
 

Abstract— Conventional genetic programming (GP) does not 
guarantee no revisits, i.e., a program may be generated for 
fitness evaluations more than one time.  This is clearly wasteful 
in applications that involve expensive and/or time consuming 
fitness evaluations.  This paper proposes a new GP – 
non-revisiting genetic programming NrGP – that guarantees 
that all programs generated is original.  The basic idea is to use 
memory to store all programs generated.  To increase efficiency 
in indexing and storage, the memory is organized as an 
S-expression trie.  Since the number of solutions generated is 
modest for applications involving expensive and/or time 
consuming fitness evaluations, the extra memory needed is 
manageable. GP and NrGP are compared using two GP bench 
mark problems, namely, the symbolic regression and the even 
N-parity problem. It is found that NrGP outperforms GP, 
significantly reducing the computational effort (CE) required. 
This clearly shows the power of the idea of ensuring no revisits. 
It is anticipated that the same non-revisiting idea can be applied 
to other types of GP to enhance their efficiency. A new CE 
measurement is also reported that removes some statistical 
biases associated with the conventional CE. 

I. INTRODUCTION

ENETIC programming (GP) [1] is one type of 
Evolutionary Algorithms (EA) that applies the idea of 

natural selection to computer programs.  It is a relatively 
recent addition to the genetic algorithm, evolutionary 
strategies and evolutionary programming family. It can be 
considered as a natural variant to genetic algorithm (GA). 
Some researchers hold the view that GP is a generalization, 
rather than a special case of GA.  The central idea of GP is to 
represent computer programs as chromosomes (individuals) 
within the GA framework. Different from conventional GA 
which has chromosomes with a fixed length, in GP, these 
chromosome programs are represented as tree structures 
composing of terminals and operators with dynamically 
changing shapes and sizes. To evolve, chromosomes with 
high fitness are chosen as parents to generate offspring by 
crossover and mutation. Since one is dealing with programs, 
crossover and mutation operators specific to GP are used. 
Under this favor-high-fitness selection method, offspring are 
supposed to be inheriting desirable characteristics from their 
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parents and performing better than their parents. For example, 
two useful fragments of programs may be inherited and 
recombined to create a better program. However, by the same 
reasoning, parents with high fitness may be selected again 
and again, generating duplicated offspring, i.e. offspring 
programs that has been generated before, or non-original 
programs. Clearly, these duplicated offspring brings no 
contribution to the evolution but only consumes 
computational power in fitness evaluation. When solving 
problems whose fitness evaluations are expensive and/or time 
consuming, large amount of resources will be wasted in 
evaluating duplicated offspring. For example, in heating, 
ventilation and air conditioning (HVAC) engineering [2] and 
antenna design [3], it takes typically a few minutes to a day 
for one fitness evaluation. We shall use the term “the 
revisiting problem” to refer to the problem associated with 
resources being wasted in duplicated fitness evaluations. 

In order to solve this problem, the non-revisiting GP, 
NrGP, is introduced in this paper.  The non-revisiting idea 
serves as a natural add-on to the original GP.  The essence of 
the idea is to use memory to store all generated solutions. To 
increase indexing and storage efficiency, the memory is 
organized as a S-expression trie. It completely eliminates the 
revisiting problem. Since the number of expensive and/or 
time consuming fitness evaluations is not high, the total 
memory required is manageable. 

In the past, several researchers have attempted to 
incorporate memory in various ways into GP. In a sequel to 
[1], Koza [4] advocated using memory to save some branches 
in the individual tree as automatically defined functions 
(ADF) which can be re-used later. Bearpark and Keane [5] 
preserved some fragments of high fitness individuals in a pool 
and re-introduce them during the mutation phase. Teller [6] 
proposed using indexed memory to store and to reuse the 
result of sub-trees. He added the “Read” and “Write” 
functions into the terminal set of the GP system to access the 
indexed memory. The use of indexed memory worked as a 
pointer to connect one node to another in the individual tree. 
Recently, Walker and Miller [7] applied module encryption 
and decryption in Cartesian Genetic Programming to make it 
possible to evolve and reuse modules. The above researchers 
aimed to apply memory to store component parts in high 
fitness individual, making them immune to the disruptive 
effects of crossover and mutation. On the other hand, other 
researchers applied memory for other usages. Ok et al. [8] 
used memory to store terminals, by which unrelated terminal 
sets are identified and removed. Andre [9] applied memory 
into a multi-phased mapmaking program. He used memory to 
store the environment in the “mapmaking” phase. The stored 
environment was used to plan the actions and the movement 
of the robot in the “map-using” phase.  
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However, none of the above researches considered the 
revisiting problem. Moreover, stored component parts may 
increase the probability of revisits. The intended use of 
memory in this paper is entirely different to all of the above 
researches.  

