

Abstract— Conventional genetic programming (GP) does not
guarantee no revisits, i.e., a program may be generated for
fitness evaluations more than one time. This is clearly wasteful
in applications that involve expensive and/or time consuming
fitness evaluations. This paper proposes a new GP –
non-revisiting genetic programming NrGP – that guarantees
that all programs generated is original. The basic idea is to use
memory to store all programs generated. To increase efficiency
in indexing and storage, the memory is organized as an
S-expression trie. Since the number of solutions generated is
modest for applications involving expensive and/or time
consuming fitness evaluations, the extra memory needed is
manageable. GP and NrGP are compared using two GP bench
mark problems, namely, the symbolic regression and the even
N-parity problem. It is found that NrGP outperforms GP,
significantly reducing the computational effort (CE) required.
This clearly shows the power of the idea of ensuring no revisits.
It is anticipated that the same non-revisiting idea can be applied
to other types of GP to enhance their efficiency. A new CE
measurement is also reported that removes some statistical
biases associated with the conventional CE.

I. INTRODUCTION

ENETIC programming (GP) [1] is one type of
Evolutionary Algorithms (EA) that applies the idea of

natural selection to computer programs. It is a relatively
recent addition to the genetic algorithm, evolutionary
strategies and evolutionary programming family. It can be
considered as a natural variant to genetic algorithm (GA).
Some researchers hold the view that GP is a generalization,
rather than a special case of GA. The central idea of GP is to
represent computer programs as chromosomes (individuals)
within the GA framework. Different from conventional GA
which has chromosomes with a fixed length, in GP, these
chromosome programs are represented as tree structures
composing of terminals and operators with dynamically
changing shapes and sizes. To evolve, chromosomes with
high fitness are chosen as parents to generate offspring by
crossover and mutation. Since one is dealing with programs,
crossover and mutation operators specific to GP are used.
Under this favor-high-fitness selection method, offspring are
supposed to be inheriting desirable characteristics from their

Shiu Yin Yuen is with the Department of Electronic Engineering, City
University of Hong Kong, Hong Kong SAR, China. E-mail:
kelviny.ee@cityu.edu.hk

Shing Wa Leung is with the Department of Electronic Engineering, City
University of Hong Kong, Hong Kong SAR, China. E-mail:
shinleung8@student.cityu.edu.hk

The work described in this paper was supported by a grant from CityU
(7002304).

parents and performing better than their parents. For example,
two useful fragments of programs may be inherited and
recombined to create a better program. However, by the same
reasoning, parents with high fitness may be selected again
and again, generating duplicated offspring, i.e. offspring
programs that has been generated before, or non-original
programs. Clearly, these duplicated offspring brings no
contribution to the evolution but only consumes
computational power in fitness evaluation. When solving
problems whose fitness evaluations are expensive and/or time
consuming, large amount of resources will be wasted in
evaluating duplicated offspring. For example, in heating,
ventilation and air conditioning (HVAC) engineering [2] and
antenna design [3], it takes typically a few minutes to a day
for one fitness evaluation. We shall use the term “the
revisiting problem” to refer to the problem associated with
resources being wasted in duplicated fitness evaluations.

In order to solve this problem, the non-revisiting GP,
NrGP, is introduced in this paper. The non-revisiting idea
serves as a natural add-on to the original GP. The essence of
the idea is to use memory to store all generated solutions. To
increase indexing and storage efficiency, the memory is
organized as a S-expression trie. It completely eliminates the
revisiting problem. Since the number of expensive and/or
time consuming fitness evaluations is not high, the total
memory required is manageable.

