic program will be
used to replace the original hash function.

The parameters selected by the algorithm are aj , bj , c′, and
d′. The first two of these parameters are randomly selected
series of values in the range of 0 to n − 1, as found in line
2 of Algorithm 1. The second two are scalar parameters that
were statically assigned to be evenly spaced in field size n,
specifically c′ = n/4 and d′ = 3n/4 using integer division
(line 5). Because of how these parameters are assigned, when
looking at the same values of P and Q, subsequent runs of
the algorithm differ only if the values of aj and bj are varied.
Those two series are the only independent variables in the Rho
algorithm.

D. Research on Pollard’s Rho Algorithm

Since the first publication of Pollard’s Rho Algorithm there
has been substantive research into improving the method.
The refinement that has resulted in the best improvement of
runtime has been the introduction of a parallel version of the
algorithm [16]. In this case there is a speed up factor of M,
where M is the number of processors assigned to calculating
intermediate values. There have been other refinements to the

421
Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:19:59 UTC from IEEE Xplore. Restrictions apply.

process that have also produced a reduction in runtime. The
use of R + S additive walks [17] modified the composition
of the iterating hash function. Instead of using the typical
3 subsets outlined in the original method by Pollard [14] a
varying amount of subsets are generated. Further offsets into
those subsets are also employed in an attempt to further scatter
the iterated points throughout the subset. In general it was
found that the higher the number of subsets utilized the better
the performance of the method.

An additional refinement uses negation maps [18] to par-
tition the points in the subsections of the iterating function.
Instead of using point addition as in the original method,
both P and −P are calculated. The point with the smaller
y coordinate is used in the iterating function, as there is
a decrease in the computations that need to be performed.
However it is possible for calculations to get trapped in never-
ending loops using this scheme requiring a method for loop
detection and escape to be implemented.

The same research team also developed a method referred to
as point-halving [19]. In this case the iterating function is mod-
ified, with point-halving used instead of point addition since
point-halving is computationally easier. Similarly a method of
point subtraction [20] has also been developed that modifies
the iterating function to short cut the complexity of the
calculations by subtracting points in the field instead of adding
them together. The same research team also proposed a method
[21] of decreasing the amount of time needed to perform
collision detection, however this increase in efficiency does not
surpass the gains seen when using the parallel formulation of
the process. Lastly the same research team discovered another
modification, when restricted to finite extension fields [22] a
decrease in calculation complexity can be seen by utilizing the
fact that exponential point calculations are just cyclic shifts of
the underlying fields.

III. PROPOSED METHOD

The purpose of this study is to employ a genetic program-
ming technique to decrease the number of iterations performed
by the Rho Algorithm, thus finding the solution to the ECDLP
in less computation time.

A. Genetic Programming

Genetic Programming is a metaheuristic popularized by
Koza [23] which mimics natural evolution. The goal of this
study is to evolve a highly fit expression tree to represent the
iterating hash function by first creating an initial population of
randomly generated expression trees based on simple compo-
nents referred to as terminal nodes and internal nodes and then
evolving this population through successive generations with
the goal of finding the most fit final expression tree. Fitness is
determined via the application of a fitness function that will
assign a numerical score to each expression tree considered.
With each generation this new population is created by proba-
bilistically applying reproduction and mutation and performing
a selection process that picks the most fit individuals to survive
to the next generation.

TABLE I
RUNTIME PARAMETERS

Parameter Value
Population Size 1000

Generations 100
Max Depth of Program Trees 17

Crossover Rate 0.9
Mutation Rate 0.1

Tournament Size 5

TABLE II
NODE VALUES

Terminal Node Description
P.y Y coordinate of point

Internal Node Description
Addition Integer sum of two operands

Subtraction Integer difference of the two operands
Multiplication Integer product of two operands

Negation Negation of a single operand

In this scheme reproduction is performed by a single point
cross-over technique. Two expression trees selected via prob-
abilistic methods randomly pick a node. The two trees are
split at this node and swap the resulting sub-trees. Mutation
is performed by probabilistically selecting an expression tree
and probabilistically regenerating a simple sub-tree at a ran-
dom node. Selection was performed by tournament selection.
Additional runtime parameters are summarized in Table I and
were determined empirically. This study was conducted using
an evolutionary algorithm software modelling package called
Distributed Evolutionary Algorithms in Python (DEAP) [24].