The original idea of NrGP comes from non-revisiting 
genetic algorithm (NrGA) [10, 11]. NrGA uses a binary 
partitioning tree memory to record all visited solutions. By 
saving and comparing individuals, no duplicated offspring 
will be generated. As a result, no fitness evaluation is wasted 
and no revisiting problem occurs. Significant performance 
improvement is reported.  The idea is generic, for example, it 
can be applied to other types of search [12, 13, 14]. In each 
case, substantial performance improvement has been 
observed.  Recently, a proof is obtained that the use of 
memory to assist an evolutionary algorithm can reduce the 
expected time complexity of finding the solution significantly 
for some problems [15]. 

This paper presents the general methodology to implement 
NrGP. Section II explains the idea and details of the NrGP. 
Section III gives the experiment settings. Results of 
experiments and discussions are shown in section IV. Finally, 
conclusions from experimental results and suggestions for the 
further works are presented in section V. 

II. NON-REVISITING GENETIC PROGRAMMING 

A. Idea of Non-Revisiting Genetic Programming 
The idea of Non-Revisiting Genetic Programming comes 

from the NrGA [10, 11], which use memory to record all 
evaluated individuals and evaluated results to increase the 
performance. Working as a generic extension part  for a 
generic algorithm, the idea of “non-revisiting stochastic 
search” can be applied to many different algorithms. The 
empirical results in the researches of Yuen and Chow [10, 12, 
13, 14] show significant improvements brought about by the 
idea of “non-revisiting stochastic search”. To investigate the 
potential improvement that can be achieved by reducing the 
revisiting problem, in this paper, the idea of “non-revisiting 
stochastic search” is applied to the conventional GP. 

Introduced by Koza [4], computational effort (CE) is 
commonly used to measure the performance of GP. CE is 
measuring the number of fitness evaluations that must be 
executed to yield a solution to a problem. By definition, the 
smaller is the CE, the better is the performance of the 
algorithm. As the revisiting problem is concerned with the 
wastage of computational resource on evaluating the fitness 
of the same individual repeatedly, it is clear that the CE 
performance will be decreased when some fitness evaluations 
are wasted.  

By using NrGP, it is guaranteed that no redundant fitness 
evaluation occurs. Therefore, NrGP has a larger probability to 
get the optimal solution compared to conventional GP. 
Moreover, because visited points in the search space will 
never be revisited again, the search space becomes smaller 
after each fitness evaluation. As a result, in the long run, there 
exists an upper bound in the number of fitness evaluations 

while the conventional GP does not. 

B. Flow of NrGP: 
In this paper, conventional GP is used as the base to apply 

the “non-revisiting stochastic search” idea. Compared to 
conventional GP, only two simple sub-processes, i.e., saving
and revisit checking, are inserted into the original algorithm. 
The saving process records the visited points (evaluated 
individuals) while the revisit checking process checks 
whether the new individual is revisited or not. They will be 
called when new individual is produced. If the new individual 
is determined as having been revisited, the reproducing 
operation will be called again to generate a new individual 
until it is not a revisit. In this way, it makes sure that all 
programs generated are original. 