In the past, several researchers have attempted to
incorporate memory in various ways into GP. In a sequel to
[1], Koza [4] advocated using memory to save some branches
in the individual tree as automatically defined functions
(ADF) which can be re-used later. Bearpark and Keane [5]
preserved some fragments of high fitness individuals in a pool
and re-introduce them during the mutation phase. Teller [6]
proposed using indexed memory to store and to reuse the
result of sub-trees. He added the “Read” and “Write”
functions into the terminal set of the GP system to access the
indexed memory. The use of indexed memory worked as a
pointer to connect one node to another in the individual tree.
Recently, Walker and Miller [7] applied module encryption
and decryption in Cartesian Genetic Programming to make it
possible to evolve and reuse modules. The above researchers
aimed to apply memory to store component parts in high
fitness individual, making them immune to the disruptive
effects of crossover and mutation. On the other hand, other
researchers applied memory for other usages. Ok et al. [8]
used memory to store terminals, by which unrelated terminal
sets are identified and removed. Andre [9] applied memory
into a multi-phased mapmaking program. He used memory to
store the environment in the “mapmaking” phase. The stored
environment was used to plan the actions and the movement
of the robot in the “map-using” phase.

Genetic Programming that Ensures Programs are Original
Shiu Yin Yuen and Shing Wa Leung

G

860978-1-4244-2959-2/09/$25.00 c© 2009 IEEE

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:17:25 UTC from IEEE Xplore. Restrictions apply.

However, none of the above researches considered the
revisiting problem. Moreover, stored component parts may
increase the probability of revisits. The intended use of
memory in this paper is entirely different to all of the above
researches.

The original idea of NrGP comes from non-revisiting
genetic algorithm (NrGA) [10, 11]. NrGA uses a binary
partitioning tree memory to record all visited solutions. By
saving and comparing individuals, no duplicated offspring
will be generated. As a result, no fitness evaluation is wasted
and no revisiting problem occurs. Significant performance
improvement is reported. The idea is generic, for example, it
can be applied to other types of search [12, 13, 14]. In each
case, substantial performance improvement has been
observed. Recently, a proof is obtained that the use of
memory to assist an evolutionary algorithm can reduce the
expected time complexity of finding the solution significantly
for some problems [15].

This paper presents the general methodology to implement
NrGP. Section II explains the idea and details of the NrGP.
Section III gives the experiment settings. Results of
experiments and discussions are shown in section IV. Finally,
conclusions from experimental results and suggestions for the
further works are presented in section V.

II. NON-REVISITING GENETIC PROGRAMMING

A. Idea of Non-Revisiting Genetic Programming
The idea of Non-Revisiting Genetic Programming comes

from the NrGA [10, 11], which use memory to record all
evaluated individuals and evaluated results to increase the
performance. Working as a generic extension part for a
generic algorithm, the idea of “non-revisiting stochastic
search” can be applied to many different algorithms. The
empirical results in the researches of Yuen and Chow [10, 12,
13, 14] show significant improvements brought about by the
idea of “non-revisiting stochastic search”. To investigate the
potential improvement that can be achieved by reducing the
revisiting problem, in this paper, the idea of “non-revisiting
stochastic search” is applied to the conventional GP.

Introduced by Koza [4], computational effort (CE) is
commonly used to measure the performance of GP. CE is
measuring the number of fitness evaluations that must be
executed to yield a solution to a problem. By definition, the
smaller is the CE, the better is the performance of the
algorithm. As the revisiting problem is concerned with the
wastage of computational resource on evaluating the fitness
of the same individual repeatedly, it is clear that the CE
performance will be decreased when some fitness evaluations
are wasted.

By using NrGP, it is guaranteed that no redundant fitness
evaluation occurs. Therefore, NrGP has a larger probability to
get the optimal solution compared to conventional GP.
Moreover, because visited points in the search space will
never be revisited again, the search space becomes smaller
after each fitness evaluation. As a result, in the long run, there
exists an upper bound in the number of fitness evaluations

while the conventional GP does not.