B. Terminals and Internal Nodes

The expression tree generated by the evolutionary process
is comprised of two components: terminal, or leaf, nodes and
internal nodes. These components are summarized in Table II
and were determined via empirical analysis. Fig. 3 shows an
example expression tree formed during the course of a run.

C. Fitness Function

The fitness function is an integral part of the genetic
programming process. The rationale for the choice of function
here is to randomize the values produced by the EvoH hash
function. The supposition is that if it is adequately random
the next points considered by the Rho process will be well
distributed through the curve and result in a lower number of
iterations to find the value of k. Since each curve is unique, as
well as the choices of P and Q, the iterating function used for
each Rho process should be created in a way that maximizes
randomness for the choices of parameters.

operator.sub(operator.neg(P.y),
operator.mul(operator.mul(P.y, P.y),
operator.add(P.y, P.y)))

Fig. 3. Example of Evolved Partition Function

422
Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:19:59 UTC from IEEE Xplore. Restrictions apply.

TABLE III
TEST POINT SIZES

Number of Digits in Field Size Number of Test Points
5 32
6 64
7 128
8 256

Many different fitness functions were attempted, including
mean scores produced by the candidate expression tree with
a set of test points, and other measures of central tendency.
The final fitness function used in this study is inspired by
Knuth’s work on perfect distribution of hash values produced
by hash functions that approximate the golden ratio [25]. The
number of test points t used to calculate fitness varies and
is assigned based on the number of digits of the field size.
These bounds were determined through empirical testing and
are summarized in Table III. Equations 4 and 5 show the two
calculations comprising the fitness function.

TPS =

t∑
n=1

EvoH(TestPoint[n])(mod (L+ 1)) ∗ φ (4)

fitness =
TPS

t
+ penalty (5)

Here we seek to minimize the fitness value. A sequence of
test-points from the curve under consideration are randomly
selected and added to an array called R, which is calculated in
line 3 of Algorithm 1. Each test point has the candidate EvoH
function applied to it. This creates a sequence of integers in
the range 1 to L. This range is maintained by applying a
mod L+1 operation to every point after it has been computed
in EvoH . This is necessary to ensure that only a valid section
number is selected by the hash function. Each value in this
sequence is then multiplied by φ and summed across all test
points resulting in the value TPS found in Equation 4. This
value, TPS, is then divided by the number of test points used
and a penalty is applied, as shown in Equation 5.

A penalty is applied to the score if a candidate function
does not supply enough distinct values when used against
the complete collection of test points. This threshold was
set to 53% of L and was determined via empirical testing.
This penalty discourages candidate functions that return all
the same value thereby trivially creating a better fitness.

IV. ANALYSIS

The most direct way to assess the effectiveness of the
methodology is to compare the number of iterations required
by the evolved hash function compared to the standard hash
function in Pollard’s Rho Algorithm on the same data. Count-
ing the number of iterations required to solve the ECDLP
is the only consistent measure that can be applied between
the two different formulations of the Rho algorithm. For
example the original version of the algorithm simply solves
the ECDLP without any pre-processing of the problem, while

TABLE IV
FIELDS EXAMINED ARRANGED BY NUMBER OF DIGITS

Curve 5 Digits 6 Digits 7 Digits 8 Digits
1 15349 117811 1009807 10184123
2 17027 128813 1142569 16077749
3 18917 167593 1196999 18224243
4 19913 175687 1288657 29151791
5 20731 303679 2297411 34641751
6 29009 389527 3370739 39667153
7 31319 406807 5569079 47102819
8 37117 521393 5689007 47871209
9 42937 783533 8764919 55921661
10 59743 965267 9032839 90050687

Fig. 4. Number of Iterations Required for the 10 Curves with 5 Digits

Fig. 5. Number of Iterations Required for the 10 Curves with 6 Digits

423
Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:19:59 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. Number of Iterations Required for the 10 Curves with 7 Digits

Fig. 7. Number of Iterations Required for the 10 Curves with 8 Digits

in the method proposed by this study a complete genetic
programming evolution is computed before the calculation of
the ECDLP is even attempted.

