Genetic Programming for Solving Common and
Domain-independent Generic Recursive Problems

Tessa Phillips
School of Engineering
and Computer Science
Victoria University of Wellington
Wellington, New Zealand

Abstract—In human written computer programs, loops and
recursion are very important structures. Many real-world ap-
plications require recursion and loops. Loops and recursion can
also be achieved by using genetic programming (GP). There has
been a lot of work on GP for loops but not much on recursion.
Our recent initial work on GP for recursion has shown that
GP can be used to solve recursion problems, based on which
this work develops two new GP methods that can solve a wider
range of problems without decreasing the performance. The
two new methods are tested on symbolic regression problems,
binary classification problems, and Artificial Ant problems. They
are compared to methods using loops, traditional GP, and the
methods developed in our previous work. The results show that
the new methods have improved the accuracy and increased
the range of symbolic regression problems that the methods
can perfectly solve, and improved the performance on two of
the Artificial Ant problems. The new methods can also solve
classification problems, and have better performance than loops
on many of these tasks. This is the first work using recursion
for classification problems, and is the first design of a generic
recursive method for GP.

I. INTRODUCTION

Loops and recursion are very important in human written
computer programs. Iterative structures allow human written
computer programs to solve repetitive tasks. Without iterative
structures, human written programs would need to repeat
the same code many times resulting in a program that is
unnecessarily long.

Genetic Programming (GP) [1] has been used to solve a
wide range of problems. A limitation with traditional GP
however is that, solving large repetitive tasks is often difficult.
Many real-world applications such as image classification or
navigation tasks require iterations [2], [3]. Including iterative
structures such as loops and recursion in GP could have the
potential to work well for some of these tasks and solve this
issue [4].

There has been a lot of work in using loops in GP to
solve a wide range of tasks including classification tasks
and navigation type problems which are real-world tasks.
Loops have had very good performance on these difficult tasks
[SI61[71[8].

There has not been much work done on recursion in GP,
and it certainly has not been applied to any real-world tasks.
The work that has been done has used a simple problem like a

978-1-5090-4601-0/17/$31.00 (©2017 IEEE

Mengjie Zhang
School of Engineering
and Computer Science
Victoria University of Wellington
Wellington, New Zealand

Bing Xue
School of Engineering
and Computer Science
Victoria University of Wellington
Wellington, New Zealand

symbolic regression task to illustrate the method performance.
Recursion has the potential to perform better than loops for
many problems, or provide a more understandable solution. It
is important to include this structure in GP to allow GP to
better perform on a wide range of difficult problems.

Early work on recursion was done by Koza [9] developing
Automatically Defined Recursion (ADR), which defined a re-
cursive template function that could be used to create recursive
functions. This is a very useful idea, however the approach in
[9] was very complicated and the function itself was not easy
to understand. The approach was only applied to very simple
problems such as a parity problem which is a type of symbolic
regression task.

Yu and Clark [10] created recursion in GP with lambda
abstractions. Alexander and Zacher [11] created recursion by
evolving recursive call trees. Moraglio [12] used non recursive
fitness functions to evolve recursive functions.

We have done initial work on GP with recursion [13],
developing three new recursive methods for GP (R1, R2, and
R3), which had promising results on simple problems. The
results of these methods showed that in all of the simple
symbolic regression tasks and artificial ant tasks that were
tested, two of our methods performed better than loops. These
recursive methods provided a recursive solution to solving
simple well known problems. The main limitation however
is that these methods were problem specific. In addition, the
previous work does not provide a solution to solving difficult
or unknown tasks such as classification or image recognition
with GP using recursion.

A. Aim and Objectives

The goal of this work is to develop a new general GP
approach to solving problems with recursive nature. We ex-
pect the new approach to achieve better performance and
obtain understandable solution programs for the problems to
be solved. This works towards increasing the performance
and understandability of GP on very difficult problems. The
objectives to achieve this goal are two new recursive GP
methods:

1) To develop a new GP method for solving common
recursive problems (GPCR): The purpose of this method is
to be an approach to common problems that might be similar

1279
Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:51:07 UTC from IEEE Xplore. Restrictions apply.

to known functions. This method aims to automatically select
and combine known recursive functions to solve an unknown
recursive function.

The new method aims to extend the R1 method [13].
The R1 method was able to solve some simple symbolic
regression problems as well as artificial ant problems, using
different structures. There were not many functions given in
the function set, and many common recursive functions could
not be solved by this method.

2) To develop a new domain independent GP method for
solving generic problems with recursive structures (GPGR):
The purpose of this method is to have a general template
recursive function which provides the structure for recursion
but is not specific to any particular recursive problem. This will
allow the method to apply across a wide range of unknown
problems and allow it to solve some difficult problems such as
classification and image recognition using a generic structure.

The design for this method is an extension to the R2
method [13]. The R2 method was a template recursive
function and could solve simple symbolic regression and
Artificial Ant problems significantly better than loops in
most cases. The limitation with this method was that it could
not solve general recursive problems due to restrictions in
recursive structure.

II. PREVIOUS WORK

We developed three recursive methods R1, R2 and R3 [13]
which had varying generality.