B. Flow of NrGP:
In this paper, conventional GP is used as the base to apply

the “non-revisiting stochastic search” idea. Compared to
conventional GP, only two simple sub-processes, i.e., saving
and revisit checking, are inserted into the original algorithm.
The saving process records the visited points (evaluated
individuals) while the revisit checking process checks
whether the new individual is revisited or not. They will be
called when new individual is produced. If the new individual
is determined as having been revisited, the reproducing
operation will be called again to generate a new individual
until it is not a revisit. In this way, it makes sure that all
programs generated are original.

Let M be the population size, the following code constructs
NrGP:

FOR (i := 1 to M)
{
 Generate individual i;

WHILE (individual i revisited) Generate individual i;
 Save individual i ;
}
WHILE (Termination condition NOT reached)
{
 FOR (i := 1 to M) Evaluate Fitness of individual i;
 i := 1;
 WHILE (i < M)
 {
 Select Parents;
 IF(crossover operation is selected)

{
 DO

{
 Generate offspring i by crossover;
 } WHILE (Offspring i revisited);

}
ELSE
{

DO
{

 Generate offspring i by mutation;
 } WHILE (Offspring i revisited);

}
Save Offspring i;

 i := i+1;
 }

IF (best offspring better than historical best) THEN
update historical best;

FOR (i := 1 to M) individual i := Offspring i;
}

 Code in bold is the extension added to the conventional GP.
Compared to the original algorithm, only a few steps are
added into the system. Note that though the while loops
involve repeated solution generation, it actually involves
insignificant computational overhead in applications
involving expensive and/or time consuming fitness
evaluations.

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 861

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:17:25 UTC from IEEE Xplore. Restrictions apply.

C. Implementation of NrGP
As mentioned before, the main idea of NrGP is to store and

compare individuals in all generations. By comparing the new
individual with the evaluated individuals, the revisiting
problem can be prevented. As individuals in GP are generally
represented as variable structure binary tree, the problem of
how to store and compare individuals effectively needs to be
solved. In this paper, we suggest a fast and effective approach
for storing and comparing binary trees with different
structures and sizes. Individuals in a GP are programs, which
are in turn variable structure binary trees of terminals and
operators. Such a binary tree is first translated to a variable
length string. The most common way to translate the binary
tree is the S-expression as shown in fig 1. It converts the
binary tree to a string of terminals and operators. For efficient
query of whether an S-expression is a revisit, each
S-expression is simply stored as a path in the trie [16], as
shown in Fig.2. Each node in the trie has K = (Size of
Function set + Size of Terminal set+1) child node pointers.
Each non-root node in the trie represents a terminal or an
operator in the S-expression string. The additional sign EoP
represents the end of program. A new individual is saved as a
path from the root to an EoP by creating the necessary nodes,
as follows: elements in the strings are used to indicate the
path. At each node of the tree, the corresponding child node
pointer will be checked. If the corresponding child node
pointer is pointing to the desired node, the node will be
chosen. Otherwise, a new node will be created to the
corresponding child node pointer. As each path in the tree is
representing an individual, to check whether a string is a
revisit simply entails checking whether the corresponding
path ending in EoP already exists in the trie.

Fig. 1. An example of translating a binary tree to a node string. Using
S-expression notation, nodes are read in order: current node, left child node
and then right child node to convert recursively. The first chosen node is the
root node of the individual tree. Therefore, F1 is the first element in the
translated string. After that, the next node is the left child node of the current
node, so the current node is changed to node F2. Similar to the previous
operation, the second element in the translated string is F2. Then, change the
current node to leaf child node T2. Since node T2 has no child node, return to
node F2 and choose right child node T3 and so on. Finally, when the
translation finishes, an “EoP” sign is appended to the translated string.

Fig. 2. An example of the trie used in this paper. Assume that the size of the
function set is 2, i.e.,{F1,F2}, and the size of the terminal set is 3, i.e.,
{T1,T2,T3} such that each node in the tree has 2+3+1 = 6 child node
pointers. In the beginning, there is only root node in the tree. For saving the
individual shown in Fig.1, a path is constructed. Lines without node are null
child node pointers.