Let M be the population size, the following code constructs 
NrGP: 

FOR ( i := 1 to M) 
{
 Generate individual i; 

WHILE (individual i revisited)   Generate individual i;  
 Save  individual i ; 
}
WHILE ( Termination condition  NOT reached) 
{
 FOR ( i := 1 to M)  Evaluate Fitness of individual i; 
 i := 1; 
    WHILE ( i < M) 
 { 
  Select Parents; 
  IF( crossover operation is selected) 

{
   DO 

{
    Generate offspring i by crossover; 
    } WHILE (Offspring i revisited);  

}
ELSE 
{

DO
{

    Generate offspring i by mutation; 
    } WHILE (Offspring i revisited);  

}
Save Offspring i;  

       i := i+1; 
 } 

IF (best offspring better than historical best) THEN 
update historical best; 

FOR ( i := 1 to M)  individual i := Offspring i; 
}

 Code in bold is the extension added to the conventional GP. 
Compared to the original algorithm, only a few steps are 
added into the system.  Note that though the while loops 
involve repeated solution generation, it actually involves 
insignificant computational overhead in applications 
involving expensive and/or time consuming fitness 
evaluations. 
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C. Implementation of NrGP  
As mentioned before, the main idea of NrGP is to store and 

compare individuals in all generations. By comparing the new 
individual with the evaluated individuals, the revisiting 
problem can be prevented. As individuals in GP are generally 
represented as variable structure binary tree, the problem of 
how to store and compare individuals effectively needs to be 
solved. In this paper, we suggest a fast and effective approach 
for storing and comparing binary trees with different 
structures and sizes. Individuals in a GP are programs, which 
are in turn variable structure binary trees of terminals and 
operators. Such a binary tree is first translated to a variable 
length string. The most common way to translate the binary 
tree is the S-expression as shown in fig 1.  It converts the 
binary tree to a string of terminals and operators. For efficient 
query of whether an S-expression is a revisit, each 
S-expression is simply stored as a path in the trie [16], as 
shown in Fig.2. Each node in the trie has K = (Size of 
Function set + Size of Terminal set+1) child node pointers. 
Each non-root node in the trie represents a terminal or an 
operator in the S-expression string. The additional sign EoP
represents the end of program.  A new individual is saved as a 
path from the root to an EoP by creating the necessary nodes, 
as follows:  elements in the strings are used to indicate the 
path. At each node of the tree, the corresponding child node 
pointer will be checked. If the corresponding child node 
pointer is pointing to the desired node, the node will be 
chosen. Otherwise, a new node will be created to the 
corresponding child node pointer. As each path in the tree is 
representing an individual, to check whether a string is a 
revisit simply entails checking whether the corresponding 
path ending in EoP already exists in the trie. 

               

Fig. 1.  An example of translating a binary tree to a node string. Using 
S-expression notation, nodes are read in order: current node, left child node 
and then right child node to convert recursively. The first chosen node is the 
root node of the individual tree. Therefore, F1 is the first element in the 
translated string. After that, the next node is the left child node of the current 
node, so the current node is changed to node F2. Similar to the previous 
operation, the second element in the translated string is F2. Then, change the 
current node to leaf child node T2. Since node T2 has no child node, return to 
node F2 and choose right child node T3 and so on. Finally, when the 
translation finishes, an “EoP” sign is appended to the translated string. 

       
Fig. 2.  An example of the trie used in this paper. Assume that the size of the 
function set is 2, i.e.,{F1,F2}, and the size of the terminal set is 3, i.e., 
{T1,T2,T3} such that each node in the tree has 2+3+1 = 6 child node 
pointers. In the beginning, there is only root node in the tree. For saving the 
individual shown in Fig.1, a path is constructed. Lines without node are null 
child node pointers. 

1) Population Initialization 
Individuals in GP are represented as binary trees. Two 

methods commonly used to build a tree are grow and full 
method. The difference between the grow and the full method 
is that the full method generates trees of which all the leaf 
nodes are in the same depth. For example, the tree shown in 
Fig.1 is not a full tree.  The size and the structure of the full 
tree are rather limited. Since the first generation should have 
more variations in sizes and structures, all trees are generated 
by the grow method which constructs trees with more varied 
sizes and shapes.  

To generate trees by the grow method, let Fsize  and Tsize be 
the size of function set and terminal set respectively. Each 

node has probability 
+ sizesize

size

TF
F and 

+ sizesize

size

TF
T to be a 

function node and terminal node respectively. If the node is 
chosen as a function node, it will have two child nodes. 
Otherwise, the node will become a leaf node.  