1) RI: The first method R1 was very specific to the
problems to be solved. This method had a function set that
contained the model, or part of the model that was being
evaluated. This method used a lot of domain knowledge as
it requires at least part of the function be known and included
in the function set. The way this method worked was that the
GP tree would evolve to use or combine different recursive
functions for each problem. This was particularly useful for
the Binomial problem as this problem is a combination of
factorials. The method could simply use the function that was
already included in the function set to solve this more complex
problem.

The problems which this method can reliably solve are prob-
lems that are simple combinations of the recursive functions
from the function set. This greatly limits the range of problems
that this method can solve as there are only six functions
included in the function set.

2) R2: The second method, R2 defined a template function
that was recursive, but the specific operators and terminals
needed to be defined. This gives the recursive structure, but
GP must evolve the details of the function itself.

The recursive template function is given by figure 1, which
shows the structure of this function. This shows that the
structure is limited to functions of the form f(i) = i f(i—1)
where * is a mathematical operator (+,—, x, /). This easily
solves problems like Factorial, Sum, and combinations of these
problems.

“
1 F 3
| || || |

Fig. 1: General recursive structure for the R2 method. A indicates the recursive
function. Input 1 is the operator for recursion (4, —, X, /). Input 2 is the base
case, and input 3 is the number to evaluate the function at.

An example of this function being used is given in figure
2, which shows how for this problem, it is very simple to find
a solution with the R2 function.

Fig. 2: Example of the R2 method for the Factorial problem. The recursive
operator is X, the base case is 1 and the number evaluating at is n.

This method performed well for the problems tested in [13],
however there are some limitations. One limitation is that it
is only for symbolic regression and artificial ant problems.
The method is not general to other types of problems such
as classification problems. R2 is also limited in the types of
symbolic regression problems that it can solve, due to restric-
tions in structure. R2 cannot solve the Fibonacci problem [14],
defined by f(i) = f(i—1)f(i —2).

3) R3: The last method, R3 was very general, and recursion
was implemented by the use of an Automatically Defined
Function (ADF). This method was designed to be general,
so it could solve a very wide range of recursive problems.
This method worked by having the ADF include itself in its
function set, which allowed the ADF to be called recursively.
This meant that the recursive function did not have any
restrictions in its structure.

This method did not perform as well as the other methods,
and not as well as loops. The method showed some success as
it was able to evolve perfect solutions on the Factorial and Sum
problems, however it was difficult to evolve good solutions.
The reason for this is that the R3 method is too general which
makes it hard to evolve good solutions. R3 does not provide
the structure for the recursive program, so it must evolve this
alongside the rest of the program.

III. A NEw GP METHOD FOR EVOLVING COMMON
RECURSIVE PROGRAMS (GPCR)

R1 [13] aimed to solve a range of recursive problems by
combining pre-existing recursive functions. The limitation of
R1 was that it only solved very simple symbolic regression
problems and artificial ant problems. GPCR aims to solve
common recursive problems, and is designed to solve a wider
range of symbolic regression problems than R1.

1280
Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:51:07 UTC from IEEE Xplore. Restrictions apply.

A. Design

GPCR aims to solve recursive problems that are either well
known problems or similar to well known recursive problems.
It also aims to produce very understandable solutions as
the recursion is given by the existing library of recursive-
functions.

The method works by using the evolutionary process to
automatically search for the correct recursive functions and
operators which make up the recursive program. The recursive
functions are given in a pre-existing library which is included
in the function set.

This new method uses a pre-existing library of 20 recursive
functions to include in the function set. R1 used only 6
recursive functions. The types of function included are also
different.

The new GPCR approach is designed to be limited to just
symbolic regression problems. Symbolic Regression problems
have well defined perfect solutions, so it is easy to find
common recursive functions that are solutions for this kind
of task. Other types of problems including ant problems do
not have well defined perfect solutions, so this method is
intentionally excluding those types of problems.

B. Recursive functions

Table I shows the recursive functions included in the pre-
existing library for GPCR. This includes a range of recursive
functions that depend only on f(n — 1), and functions that
depend on both f(n — 1) and f(n — 2). This means that this
method should be able to solve more complex problems, such
as the Fibonacci problem as this function and some similar
functions are included in the library.

The function set for all problems with the GPCR method
contains the 20 recursive functions given in table I and
common mathematical operators (+, - , x, %), where % is
protected division. The terminal set contains (n, integers{0-

15}).

IV. A NEwW GP METHOD FOR SOLVING GENERIC
PROBLEMS WITH RECURSIVE STRUCTURES (GPGR)

This method is to design a generic template recursive
function which with the correct sub-trees and parameters can
solve a wide range of recursive problems.

The main motivation behind this method is that, the R2
method was too restricted in the problems it could solve. The
R2 method was too specific and would only be able to solve
a small set of recursive tasks.

The aim of this method is to develop a general template
function allows for any specific recursive function to be
developed depending on the problem specified. The function
should have no restrictions other than a maximum number of
iterations which is used to stop the evolutionary process from
being too slow.