1) Population Initialization
Individuals in GP are represented as binary trees. Two

methods commonly used to build a tree are grow and full
method. The difference between the grow and the full method
is that the full method generates trees of which all the leaf
nodes are in the same depth. For example, the tree shown in
Fig.1 is not a full tree. The size and the structure of the full
tree are rather limited. Since the first generation should have
more variations in sizes and structures, all trees are generated
by the grow method which constructs trees with more varied
sizes and shapes.

To generate trees by the grow method, let Fsize and Tsize be
the size of function set and terminal set respectively. Each

node has probability
+ sizesize

size

TF
F and

+ sizesize

size

TF
T to be a

function node and terminal node respectively. If the node is
chosen as a function node, it will have two child nodes.
Otherwise, the node will become a leaf node.

2) Crossover and mutation operator
Crossover and mutation are the main operators to produce

new offspring in GP. The crossover operation exchanges
some genes between two parents and the mutation operation
makes some changes to the genes of the parent to produce
offspring. As individuals in GP are represented in a tree
structure, genetic information of each individual are
represented as sub-trees.
 In the crossover and mutation operation, a node will be
chosen randomly as the cutting point. To perform crossover,
the sub-trees under this node will be swapped between
parents to generate offspring. To perform mutation, the
sub-tree under this node will be deleted and a new sub-tree is
regenerated by the grow method.
 To prevent bloating [18], an operator similar to size-fair
crossover operator is used [17]. The first cutting point of
crossover is selected randomly in the first parent. The
position of the first point is used as a constraint to make sure

F2

F1

T2 T3

T1

F1 F2 T2 T3 T1 EoP

Translation

862 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:17:25 UTC from IEEE Xplore. Restrictions apply.

that the sub-tree under the second selected point will not
cause over size.
 To select a cutting point, two parameters are generated
randomly: depth and path. The depth parameter is used to
indicate the maximum depth of the selected cutting point. The
range of the depth parameter is from 1 to the user defined
maximum depth. Starting from the root node, the parameter
path is generated randomly at each node. The pointer moves
to the left or right child node of the current node if path is an
even or odd number respectively. The cutting point will be
selected when the pointer is pointing to the leaf node or the
depth of the current node reaches depth.
 After selecting the first cutting point from the first parent,
the second cutting point will be selected from the second
parent. The second cutting point is selected restrictively so
that the sum of depth of the first cutting point and the sub-tree
under the second cutting point is less than or equal to
maximum allowed depth.

III. EXPERIMENT

Symbolic regression and even N-parity problem are used as
the testing problems for comparing the performance of NrGP
with conventional GP. 100 independent trials are conducted
and the t-test is used to ensure that results are statistically
significant. The initial tree depth is set to five levels and the
maximum tree depth of an individual is limited to fifteen
levels. A PC with 3.0GHz CPU and 1GB memory is used.
The programming language used is C++.

A. Symbolic regression
Symbolic regression is a widely used benchmark suggested

by Koza [1, 4]. The problem is to find an equation)(xfy =
that fits the given set of data. The equation will be a
combination of functions in the function set {addition,
subtraction, multiplication and protected division (return 1 if
divided by zero)} and terminals in the terminal set {X,
random constants}. The given data is a set of points on the x-y
coordinates (e.g.: d1 = (x1,y1), d2 = (x2,y2), …). To determine
the accuracy of the equation, the x-coordinate value of each
point will be substituted into the equation, and then the output
of the equation will be compared with the given y-coordinate
value of the point to calculate the error.

As the aim of symbolic regression is to determine the
equation which fits all the given points, the sum of the
absolute errors between the y-coordinates ny of the given
point),(nnn yxd = and the output ng of the

equation)(nn xfg = will be used as the fitness function: i.e.,

−= nn gyfitness .