The dataset is comprised of 40 different curves of varying
sizes, that are summarized in Table IV, where for convenience
they are listed by number of digits. Figs. 4, 5, 6, and 7 show
the results of these comparisons organized by the number
of digits of the field size. For the ten curves presented in
each graph the mean score of the original Rho Algorithm
based on 30 runs is charted, along with the mean score of
30 runs of the evolved Rho algorithm using the same seed.
The curves are arranged by increasing size. A confidence
interval of 95% is also presented. The Rho Algorithm using the
evolved function clearly results in a lower number of iterations
to find the solution versus the original Rho algorithm, for all

40 of the curves. The evolved process consistently turns in
significantly fewer overall iterations of the Rho Algorithm to
find k although in some cases the confidence interval is larger
than for the original process.

During the course of this study many different formulations
of the GP were considered that provided less successful results.
It was determined that using just the y-coordinate produced
better reductions in runtime, as opposed to schemes that used
the x-coordinate on its own or in a combination with the y-
coordinate. It stands to reason that this might be the case
because the y-coordinate moves along the curve quicker and
covers a greater range as opposed to the x-coordinate which
is symmetric about the x-axis and could possibly confuse the
iterating function due to this duplication of values. In a similar
vein the introduction of trigonometric functions and random
number generators into the GP expression did not decrease
runtimes of the Rho algorithm. Similar empirical testing also
determined that the inclusion of a protected modulus operator
did not aid in decreasing runtime in any way.

A single experiment for a curve of field size 5 digits (or up
to approximately 16 bits) involving a complete evolution of
100 generations and a corresponding Rho algorithm generally
completed within a few minutes running on a mid-power i5
desktop computer. Curves of field size 6 digits (or approxi-
mately 17–20 bits) required a few hours to complete. Curves
of field size 7 digits (or approximately 20–24 bits) required
days of runtime for a single experiment to complete. Finally,
curves of field size 8 digits (or approximately 24–27 bits)
completed in about double the amount of time required for
those of 7 digits. An important fact worth noting is that the
solution to the ECDLP being investigated was found 100% of
the time. This perfect success rate was achieved across all 40
curves for each of the 30 runs peformed. Considering all 40
curves and all 30 runs, the evolved Rho algorithm required
approximately 71% of the number of iterations compared to
the original Rho algorithm. Compare these results to those
from [9] which investigated curves of similar size (14, 20
and 32 bits), yet only managed to find the correct solution
on average 57% of the time.

These values can also be compared to the Certicom chal-
lenge curves [26]. First presented in 2004 the Certicom
company introduced a series of ECDLP problems and offered
a bounty to researchers who could solve them. This ostensibly
was to increase awareness and adoption of elliptic curve
cryptosystems. An introductory exercise presented in the white
paper proposed that while utilizing a cluster of 3000 computers
an expected runtime for a 79 bit curve would be a few hours,
an expected runtime of a few days for an 89 bit curve, and
an expected runtime of a few weeks for a 97 bit curve.
Researchers have found solutions to all three of these exercise
curves and to date only one solution for the Level 1 curves
proposed by Certicom has been found. This involved solving
a 109 bit curve using a cluster of 2600 computers that ran
for 17 months. The method used to find the solution was a
modified version of the parallel Rho algorithm.

The curves investigated in this study are not found in

424
Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:19:59 UTC from IEEE Xplore. Restrictions apply.

industrial applications. The fields presented in Table IV were
chosen for this study to determine if an evolved iterating
function decreased runtime of the Rho algorithm; at the current
time, choosing larger curves would not allow an adequate
number of runs to be completed for each experiment in
a reasonable time. With this understanding, however, this
initial study provides significant hope that with further study
computational intelligence techniques will prove to be a viable
option for cryptanalysis of ciphers based on elliptic curves.