2)  Crossover and mutation operator 
Crossover and mutation are the main operators to produce 

new offspring in GP. The crossover operation exchanges 
some genes between two parents and the mutation operation 
makes some changes to the genes of the parent to produce 
offspring. As individuals in GP are represented in a tree 
structure, genetic information of each individual are 
represented as sub-trees.   
 In the crossover and mutation operation, a node will be 
chosen randomly as the cutting point. To perform crossover, 
the sub-trees under this node will be swapped between 
parents to generate offspring. To perform mutation, the 
sub-tree under this node will be deleted and a new sub-tree is 
regenerated by the grow method.  
 To prevent bloating [18], an operator similar to size-fair 
crossover operator is used [17]. The first cutting point of 
crossover is selected randomly in the first parent. The 
position of the first point is used as a constraint to make sure 

F2

F1

T2 T3

T1 

F1       F2     T2       T3   T1    EoP 

Translation
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that the sub-tree under the second selected point will not 
cause over size.  
 To select a cutting point, two parameters are generated 
randomly: depth and path. The depth parameter is used to 
indicate the maximum depth of the selected cutting point. The 
range of the depth parameter is from 1 to the user defined 
maximum depth. Starting from the root node, the parameter 
path is generated randomly at each node. The pointer moves 
to the left or right child node of the current node if path is an 
even or odd number respectively. The cutting point will be 
selected when the pointer is pointing to the leaf node or the 
depth of the current node reaches depth.
 After selecting the first cutting point from the first parent, 
the second cutting point will be selected from the second 
parent. The second cutting point is selected restrictively so 
that the sum of depth of the first cutting point and the sub-tree 
under the second cutting point is less than or equal to 
maximum allowed depth.

III. EXPERIMENT

Symbolic regression and even N-parity problem are used as 
the testing problems for comparing the performance of NrGP 
with conventional GP. 100 independent trials are conducted 
and the t-test is used to ensure that results are statistically 
significant. The initial tree depth is set to five levels and the 
maximum tree depth of an individual is limited to fifteen 
levels. A PC with 3.0GHz CPU and 1GB memory is used. 
The programming language used is C++.  

A. Symbolic regression 
Symbolic regression is a widely used benchmark suggested 

by Koza [1, 4]. The problem is to find an equation )(xfy =
that fits the given set of data. The equation will be a 
combination of functions in the function set {addition, 
subtraction, multiplication and protected division (return 1 if 
divided by zero)} and terminals in the terminal set {X, 
random constants}. The given data is a set of points on the x-y 
coordinates (e.g.: d1 = (x1,y1), d2 = (x2,y2), … ). To determine 
the accuracy of the equation, the x-coordinate value of each 
point will be substituted into the equation, and then the output 
of the equation will be compared with the given y-coordinate 
value of the point to calculate the error.  

As the aim of symbolic regression is to determine the 
equation which fits all the given points, the sum of the 
absolute errors between the y-coordinates ny  of the given 
point ),( nnn yxd =  and the output ng of the  

equation )( nn xfg =  will be used as the fitness function: i.e., 

−= nn gyfitness .

In this paper, three polynomials with different orders were 
used in the experiment. They are  

1) Quartic function xxxxxf +++= 234)( ,  

2) Quintic function xxxxf +−= 35 2)(  and  

3) Sextic function xxxxf +−= 46 2)( .  
The parameter settings are shown in Table I. As the size of 

the terminal set {x, random constant} is undeterminable, the 
tree used to store individuals cannot be constructed. To solve 
this problem, the random constant is not included in the 
terminal set in this experiment.  

TABLE I
THE  PARAMETER SETTINGS USED IN SYMBOLIC REGRESSION

Population size: 100 
Generation count: 100 
Selection Method: Tournament with size 5 
Tree Generation: Grow 
Initial Tree depth: 5 
Maximum Tree depth: 15 
Crossover probability: 0.9 
Mutation probability: 0.1 
Terminal set: X 

Function set: +,-,*,%(protected division) 

Fitness cases: 50 points, using evenly spaced 
values of x between -1 & 1 

Hit: Error <0.001 

B. Even N-parity problem 
The even N-parity problem is another common benchmark 

problem in GP research [1].The even N-parity function 
returns TRUE if the number of TRUE in all N inputs is even,
otherwise, it returns FALSE. In practical applications, the 
even N-parity function is often used as an error checking code 
that checks the accuracy of data storage and data transmission. 
Similar to the symbolic regression problem, the aim of the 
even N-parity problem is to find the Boolean equation (e.g. 
output = (X1 AND X2) OR X3) which outputs the same result 
as the even N-parity function. To solve the even N-parity 
problem by GP, primitive Boolean operators {ADD, OR, 
NAND, NOR} are used as the function set, and the N- bits 
input are used as the terminal set.  