In this paper, three polynomials with different orders were
used in the experiment. They are

1) Quartic function xxxxxf +++= 234)(,

2) Quintic function xxxxf +−= 35 2)(and

3) Sextic function xxxxf +−= 46 2)(.
The parameter settings are shown in Table I. As the size of

the terminal set {x, random constant} is undeterminable, the
tree used to store individuals cannot be constructed. To solve
this problem, the random constant is not included in the
terminal set in this experiment.

TABLE I
THE PARAMETER SETTINGS USED IN SYMBOLIC REGRESSION

Population size: 100
Generation count: 100
Selection Method: Tournament with size 5
Tree Generation: Grow
Initial Tree depth: 5
Maximum Tree depth: 15
Crossover probability: 0.9
Mutation probability: 0.1
Terminal set: X

Function set: +,-,*,%(protected division)

Fitness cases: 50 points, using evenly spaced
values of x between -1 & 1

Hit: Error <0.001

B. Even N-parity problem
The even N-parity problem is another common benchmark

problem in GP research [1].The even N-parity function
returns TRUE if the number of TRUE in all N inputs is even,
otherwise, it returns FALSE. In practical applications, the
even N-parity function is often used as an error checking code
that checks the accuracy of data storage and data transmission.
Similar to the symbolic regression problem, the aim of the
even N-parity problem is to find the Boolean equation (e.g.
output = (X1 AND X2) OR X3) which outputs the same result
as the even N-parity function. To solve the even N-parity
problem by GP, primitive Boolean operators {ADD, OR,
NAND, NOR} are used as the function set, and the N- bits
input are used as the terminal set.

 The performance of NrGP is compared with that of
conventional GP in even 3-parity problem and even 4-parity
problem. Table II shows the settings of this experiment.

TABLE II
THE PARAMETER SETTINGS USED IN EVEN – N PARITY PROBLEM

Population size: 400
Generation count: 50
Selection Method: Tournament
Selection Method: Tournament with size 5
Tree Generation: Grow
Initial Tree depth: 5
Crossover probability: 0.9

Mutation probability: 0.1

Terminal set: bit 0 to bit N-1

Function set: AND,OR, NAND,NOR

Fitness cases: All 2N combinations of the N Boolean
arguments

Hit: Error =0

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 863

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:17:25 UTC from IEEE Xplore. Restrictions apply.

C. Fitness measurement
1) Computational effort

CE is introduced by Koza [1] to measure the effort required
to solve the problem. It is calculated by the equations shown
in eqn (1). It includes four steps. Firstly, let M be the
population size. NT independent trials are made and the
number of successful trials N(M,i) is recorded. P(M, i), the
probability of success at generation i is calculated as N(M,i)
divided by NT. Secondly, the required number of independent
trials R(i,z) to solve the problem with a user defined high
probability z (e.g. z=0.99) is calculated. Thirdly, the total
number of individuals I(M,i,z) produced in R(i,z) independent
trials is calculated. Finally, CE is determined to be the
minimal number of individuals I(M,i,z) as i is allowed to vary.
To explain briefly, the physical meaning of CE is the minimal
number of individuals that has to be produced to get the
solution in high probability. As the total number of
individuals is equal to the number of fitness evaluations, CE
can also be defined as the minimal number of fitness
evaluations to yield the solution in high probability, ignoring
solution generation cost. As CE is measuring the number of
the fitness evaluations but not the actual time consumed in the
whole experiment, it is a fair measure for computers with
different processing speeds.

NT
iMNiMP),(),(=

−
−=

),(1log(
)1log(),(

iMP
zceilziR

)1(),(),,(+××= iziRMziMI
),,(ziMIMinCE i= (1)

2) A New Computational Effort Measure
In CE, we calculate the cumulative probability of success

in generation i through all independent trials. However, the
calculation of P(M,i) is not so accurate. If the number of
independent trials is too small, the result does not have a high
confidence level. For example, success once in two trials of
course does not mean that it would be successful fifty times in
one hundred trials. Moreover, Christensen and Oppacher [19]
reported that the ceil (round up) operation in the calculation
underestimated the true CE. In the literature, researchers use
different number of independent trials NT in their
applications arbitrarily, partly dependent on the time needed
to run the experiments. In a recent research, Niehaus and
Banzhaf [20] found that the number of independent trials used
affected the degree of underestimation.