This new design works towards creating a general recursive
template function, which aims to solve many difficult symbolic
regression problems and classification problems. By having
a function that can be applied to all of these tasks, GP can

Name | f(0) | (1) f(n)
F1 1 1 fln—1)xn
F2 0 1 fln—=1)+n
F3 ol 1 fn—=1)+ f(n—2)
F4 3 6 fln—1)x2
F5 0 1 fln—1)+2n-1
F6 2 4 fln—1)x2
F7 2 2 fln—1)"
F8 1 2 fn—1)x f(n—2)
F9 5 7 fln—1)+2
F10 2 4 fln—1)?
F11 n | n? fln—1)2
F12 3 9 fln —1)?
F13 2 8 fn—1)3
F14 n| n? fn—1)3
F15 30 27 fin—1)3
F16 1 2 fln—=2)xn
F17 1 2| fln—=1)+f(n—2)+n
F18 1 2 fin—=12+ f(n—2)
F19 1 2 fin—1)>%f(n—-2)
F20 1 1 fin—=1)f(n—2) xn

TABLE I: Recursive functions to use for GPCR on the symbolic regression
problems.

perform well on a wide range of problems using very little
domain knowledge.

A. Design of Recursive Template Function

The recursive template function aims to be a generic
function that can solve any recursive based problem. This is
designed such that it is not restricted in structure. The template
function can evolve a recursive program of any depth and use
any number of recursions within the program.

Figure 4 shows how the GPGR method works to find a
solution to the factorial problem, and a more general example
of how the recursive function is used is shown in Figure 3. The
recursive function A has three inputs shown in green boxes in
figure 3. The first input is the body of recursion. The second
input is the base case, which defines the output at i = 0. The
third input is the number that the function is being evaluated to.
If input 3 had value 4 for the factorial problem shown in Figure
4, then the function would be Factorial(4) =4 x 3 x 2 x 1.

Inside the body of recursion, there is always a recursive
terminal B. This terminal returns the value of a previous
recursion. In the function set, two of these special terminals
are included, one as in the figure that returns F'(i — 1), and
one that returns F'(i — 2).

Another special terminal can occur within the body of
recursion, which is the terminal “i”. This terminal returns
the current count of the recursive function. This is used in
Figure 4 as the factorial function requires Factorial(i) =
Factorial(i — 1) x i.

Strongly typed GP is used to ensure that the programs
evolved are syntactically correct. This is particularly important
for the recursive function and recursive terminal.

By including the recursive terminal f(i — 2), this method
is able to solve problems like the Fibonacci problem, which
is a symbolic regression problem that the previous R2 method

1281
Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:51:07 UTC from IEEE Xplore. Restrictions apply.

=]

Fig. 3: General recursive structure for the GPGR method. A indicates the
recursive function from the R2 method, B indicates the recursive terminal.
The inputs of the recursive function are shown in green boxes and numbered
from one to three.

| Fi-1)]

Fig. 4: Factorial(n) function as an example of the R2 structure.

could not solve. This method is also more flexible than the
previous R2 method because the body of recursion is not
restricted to any specific depth.

V. EXPERIMENT DESIGN
A. Benchmark Problems

The performance of the new methods will be tested across a
wide range of benchmark problems across Symbolic Regres-
sion, Binary Classification and Artificial Ant. Classification
tasks use 500 training and testing instances.

1) Factorial Problem: This was used as a benchmark in [4]
[13]. It is a relatively easy problem using loops and recursion,
and is defined Factorial(z) = x x Factorial(z — 1),
Factorial(0) = 1.

2) Sum Problem: This function was used in [15][13] as
a benchmark. It is another relatively easy problem, defined
Sum(z) =z + Sum(z — 1), Sum(0) = 0.

3) Binomial Problem: The Binomial problem was used
as a benchmark for recursive methods in [13]. This prob-

lem is very difficult, and is defined Binomial(z) =
Factorial(x)
Factorial(x—k)x Factorial(k) "
4) Factorial + Sum Problem: This is a problem of moderate

difficulty, defined as Factorial + Sum(x) = Factorial(z) +
Sum(x).

5) Fibonacci Problem: This problem is a different type
of recursive function from the others. The Fibonacci prob-
lem is defined as Fibonacci(z) = Fibonacci(z — 1) +
Fibonacci(xz — 2) [1]. This function uses two recursions, one
by x-1 and one by x-2. The base cases for this function are
Fibonacci(0) = 1, Fibonacci(—1) = 0.

6) Cell: The Microscopical Cell Image Database (Serous
cytology) [16][17] contains 18 different classes of cells. This
task will focus on classifying between Lymphocytes non
actives and Mesotheliales. The images are grey scale and

Fig. 5: Artificial Ant trails, from left: modified1, modified2, SantaFe

have been resized to 25 x 25 pixels. To perform accurate
classification, the shape of the cells is used, Loops and
recursion can find the shape by using a large block of pixels.

7) MNIST: The MNIST dataset of handwritten digits con-
tains 28x28 pixels [18]. The digits 6 and 9 were chosen to
be used for a binary classification task.

8) Face: The face dataset is a collection of 19x19 pixels,
grey scale images of faces and non-faces [19]. The GP system
must be able to recognize the key features of the face.

9) Pedestrian: The pedestrian dataset is a more challenging
dataset, it contains images of pedestrians crossing roads as
well as images without pedestrians [20]. The task is difficult
because the images can contain background objects.