V. CONCLUSION AND FUTURE WORK

This study presents an initial analysis of how to improve
Pollard’s Rho Algorithm using computational intelligence
techniques. It is shown that replacing the default iterating
function with an evolved genetic programming expression
reliably causes a reduction in the number of iterations needed
to find the solution to the ECDLP.

With this understanding it would be worthwhile to investi-
gate other aspects of the process to determine if it is possible
to further decrease the runtime. For example, the number of
sections or the value of L could be adjusted for each curve as
part of the evolutionary process. The number of test points to
use during the evolutionary process could also be examined.
This study used a pre-determined set of points for a wide range
of cardinalities; there might be some improvement with using
a tailored amount of points for each curve examined. It might
also be possible to ensure that the test points are distributed
evenly across all L sections to help even out the randomness
of their occurrence; this study did not account for where on the
curve the test points were found. The fitness function might
also be investigated to see if a different function or measure
of distribution of hash values could yield a better reduction
in runtime. Similarly a scheme that tries to randomize point
distribution through the R array using other measures of
randomness might yield better results. Lastly using a different
set of operators in the GP expression tree might produce better
results. For example it might be possible to introduce point
addition and similar operations that are specific to elliptic
curves. Additionally it might be possible to adjust other GP
parameters, such as maximum tree size, to determine if there
is a positive effect on reducing the number of iterations of the
Rho Algorithm.

In conclusion this study shows that there is a strong
correspondence between an evolved well distributed iterating
function and a reduction in the number of iterations performed
by the Rho algorithm.

ACKNOWLEDGEMENTS

The authors would like to thank Brian Ross and Joseph
Brown for their helpful comments and suggestions. The re-
ported study was funded in part by the Natural Sciences and
Engineering Research Council of Canada.

REFERENCES

[1] W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE
Transactions on Information Theory, vol. 22, no. 6, pp. 644–654,
November 1976.

[2] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,” Commun. ACM,
vol. 21, no. 2, pp. 120–126, Feb. 1978. [Online]. Available:
http://doi.acm.org/10.1145/359340.359342

[3] V. S. S. Sriram, R. Ramadas, R. Sahay, and G. Sahoo, “Optimizing el-
liptic curve domain parameters using genetic algorithms,” International
Journal of Secure Digital Information Age, vol. 1, no. 2, 2009.

[4] R. Ratan, “Applications of genetic algorithms in cryptology,” in Pro-
ceedings of the Third International Conference on Soft Computing for
Problem Solving. Springer, 2014, pp. 821–831.

[5] B. Delman, “Genetic Algorithms in Cryptology,” M.Sc., Rochester
Institute of Technology, Rochester, New York, 2004.

[6] E. Y.-T. Ma and C. Obimbo, “An evolutionary computation attack on
one-round tea,” Procedia Computer Science, vol. 6, pp. 171–176, 2011.

[7] B. Ferriman and C. Obimbo, “Solving for the rc4 stream cipher state
register using a genetic algorithm,” International Journal of Advanced
Computer Science and Applications, vol. 5, no. 5, pp. 216–223, 2014.

[8] J. Brown, S. Houghten, and B. Ombuki-Berman, “Genetic algorithm
cryptanalysis of a substitution permutation network,” in Computational
Intelligence in Cyber Security, 2009. CICS ’09. IEEE Symposium on,
Mar. 2009, pp. 115–121.

[9] E. C. Laskari, G. C. Meletiou, Y. C. Stamatiou, and M. N. Vrahatis,
“Cryptography and Cryptanalysis Through Computational Intelligence,”
in Computational Intelligence in Information Assurance and Security,
ser. Studies in Computational Intelligence, N. Nedjah, A. Abraham, and
L. d. M. Mourelle, Eds. Springer Berlin Heidelberg, 2007, no. 57, pp.
1–49.