To make the calculation of CE more statistically accurate
and unaffected by underestimation, we suggest to use the
method proposed by Yuen et al. [21]. It is a method to
estimate the probability P(M, i) with high confidence.

Note that the above fulfils the three characteristics of
binomial experiments. First, involves repeated number of NT
trials. Second, there are only two possible outcomes: success
(Hit) or failure (Not Hit). Third, all the trials in the experiment
are independent.

Let x be the number of successes in generation i after NT
number of independent trials. Eqn (2) denotes the binomial
distribution.

NTx

iMPiMP
x

NT
iMPNTxb xNT

est
x

estest

,...,1,0

)),(1(),()),(,;(

=

−×= −

 (2)
Although strictly speaking, it is an estimation problem, it is

somewhat easier to explain using a hypothesis testing
framework:

H0: P = Pest
H1: P > Pest (3)

 Where H0 is the null hypothesis and H1 is the alternative
hypothesis.
 Let X be the statistic, which is the number of successes in
NT trials. Then X x is the acceptance region and X x+1 is
the critical region. Thus the probability of type 1 error, which
is the level of confidence α, can be calculated by the
following equation:

)|1()(estPPxXPerrorITypeP =+≥==α

+=
=

NT

iMNx
est iMPNTxb

1),(
)),(,;(α

(4)
Given NT, N(M, i) and a user defined level of confidence α,

for Pest much lower than N(M, i)/NT, the null hypothesis will
be rejected. We choose the value of Pest as the maximum
value such that H0 is rejected. Let this value be Plcf. In
statistics, this value is the lower confidence bound of the
probability of success, with confidence level α [22]. Then we
replace P(M,i) by Plcf (M, i) in eqn (1), i.e.

xNT
est

NT

iMNx
est

x iMpiMp
xNTx

NT −

+=

−×
−

=)),(1(),(
)!(!

!
1),(

α

−
−=

)),(1log(
)1log(),(

lcf iMp
zceilziR

)1(),(),,(+××= iziRMziMI

),,(ziMIMinCE i= (5)

The advantage of this new CE is that the lower confidence
bound normalizes the statistical uncertainty associated with
using different number of independent trials NT observed in
[20]. Moreover, the ceil operation no longer underestimate
the true CE as reported in [19], as the operation now is exactly
calculating the (integer) number of repeated trials in a
probabilistic amplification procedure to achieve the desired
confidence level.
 Because of the above advantages, we suggests that in the
future, CE should be written as CE (% confidence). For
example, CE (99.9% confidence) means a confidence level of
99.9% or an α of 0.1%.

864 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:17:25 UTC from IEEE Xplore. Restrictions apply.

IV. RESULTS

A. Results of symbolic regression
Table III shows the result of the symbolic regression

experiment on Quartic function. The performance of NrGP is
significantly better than that of conventional GP. Using
NrGP, the hit rate is increased by 19%, the computational
effort is reduced by about 42% and the average error is
reduced by about 77%. It illustrates that NrGP gives a large
improvement in this simple symbolic regression problem. It
can be concluded that NrGP improves the performance by
reducing the revisiting problem; the large reduction in the CE
means that the revisiting problem in this problem is very
serious.

Table IV shows the result of the experiment on Quintic
function. By comparing the results between GP and NrGP in
hit rate, average error and computational effort, the
improvement of NrGP is also significant. The hit rate is
increased by about 18%, the computation effort is reduced by
about 40%, and the average error is reduced by 51%.