 The performance of NrGP is compared with that of 
conventional GP in even 3-parity problem and even 4-parity 
problem. Table II shows the settings of this experiment. 

TABLE II
THE  PARAMETER SETTINGS USED IN EVEN – N  PARITY PROBLEM

Population size: 400 
Generation count: 50 
Selection Method: Tournament 
Selection Method: Tournament with size 5 
Tree Generation: Grow 
Initial Tree depth: 5 
Crossover probability: 0.9 

Mutation probability: 0.1 

Terminal set: bit 0 to bit N-1 

Function set: AND,OR, NAND,NOR 

Fitness cases: All 2N combinations of the N Boolean 
arguments 

Hit: Error =0 
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C. Fitness measurement 
1) Computational effort 

CE is introduced by Koza [1] to measure the effort required 
to solve the problem. It is calculated by the equations shown 
in eqn (1). It includes four steps. Firstly, let M be the 
population size. NT independent trials are made and the 
number of successful trials N(M,i) is recorded. P(M, i), the 
probability of success at generation i is calculated as N(M,i) 
divided by NT. Secondly, the required number of independent 
trials R(i,z) to solve the problem with a user defined high 
probability z (e.g. z=0.99) is calculated. Thirdly, the total 
number of individuals I(M,i,z) produced in R(i,z) independent 
trials is calculated. Finally, CE is determined to be the 
minimal number of individuals I(M,i,z) as i is allowed to vary.
To explain briefly, the physical meaning of CE is the minimal 
number of individuals that has to be produced to get the 
solution in high probability. As the total number of 
individuals is equal to the number of fitness evaluations, CE
can also be defined as the minimal number of fitness 
evaluations to yield the solution in high probability, ignoring 
solution generation cost. As CE is measuring the number of 
the fitness evaluations but not the actual time consumed in the 
whole experiment, it is a fair measure for computers with 
different processing speeds.  

NT
iMNiMP ),(),( =

−
−=

),(1log(
)1log(),(

iMP
zceilziR

)1(),(),,( +××= iziRMziMI
),,( ziMIMinCE i=                                                  ( 1) 

2) A New Computational Effort Measure 
In CE, we calculate the cumulative probability of success 

in generation i through all independent trials. However, the 
calculation of P(M,i) is not so accurate. If the number of 
independent trials is too small, the result does not have a high 
confidence level. For example, success once in two trials of 
course does not mean that it would be successful fifty times in 
one hundred trials. Moreover, Christensen and Oppacher [19] 
reported that the ceil (round up) operation in the calculation 
underestimated the true CE. In the literature, researchers use 
different number of independent trials NT in their 
applications arbitrarily, partly dependent on the time needed 
to run the experiments. In a recent research, Niehaus and 
Banzhaf [20] found that the number of independent trials used 
affected the degree of underestimation.  

To make the calculation of CE more statistically accurate 
and unaffected by underestimation, we suggest to use the 
method proposed by Yuen et al. [21]. It is a method to 
estimate the probability P(M, i) with high confidence.  

Note that the above fulfils the three characteristics of 
binomial experiments. First, involves repeated number of NT 
trials. Second, there are only two possible outcomes: success 
(Hit) or failure (Not Hit). Third, all the trials in the experiment
are independent.  

Let x be the number of successes in generation i after NT 
number of independent trials. Eqn (2) denotes the binomial 
distribution.  

NTx

iMPiMP
x

NT
iMPNTxb xNT

est
x

estest

,...,1,0

)),(1(),()),(,;(

=

−×= −

                      ( 2) 
Although strictly speaking, it is an estimation problem, it is 

somewhat easier to explain using a hypothesis testing 
framework: 

H0:  P = Pest
H1:  P > Pest                  ( 3) 

 Where H0 is the null hypothesis and H1 is the alternative 
hypothesis.  
 Let X be the statistic, which is the number of successes in 
NT trials. Then X x is the acceptance region and X  x+1 is 
the critical region. Thus the probability of type 1 error, which 
is the level of confidence α, can be  calculated by the 
following equation:  