[10] N. Koblitz, “Elliptic Curve Cryptosystems,” Mathematics of
Computation, vol. 48, no. 177, pp. 203–209, Jan. 1987. [Online].
Available: http://www.jstor.org/stable/2007884

[11] V. S. Miller, “Use of Elliptic Curves in Cryptography,” in Lecture Notes
in Computer Sciences; 218 on Advances in cryptologyCRYPTO 85.
New York, NY, USA: Springer-Verlag New York, Inc., 1986, pp. 417–
426. [Online]. Available: http://dl.acm.org/citation.cfm?id=18262.25413

[12] D. R. Hankerson, S. A. Vanstone, and A. J. Menezes, Guide to elliptic
curve cryptography. New York : Springer, 2004., 2004.

[13] J. Pollard, “A monte carlo method for factorization,” BIT Numerical
Mathematics, vol. 15, no. 3, pp. 331–334, Sep. 1975.

[14] J. M. Pollard, “Monte Carlo Methods for Index Computation mod p,”
Mathematics of Computation, vol. 32, no. 143, pp. 918–924, Jul. 1978.
[Online]. Available: http://www.jstor.org/stable/2006496

[15] A. J. Menezes, P. van Oorschot, and S. Vanstone, Handbook of applied
cryptography, ser. CRC Press Series on Discrete Mathematics and its
Applications. CRC Press, Boca Raton, FL, 1997.

[16] P. van Oorschot and M. J. Wiener, “Parallel Collision Search with
Cryptanalytic Applications,” Journal of Cryptology, vol. 12, no. 1, pp.
1–28, Jan. 1999.

[17] E. Teske, “Speeding up Pollard’s rho method for computing
discrete logarithms,” in Algorithmic Number Theory, ser. Lecture
Notes in Computer Science, J. P. Buhler, Ed. Springer Berlin
Heidelberg, 1998, no. 1423, pp. 541–554. [Online]. Available:
http://link.springer.com/chapter/10.1007/BFb0054891

[18] P. Wang and F. Zhang, “Computing elliptic curve discrete logarithms
with the negation map,” Information Sciences, vol. 195, pp. 277–286,
Jul. 2012.

[19] F. Zhang and P. Wang, “Speeding up elliptic curve discrete logarithm
computations with point halving,” Designs, Codes and Cryptography,
vol. 67, no. 2, pp. 197–208, May 2013.

[20] P. Wang and F. Zhang, “Improving the Parallelized Pollard Rho Method
for Computing Elliptic Curve Discrete Logarithms,” in 2013 Fourth
International Conference on Emerging Intelligent Data and Web Tech-
nologies (EIDWT), Sep. 2013, pp. 285–291.

[21] ——, “An Efficient Collision Detection Method for Computing Discrete
Logarithms with Pollard’s Rho,” Journal of Applied Mathematics, pp.
1–15, Jan. 2012.

[22] ——, “Improved Pollard rho method for computing discrete logarithms
over finite extension fields,” Journal of Computational and Applied
Mathematics, vol. 236, pp. 4336–4343, Nov. 2012.

[23] J. R. Koza, Genetic programming : on the programming of computers
by means of natural selection, ser. Complex adaptive systems.
Cambridge, Mass. MIT Press, 1992, a Bradford book. [Online].
Available: http://opac.inria.fr/record=b1082356

425
Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:19:59 UTC from IEEE Xplore. Restrictions apply.

[24] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, and
C. Gagné, “DEAP: Evolutionary algorithms made easy,” Journal of
Machine Learning Research, vol. 13, pp. 2171–2175, jul 2012.

[25] D. E. Knuth, The Art of Computer Programming, Volume 3: (2Nd Ed.)
Sorting and Searching. Redwood City, CA, USA: Addison Wesley
Longman Publishing Co., Inc., 1998.

[26] (2009) Certicom ecc challenge. [Online]. Available:
http://www.certicom.com/images/pdfs/challenge-2009.pdf

426
Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:19:59 UTC from IEEE Xplore. Restrictions apply.