10) Poker Hand: This is a classification task to classify
between single pair or an empty hand in poker [21]. The
dataset has 10 attributes, which give the value and suit of each
card. This is a challenging task because the relevant attributes
are only every second attribute.

11) Forest Cover: The forest cover dataset is used to predict
the forest cover type from 53 cartographic attributes [22]. This
work uses two classes, Cottonwood/Willow and Douglas-fir.

12) MiniBooNE: The MiniBooNE dataset is used to clas-
sify between particles being electron neutrinos and muon
neutrinos [21]. This is a way of classifying a signal from
background. Each entry in this dataset has 50 numerical
attributes.

13) Spam: The spambase dataset is used to classify emails
as spam or not-spam [21]. The dataset has 57 floating point
attributes that characterise the different emails.

14) Artificial Ant: The goal of the Artificial Ant Problems
is too eat all the food indicated by a blue cell. The ant eats
food when it moves onto a square that has food on it. Three
Artificial Ant tasks were used to test the initial R1, R2 and R3
methods. The modified 1 trail [4], modified 2 trail [23], and
the Santa Fe trail [23] shown in figure 5 are the three different
ant trails used, and are of increasing difficulty.

B. Benchmark Methods

The following methods will be used as benchmarks for the
two new methods on the benchmark problems.

1) Standard GP - No Loops: This is the standard GP
method, this is not expected to do as well as loops or recursion,
because the problems are very complex. The functions and
terminals used for this method are {+, -, *, %, ERC(0-15)} for
symbolic regression problems, and {+, -, Pixel() (or input() for
non-image tasks), ERC(1-100)} for classification problems.

1282
Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:51:07 UTC from IEEE Xplore. Restrictions apply.

Parameter Value Parameter value
No. Generation 50 Crossover rate 0.7
Population size 1024 Mutation rate 0.28

Initial depth 2 Reproduction rate | 0.02
Maximum depth 6

TABLE II: Showing the parameters used in the experiments.

ERC(1 - N) is a random value between 1 and N, Pixel() returns
the pixel or value corresponding to the arguments.

2) Count controlled Loop - WhileLoopl: As described in
[4] while loop 1 is a count controlled loop. This loop has three
arguments (start, end, body). Start is the value that the loop
counter starts at, end is the value it ends at, and body is the
program to be executed within the loop.

Some other special terminals and functions were included.
The first is a terminal i, which returns the current count value
of the loop, i starts at the value of start and increases as the
loop is executed until the counter is equal to the value of end.

Another special function and terminal used is SetY and Y.
This is useful inside the loop as a way to store the previous
value of the loop body. SetY takes in one argument and sets
the value of Y to this argument.

3) Event controlled Loop - WhileLoop2: WhileLoop2 is an
event controlled loop described in [4]. The loop takes two
arguments the first is a condition which is of Boolean type
(true or false), and the second is the loop body. The loop works
by first checking if the condition is true and then executing the
loop body. This loop again uses special functions and terminals
1, SetY and Y.

4) R2: This is the R2 method developed in our previous
work [13]. The R2 function R2() has three arguments, the first,
y, is the function operator (one of {+, -, *, %}) to use, the
second is the base case, z, which is what the function returns
when x < 1, and the third, x, is the value to use in the function.
The function takes the form f(z) =if(z < 1,zyf(x—1),2)
where X, y, z are described above.

The function set used is the same as [13] and includes {+,
-, *, %, 1, 0, n, R2}. For the Sum problem, % is omitted as
in [13], as this would allow GP to solve the problem without
loops.

5) Classification Loops: For classification tasks, many dif-
ferent and often specific loops have been used. The classifica-
tion tasks are the same as used in [5],[6], so will be compared
to the results of loops in these papers as well as GP with no
loops. The loops used from two papers are Li’s loop, EB-Loop,
Step-Loop, and Sort-Loop.

Special functions are used inside these loops, in order to
aggregate the image and attribute data. These functions are
sum-mode, sum and standard deviation

C. Parameter settings

The parameters used for this work were kept similar to what
was done in the previous work for R1,R2,R3 in [13][5][6][23].
The typical parameters used in our work are given in table
II, although there are some exceptions to these which are
mentioned below.

An exception to these basic parameters was the Binomial
problem, which used a population size of 2000 and a mutation
rate of 0.5, cross over rate of 0.48. The change in parameters
for the Binomial problem was because this problem is much
harder to evolve solutions for than the others. The Binomial
problem also used 150 generations. The Factorial Plus Sum
problem used 150 generations, as it was a difficult problem to
solve. The classification problems had a maximum depth of 8,
an initial depth between 2 and 3 was used as the tasks often
required a more complicated solution.

VI. RESULTS

Table III, table IV, and table V show the results on the
symbolic regression, classification, and Artificial Ant problems
respectively. The results of the symbolic regression problems
are compared to NoLoops, WhileLoopl, WhileLoop2 and R2.
The new methods tested on these problems are both GPCR
and GPGR. The classification problems are tested against
NoLoops, and a range of loops for classification problems,
and the only new method used for classification is GPGR. For
Artificial Ant problems, GPGR is compared to whileLoopl,
whileLoop2, NoLoops, R1, R2, and R3. Fitness is given by
the average number of hits that the best program of each run
achieves. Statistical significance was tested using a Wilcoxon
rank-sum test for a significance level of 95%.