)|1()( estPPxXPerrorITypeP =+≥==α

+=
=

NT

iMNx
est iMPNTxb

1),(
)),(,;(α             

( 4) 
Given NT, N(M, i) and a user defined level of confidence α,

for Pest  much lower than N(M, i)/NT, the null hypothesis will 
be rejected. We choose the value of Pest as the maximum 
value such that H0 is rejected. Let this value be Plcf.  In 
statistics, this value is the lower confidence bound of the 
probability of success, with confidence level α [22].  Then we 
replace P(M,i) by Plcf (M, i) in eqn (1), i.e. 

xNT
est

NT

iMNx
est

x iMpiMp
xNTx

NT −

+=

−×
−

= )),(1(),(
)!(!

!
1),(

α

−
−=

)),(1log(
)1log(),(

lcf iMp
zceilziR

)1(),(),,( +××= iziRMziMI

),,( ziMIMinCE i=                                                    ( 5)

The advantage of this new CE is that the lower confidence 
bound normalizes the statistical uncertainty associated with 
using different number of independent trials NT observed in 
[20]. Moreover, the ceil operation no longer underestimate 
the true CE as reported in [19], as the operation now is exactly 
calculating the (integer) number of repeated trials in a 
probabilistic amplification procedure to achieve the desired 
confidence level.   
 Because of the above advantages, we suggests that in the 
future, CE should be written as CE (% confidence). For 
example, CE (99.9% confidence) means a confidence level of 
99.9% or an α of 0.1%. 
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IV. RESULTS

A. Results of symbolic regression 
Table III shows the result of the symbolic regression 

experiment on Quartic function. The performance of NrGP is 
significantly better than that of conventional GP. Using 
NrGP, the hit rate is increased by 19%, the computational 
effort is reduced by about 42% and the average error is 
reduced by about 77%. It illustrates that NrGP gives a large 
improvement in this simple symbolic regression problem. It 
can be concluded that NrGP improves the performance by 
reducing the revisiting problem; the large reduction in the CE
means that the revisiting problem in this problem is very 
serious.   

Table IV shows the result of the experiment on Quintic 
function. By comparing the results between GP and NrGP in 
hit rate, average error and computational effort, the 
improvement of NrGP is also significant. The hit rate is 
increased by about 18%, the computation effort is reduced by 
about 40%, and the average error is reduced by 51%.   

TABLE III
RESULTS OF SYMBOLIC REGRESSION IN SOLVING QUARTIC FUNCITON

Function: Quartic function  
xxxxxf +++= 234)(

Method: GP NrGP 
Average Fitness: (Error) 0.89213706 0.20253827 
Standard Deviation: 1.75437996 0.62706843 
Average Generation used: 42.83 24.75 
Hit rate: 69% 88% 
Computational Effort: 11200 6500 
Computational Effort : 
(99.9% confidence) 

18200 9800 

t value: (t- Test)         3.7014 (99.97%) 

TABLE IV 
RESULTS OF SYMBOLIC REGRESSION IN SOLVING QUINTIC FUNCTION

Function: Quintic function 
xxxxf +−= 35 2)(

Method: GP NrGP 
Average Fitness: (Error) 0.97472161 0.48003359 
Standard Deviation: 1.39990242 0.65154054 
Average Generation used: 78.36 66.17 
Hit rate: 32% 50% 
Computational Effort: 60000 36000 
Computational Effort : 
(99.9% confidence) 

126000 66300 

t value (t- Test): 3.2037(99.84%) 

Table V shows the result of the experiment on Sextic 
function.  Though NrGP makes no improvement in the hit 
rate, it reduces by 35.5% in computational effort and 41% in 
average error.   

The t-tests on fitness show that the fitness improvement 
due to NrGP is statistically significant. 

TABLE V
RESULTS OF SYMBOLIC REGRESSION IN SOLVING SEXTIC FUNCTION 

Function: Sextic function
xxxxf +−= 46 2)(

Method:  GP NrGP 
Average Fitness: (Error) 1.01978341 0.60442356 
Standard Deviation: 1.279339336 0.72006868 
Average Generation used: 81.59 78.31 
Hit rate: 31% 31% 
Computational Effort: 75000 48400 
Computational Effort : 
(99.9% confidence) 

178600 103400 

t value :(t- Test) 2.8292(99.49%) 

The results show that the improvement in the simpler 
problem (Quartic function) is more significant than that in the 
complex problem (Sextic function).  The decrease in the 
improvement is the most significant in hit rates. It drops from 
about 19% in Quartic function to 18% in Quintic function and 
then to no improvement in Sextic function. However, it does 
not mean that NrGP has no improvement in more complex 
problems, the decrease in computation effort and average 
errors are still over 35% and 40%  respectively in the Sextic 
function.  