A. GPCR

The results for the GPCR method in Table III show that
GPCR was able to find very good solutions for the regression
tasks that were directly included in the function set. The
results were not as good as for R1, due to the size of the
function set increasing, making the search space larger. The
GPCR method can also now solve problems like the Fibonacci
problem, which is a common recursive sequence that appears
in many real-world problems.

The GPCR method when compared to the benchmark
loops and no loops was significantly better than them on all
problems. The only exception to this was that for the Factorial
+ Sum problem, GPCR was similar to loopl. However GPCR
had 14 perfect solutions on this method compared with none
for either of the loops or no loops.

The evolved programs for the tasks were also very simple
and easy to understand using knowledge about the recursive
functions defined in the function set. Figure 6 shows the
Binomial problem evolved program structure which is one
of the more complex tasks. Figure 6 also shows the evolved
program for the Factorial Plus Sum problem which is another
combination of functions included in the function set. In
both problems, the evolved programs are very simple, which
indicates why this method performs better than benchmarks
for these difficult methods, as the evolved programs are less
complicated.

B. GPGR

1) Symbolic Regression Problems: Table III shows that for
the factorial and sum problems. The results are similar across

1283
Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:51:07 UTC from IEEE Xplore. Restrictions apply.

Problem Measures No-Loop Loopl Loop2 GPCR R2 GPGR
Hits (15) 2.02+0.14 8.94+6.32" 7.48+6.4! 15.0+£0.0123 15.0+£0.01%3 14.44+2.4123
Factorial Time (ms) 184.18421.19 331.22+1329.4 256.66+84.8 35.88+7.84 7.88+1.24 68.964130.79
No. Perfect (50) 0 26 21 50 50 47
Hits (15) 1.74+0.44 10.86+6.05T 8.56+£6.217 15.0£0.07%3 15.0£0.07%3 14.76+£1.687%3
Sum Time (ms) 120.82+18.68 403.04+£940.71 443.924453.69 34.6845.9 7.62+0.77 158.08+461.09
No. Perfect (50) 0 34 24 50 50 49
Hits (15) 1.58+0.6 3.08+0.59! 2.6640.65" 5.8242.91%3 4544277123 5.4443.3125%
Binomial Time (ms) 316.86+62.47 | 256141.164+1145089.66 | 78094.54-£149008.64 | 1596.78+571.63 | 630.66+169.43 | 3468.86+2199.75
No. Perfect (50) 0 0 0 4 3 3
Factorial Hits (15) 2.16+0.37 2.44+0.5" 2.18+0.38 5.8445.7413 2.26+0.44 3.64+3.3872%%
+ Sum Time (ms) 481.46458.22 | 390508.14+853500.48 789.56+£230.41 | 1173.88+410.51 | 446.144123.94 585.04-183.47
No. Perfect (50) 0 0 0 14 0 4
Hits (15) 4.5240.54 4.74%1.56 4.0440.2 13.24+4.031%3 4.68+0.9° 8.18+4.74123%
Fibonacci Time (ms) 495.32+53.83 218894.84+874728.91 804.24-600.02 | 252.944306.81 | 468.04+115.23 514.32+284.79
No. Perfect (50) 0 1 0 42 0 16

TABLE III: Table showing results on Symbolic Regression problems. ! indicates significantly better than no loops, 2 indicates significantly better than
WhileLoopl, 2 indicates significantly better than whileLoop2. * indicates that the GPGR method is significantly better than the R2 method.

+

‘ Factorial |

[~ | [~ |

(a) Binomial

(b) Factorial Plus Sum

Fig. 6: Best evolved programs for the Binomial and Factorial Plus Sum
problems using GPCR method.

all the recursive methods, and the loops also perform well. The
Binomial problem proves to be difficult for all the methods,
but the GPGR method is significantly better than the loops, no
loops and the R2 method. The Fibonacci and Factorial + Sum
problems are of medium difficulty and have good results with
the GPGR method, where GPGR is significantly better than
the benchmarks for the two problems. The Fibonacci problem
did not get any perfect solutions with the R2 method, which is
not surprising as the method cannot handle two recursive calls
within the same function, which is what the solution requires.

The results show that GPGR has improved in performance
over the R2 method on the more difficult symbolic regression
tasks. The performance has decreased on the simple (Factorial
and Sum) symbolic regression problems. This is due to the new
method being more general than the previous. The R2 method
was very well suited to the Factorial and Sum problems so
it had nearly perfect performance on them. The new method
requires a larger program tree to perfectly solve these tasks
which makes it more difficult. The GPGR method still per-
forms well on these simple problems, as it is still able to find
perfect solutions in most cases. The new method however can
now solve tasks like the Fibonacci problem and other problems
of that form. The results for the Binomial problem show that
the new method is an improvement over the previous, however
it is still only able to get a few perfect solutions on this
problem. A possible reason for this is that the search space is
not very smooth. The way that the fitness function works for
these tasks is that it counts the number of hits the problem is
getting with a maximum of 15. There are about four fitness

cases that usually hit, but the other 11 are more difficult. This
causes GP to evolve many programs that are far from the
perfect solution but that hit 4 or 5 of the fitness cases.

2) Classification Problems: GPCR was also used for clas-
sification tasks. The results were compared against that of GP
with loops that were developed specifically for classification
tasks, these results are shown in table IV. The results show that
the R2 recursive method was significantly better than many of
the loops on some of the tasks, and at least better than one of
the loops on all tasks. A problem that was well suited to this
recursive structure was the Poker Hand problem. The method
however did no perform as well as the step loop for this
problem. The reason this was suited to the GPGR method was
the f(i — 2) recursive terminal. The solution was able to skip
over every other attribute, as the poker hand task has attributes
representing the value and then the suit of each card in a poker
hand. The task was to classify between a single pair and an
empty hand, therefore the suit attributes were irrelevant, so
the GPGR method skipped over these. The step loop also has
this property of being able to skip over every other attribute,
but requires a slightly shallower GP tree which is probably
why the performance was slightly better for this loop than
our recursive GPGR method. The best program for the poker
hand dataset had 99.8% training accuracy, and 99.6% testing
accuracy. This is a very good performance, however the step
loop was able to find many perfect solutions with 100% testing
and training accuracy. This indicates that there is likely some
added complexity in the GPGR method that makes it harder
to find a good solution quickly.

GPGR had very good performance on two of the image
problems when compared to the other methods, the GPGR
method was significantly better than all of the benchmarks
on the Face dataset, and GPGR was significantly better than
all but one benchmark for the Cell dataset. For accurate
classification on the cell dataset, the classifier needs to evaluate
the shape of the cells. It was expected to have high perfor-
mance with recursion on the cell problem, as it has had good
performance with loops in prior work. Loops and recursion
allow a classifier to use large blocks of pixels as well as single
pixels.

1284
Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:51:07 UTC from IEEE Xplore. Restrictions apply.

Dataset Measures No-Loop EB-Loop Li’s Loop | Step - Loops Sort-Loop GPGR
Training accuracy % | 78.35+2.4 | 77.05+2.44 | 80.15+£2.02 | 84.0842.54 | 66.85+1.56 82.69+2.61235
Forest Testing accuracy % | 67.93+4.64 | 69.69+5.66 | 74.96+6.23 | 79.1946.95 | 62.62+2.81 75.2247.1742°
Time (s) 4.49 47.58 50.59 144.53 65.03 164.48
Training accuracy % | 57.5540.82 | 56.69+0.83 | 71.11£2.14 100.0£0.0 | 84.954+0.76 | 94.42+3.841235
Poker Testing accuracy % 52.6442.6 | 52.65+1.87 | 66.14+2.01 | 99.9340.18 | 87.56+£0.96 | 92.2244.91'23°
Time (s) 432 24.14 59.69 12.77 46.26 188.78
Training accuracy % | 82.96+0.22 | 82.7+0.53 | 84.71+1.43 | 88.7241.95 | 87.85+1.54 88.32+1.211%°
MiniBooNE Testing accuracy % 75.86+0.8 | 75.894+1.13 | 78.71+1.34 81.8+2.24 | 83.68+1.93 81.5441.76'%3
Time (s) 5.08 37.73 62.92 149.83 76.8 261.91
Training accuracy % | 87.65+4.92 | 88.31+£2.13 | 91.41+1.47 91.24+1.63 | 72.78+1.56 85.25+4.21°
Spam Testing accuracy % | 86.58+4.09 | 86.88+£2.49 | 89.4341.35 89.194+1.9 | 74.314+1.58 85.0443.65°
Time (s) 472 42.04 46.46 67.66 57.14 92.42
Training accuracy % | 99.26+0.47 | 98.83+0.85 | 99.5240.14 | 99.464+0.21 | 66.37+0.64 98.974+0.37°
Mnist Testing accuracy % | 96.66+0.73 | 97.95+1.3 | 98.874+0.42 | 98.464+0.63 | 61.68+1.03 96.194+0.9°
Time (s) 11.11 155.46 73.32 434.82 376.3 82.1
Training accuracy % | 83.08+1.04 80.6+1.6 | 84.58+2.29 82.05+1.5 | 82.354+2.58 82.8+0.87%%
Pedestrian Testing accuracy % 77.3+1.85 | 76.75+£1.95 | 78.124+3.02 | 76.56+2.26 | 78.38+3.28 77.061+2.02
Time (s) 8.55 169.63 169.63 363.34 268.28 91.55
Training accuracy % | 96.3630.91 0354223 | 96.11+1.65 | 95.77+£2.06 | 84.99+2.82 | 97.89+1.06723%°
Face Testing accuracy % 91.1+£1.69 | 87.86+2.74 | 90.694+2.7 | 91.56+3.07 | 86.71+2.43 | 94.4+1.531234°
Time (s) 7.8 95.08 31.38 300.28 285.27 451.06
Training accuracy % | 95.85+0.43 | 95.17+£2.06 | 96.144+0.59 | 95.924+1.26 | 89.95+0.86 | 96.74+0.55123%5
Cell Testing accuracy % | 93.84+1.25 | 92.68+2.41 | 94.024+0.91 | 93.4241.96 | 86.58+1.39 04.340.492345
Time (s) 9.48 106.59 50.17 437.03 243.77 202.01

TABLE 1V: Classification results showing the GPGR method against the benchmarks. Statistical significance of the GPGR method is indicated with ! for
statistically better than no loops, 2 for statistically better than EB-Loop, 2 for statistically better than Li’s Loop, for statistically better than the Step-Loop

and ® for statistically better than the Sort-Loop

3) Artificial Ant Problems: The results for GPCR on Ant
problems are given in table V. These results show that for
the Artificial Ant problems. The new GPGR approach has
significantly better performance on the difficult trails, modified
2 and Santa Fe. The results on the simplest trail, modified
1, show that the R2 method performed better than the new
approach. The new approach however, was still able to find
many perfect solutions to this simple trail.