B. Results of even N- parity problem 
Table VI shows the result of solving the even 3-parity 

problem and the even 4-parity problem. It illustrates that both 
conventional GP and NrGP can solve the even 3-parity 
problem easily. Both conventional GP and NrGP find the 
solution with very high probability (hit rate > 90%). Using 
NrGP, the computational effort is reduced by about 58%. 

In the even 4-parity problem, the result demonstrates that 
the performance of NrGP is significantly better than GP. Not 
only is the hit rate increased by 26%, but also the average 
error and the computational effort are decreased by about 
52% and 63% respectively. The result shows that the 
performance of NrGP is much better than that of conventional 
GP.  The t-tests on fitness show that the fitness improvement 
due to NrGP is statistically significant. 

TABLE VI 
RESULTS OF EVEN N-PARITY PROBLEMS

Function: Even 3-Parity Problem Even 4-Parity Problem 
Method: GP NrGP GP NrGP 
Average Fitness: 
(Error) 0.07 

0 2.9 1.38 

Standard Deviation: 0.26 0 2.38 1.57 
Average Generation 
used: 15.87 

8.91 48.47 42.56 

Hit rate: 93% 100% 21% 47% 
Computational Effort: 23200 9600 400000 147200 
Computational Effort:
(99.9% confidence) 

34800 14400 800000 239200 

t value :(t- Test) 2.7298 (99.31%) 5.3187(99.99%) 

In summary, the results in the even 3-parity problem and 
the even 4-parity problem once again show that the 
performance of the classic GP can be improved by alleviating 
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the revisiting problem. In particular, NrGP performs better 
when the revisiting problem in GP is more serious in the 
application scenario. For the even parity problems, the 
performance of NrGP is better when the problem is more 
complex. 

V. CONCLUSION AND FURTHER WORK

In this paper, we propose an extension to genetic 
programming (GP), called non-revisiting genetic 
programming (NrGP), which applies memory to record all 
visited points in the search space.  By recording the visited 
points, NrGP guarantees that no point will be revisited in the 
search space. Therefore no computational resource will be 
wasted in duplicated fitness evaluation. Our contention is that 
in expensive and/or time consuming fitness evaluations, 
duplicated fitness evaluations is an unjustifiable waste of 
resources and should be avoided, and for such applications, 
the memory required to store all visited solutions are 
manageable (since the number of fitness evaluations will not 
be large). To further increase solution generation and memory 
storage efficiency, an S-expression trie data structure is also 
reported for storing visited points and querying whether a 
search point is a revisit. 

The performance of conventional GP and NrGP is 
compared by using two bench mark GP problems, namely, 
symbolic regression problem and even N-parity problem. In 
each case, NrGP brings significant performance gains to GP.  

From the empirical results, we conclude that the idea of 
“non-revisiting stochastic search” is a good extension part to 
conventional GP that delivers a performance gain.   
Moreover, the idea can be applied to other more advanced 
types of GP and performance gain is expected.  This is one 
area for future work.  Another area is to investigate 
techniques that use the memorized data more effectively. This 
includes adaptive mutation and other search-history-driven 
techniques. 

An independent contribution of this paper is the 
introduction of a new computational effort (CE) measure.  
We propose to eliminate the estimation uncertainty inherent 
with sample sizes in the original CE by computing the 
statistical lower confidence bound.  We suggest using the 
notation CE (% confidence) to denote this new CE measure.  
Since the number of independent trials for GP and NrGP are 
deliberately set to be the same in our experiment, the new CE 
does not make any qualitative difference to our results in the 
paper.  However, we believe that the new CE will be useful 
for an unbiased comparison of GP in the literature.  Since CE 
is a generic, algorithm independent measure, it can equally be 
applied to compare other evolutionary algorithms as well.  
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