The results for the GPGR method showed that, on the
modified 1 trail, which is the easiest trail, the performance
was not as good as R2, and not as good as whileloop2. The
reason for this is that with the event based loop or recursion
like in R2, the ant is able to follow the trail of food. It does
this by moving within the loop, and then adjusting direction
so that the ant is always facing in the direction of food. With
a count based approach, there would need to first be a check
for food ahead and then the same loop as in the event based
loop. For the other two problems, the results are better than
R2, however they still are not able to find perfect solutions.
These problems require very complex solutions to solve them,
including nested recursion for modified 2. Overall the GPGR
method has improved results on the two most difficult out of
three tasks.

Figure 7 shows the best evolved programs trails for the
GPGR method. This shows that for the modified 1 problem,
the ant follows the correct path entirely. The modified 2
problem, the best trail (with 95/108 food eaten) traverses most
of the available grid and still misses some food. The Santa Fe
trail was only able to get 45/89 of the food for that trail, but

this result shows that it is following a large portion of the trail,
however travels a lot of unnecessary paths.

gt
il il

|
\

e
- s
‘

Fig. 7: Trails of best ant problems from left to right, modified 1, modified
2, Santa Fe. Blue indicates the original trail that the ant has missed, green
indicates where the ant has traveled.

C. Analysis of Evolutionary Process

The average of the best-of-generation fitness from 50 runs
was also examined for each of the symbolic regression and
Artificial Ant problems. The classification problems were
not tested for this, as the benchmark loop results were
taken from previous work. For the symbolic regression prob-
lems, GPCR, and R1 would both converge to a high fitness
very quickly. GPCR was similar to R2 and slightly faster
than Loops and No loops. For the Artificial Ant problems,
GPGR would converge at a similar rate to loops, and R2.
GPGR was also still improving at the final generation, so
this indicates that it could perform better if it was run for
more generations. The graphs showing these trends are avail-
able at homepages.ecs.vuw.ac.nz/~xuebing/Supervison/489_
2016Tessa_Phillips_FinalReport.pdf.

1285
Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:51:07 UTC from IEEE Xplore. Restrictions apply.

Problem No-Loops Count loop Event Loop R1 R2 R3 GPGR
Food Eaten (53) 21.84£5.71 | 39.06+14.23" 45.34410.16" 52.940.77%3 53.040.0"%% 24.3+17.43 4354 + 12,07 %6
Modified1 Time (ms) 330.2452.59 | 223.3+112.59 | 270.32+171.43 96.0+£158.37 26.684+22.33 | 370.624109.36 | 1328.56 + 1458.63
No. Perfect (50) 0 21 27 49 50 9 28
Food Eaten (108) | 26.18+5.32 | 41.92+16.78T 36.56+9.43T 108.0+£0.0%% 36.84+5.871 31.12+17.62 46.74 + 16.8313%°
Modified2 Time (ms) 360.76+70.89 | 358.6+81.59 | 2060.16+£6391.75 39.2+44.39 4154245771 | 451.68+£64.41 | 2765.02 + 2144.97
No. Perfect (50) 0 0 0 50 0 0 0
Food Eaten (89) 132+4.13 16.5+7.5" 15.44+5.947 89.0+£0.0"%° 13.04£8.78 14.64£8.66 18.62 + 7.3875%°
SantaFe Time (ms) 362.58+68.12 | 306.22439.06 | 343.74451.52 147.64£120.72 | 440.74+100.78 | 393.86+58.42 | 11440.8 + 45968.02
No. Perfect (50) 0 0 0 50 0 0 0

TABLE V: Artificial Ant results show the GPGR method against the benchmarks. Statistical significance is indicated with 1 for significantly better than no
loops, 2 significantly better than loopl, 3 significantly better than loop2, 4 significantly better than R1, 5 significantly better than R2, ¢ significantly better

than R3.

VII. CONCLUSIONS

This work aimed to develop a new general GP approach
to solving problems with recursive nature. This goal was
successfully achieved by extending R1 and R2 to develop
two new methods, GPCR and GPGP. The new methods were
evaluated against nine state of the art algorithms on 16
different problems of four different types.

GPCR was intended as a recursive method to solve common
recursive symbolic regression problems. This method extended
R1 by increasing the size of the function set to include a wider
range of common recursive problems. The results of this work
showed that GPCR was able to perform very well on a range
of common recursive problems.

GPGR was intended as a generic method for solving recur-
sive problems. GPGR extended the R2 method by making the
structure much more general. GPGR now allows for multiple
recursive calls and a recursive body of an arbitrary depth. The
results show that for symbolic regression problems, the GPGR
method was able to find perfect solutions to all problems
tested, including problems that the R2 method could not solve.
GPGR performed significantly better than loops for all the
symbolic regression problems. For classification problems,
GPGR was able to perform consistently well across a wide
range of image and non-image binary classification problems.
GPGR was better than the majority of the benchmark loops for
classification. The results of GPGR on Artificial Ant problems
showed that the performance was significantly better than the
R2 design for the two harder trails, and still able to find many
perfect solutions for the easiest trail.

REFERENCES

[1] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, MA, USA: MIT Press, 1992.
A. Lensen, H. Al-Sahaf, M. Zhang, and B. Xue, “Genetic programming
for region detection, feature extraction, feature construction and classifi-
cation in image data,” in European Conference on Genetic Programming,
vol. 9594, pp. 51-67, Springer International Publishing, 2016.

M. Igbal, B. Xue, and M. Zhang, Reusing Extracted Knowledge in
Genetic Programming to Solve Complex Texture Image Classification
Problems, pp. 117-129. Springer International Publishing, 2016.

G. Chen and M. Zhang, “Evolving while-loop structures in genetic
programming for factorial and ant problems,” Al 2005: Advances in
Artificial Intelligence, pp. 1079-1085, 2005.

F. Abdulhamid, S. Andy, K. Neshatian, and M. Zhang, “Evolving genetic
programming classifiers with loop structures,” 2012 IEEE Congress on
Evolutionary Computation, 2012.

[2]

[3]

[4]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

(18]
[19]

[20]

[21]
[22]

(23]

F. Abdulhamid, K. Neshatian, and M. Zhang, “Genetic programming
for evolving programs with loop structures for classification tasks,” The
Sth International Conference on Automation, Robotics and Applications,
2011.

J. Larres, M. Zhang, and W. N. Browne, “Using unrestricted loops
in genetic programming for image classification,” IEEE Congress on
Evolutionary Computation, 2010.

D. MCGAUGHRAN and M. ZHANG, “Evolving more representative
programs with genetic programming,” International Journal of Software
Engineering and Knowledge Engineering, vol. 19, no. 01, pp. 1-22,
2009.

J. R. Koza, Genetic programming III: Darwinian invention and problem
solving, vol. 3. Morgan Kaufmann, 1999.

T. Yu and C. Clark, “Recursion, lambda-abstractions and genetic pro-
gramming,” Cognitive Science Research Papers-University Of Birming-
ham CSRP, pp. 26-30, 1998.

B. Alexander and B. Zacher, Parallel Problem Solving from Nature
— PPSN XIII: 13th International Conference, Ljubljana, Slovenia,
September 13-17, 2014. Proceedings, ch. Boosting Search for Recursive
Functions Using Partial Call-Trees, pp. 384-393. Cham: Springer
International Publishing, 2014.

A. Moraglio, F. E. Otero, C. G. Johnson, S. Thompson, and A. A.
Freitas, “Evolving recursive programs using non-recursive scaffolding,”
in Evolutionary Computation (CEC), 2012 IEEE Congress on, pp. 1-8,
IEEE, 2012.

T. Phillips, M. Zhang, and B. Xue, “Genetic programming for evolving
programs with recursive structures,” To appear in: IEEE Congress on
Evolutionary Computation, 2016.

G. Darvas, “Fibonacci numbers in nature,” Symmetry: Cultural-historical
and ontological aspects of science-arts relations The natural and man-
made world in an interdisciplinary approach, pp. 109-130, 2007.

S. Silva, J. Foster, M. Nicolau, P. Machado, and M. Giacobini, Genetic
Programming: 14th European Conference, EuroGP 2011, Torino, Italy,
April 27-29, 2011, Proceedings. LNCS sublibrary: Theoretical computer
science and general issues, Springer, 2011.

O. Lezoray, A. Elmoataz, and H. Cardot, “A color object recognition
scheme: application to cellular sorting,” Machine Vision and Applica-
tions, vol. 14, pp. 166-171, 2003.

0. Lezoray, “Microscopical cell image database
(serous cytology).” [Online]. Available:
https://lezoray.users.greyc.fr/researchDatabasesSerousCells.php.

Y. LeCum and C. Cortes, “The mnist database of handwritten digits.”
[Online]. Available: http://yann.lecun.com/exdb/mnist/.
M. cbel, “Face data,” 2000. [Online].
http://cbcl.mit.edu/software-datasets/FaceData2.html.

S. Munder and D. M. Gavrila, “An experimental study on pedestrian
classification,” IEEE transactions on pattern analysis and machine
intelligence, vol. 28, no. 11, pp. 1863-1868, 2006.

Available:

M. Lichman, “UCI machine learning repository,” 2013. [Online].
Available: http://archive.ics.uci.edu/ml.
S. Hettich and S. D. Bay, “The uci kdd archive,” 1999. [Online].

Available: http://kdd.ics.uci.edu.

X. Li, Utilising restricted for-loops in genetic programming. PhD thesis,
School of Computer Science and Information Technology, Faculty of
Applied Science, Royal Melbourne Institute of Technology, Melbourne,
2007.

1286
Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:51:07 UTC from IEEE Xplore. Restrictions apply.