TABLE III
RESULTS OF SYMBOLIC REGRESSION IN SOLVING QUARTIC FUNCITON

Function: Quartic function
xxxxxf +++= 234)(

Method: GP NrGP
Average Fitness: (Error) 0.89213706 0.20253827
Standard Deviation: 1.75437996 0.62706843
Average Generation used: 42.83 24.75
Hit rate: 69% 88%
Computational Effort: 11200 6500
Computational Effort :
(99.9% confidence)

18200 9800

t value: (t- Test) 3.7014 (99.97%)

TABLE IV
RESULTS OF SYMBOLIC REGRESSION IN SOLVING QUINTIC FUNCTION

Function: Quintic function
xxxxf +−= 35 2)(

Method: GP NrGP
Average Fitness: (Error) 0.97472161 0.48003359
Standard Deviation: 1.39990242 0.65154054
Average Generation used: 78.36 66.17
Hit rate: 32% 50%
Computational Effort: 60000 36000
Computational Effort :
(99.9% confidence)

126000 66300

t value (t- Test): 3.2037(99.84%)

Table V shows the result of the experiment on Sextic
function. Though NrGP makes no improvement in the hit
rate, it reduces by 35.5% in computational effort and 41% in
average error.

The t-tests on fitness show that the fitness improvement
due to NrGP is statistically significant.

TABLE V
RESULTS OF SYMBOLIC REGRESSION IN SOLVING SEXTIC FUNCTION

Function: Sextic function
xxxxf +−= 46 2)(

Method: GP NrGP
Average Fitness: (Error) 1.01978341 0.60442356
Standard Deviation: 1.279339336 0.72006868
Average Generation used: 81.59 78.31
Hit rate: 31% 31%
Computational Effort: 75000 48400
Computational Effort :
(99.9% confidence)

178600 103400

t value :(t- Test) 2.8292(99.49%)

The results show that the improvement in the simpler
problem (Quartic function) is more significant than that in the
complex problem (Sextic function). The decrease in the
improvement is the most significant in hit rates. It drops from
about 19% in Quartic function to 18% in Quintic function and
then to no improvement in Sextic function. However, it does
not mean that NrGP has no improvement in more complex
problems, the decrease in computation effort and average
errors are still over 35% and 40% respectively in the Sextic
function.

B. Results of even N- parity problem
Table VI shows the result of solving the even 3-parity

problem and the even 4-parity problem. It illustrates that both
conventional GP and NrGP can solve the even 3-parity
problem easily. Both conventional GP and NrGP find the
solution with very high probability (hit rate > 90%). Using
NrGP, the computational effort is reduced by about 58%.

In the even 4-parity problem, the result demonstrates that
the performance of NrGP is significantly better than GP. Not
only is the hit rate increased by 26%, but also the average
error and the computational effort are decreased by about
52% and 63% respectively. The result shows that the
performance of NrGP is much better than that of conventional
GP. The t-tests on fitness show that the fitness improvement
due to NrGP is statistically significant.

TABLE VI
RESULTS OF EVEN N-PARITY PROBLEMS

Function: Even 3-Parity Problem Even 4-Parity Problem
Method: GP NrGP GP NrGP
Average Fitness:
(Error) 0.07

0 2.9 1.38

Standard Deviation: 0.26 0 2.38 1.57
Average Generation
used: 15.87

8.91 48.47 42.56

Hit rate: 93% 100% 21% 47%
Computational Effort: 23200 9600 400000 147200
Computational Effort:
(99.9% confidence)

34800 14400 800000 239200

t value :(t- Test) 2.7298 (99.31%) 5.3187(99.99%)

In summary, the results in the even 3-parity problem and
the even 4-parity problem once again show that the
performance of the classic GP can be improved by alleviating

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 865

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:17:25 UTC from IEEE Xplore. Restrictions apply.

the revisiting problem. In particular, NrGP performs better
when the revisiting problem in GP is more serious in the
application scenario. For the even parity problems, the
performance of NrGP is better when the problem is more
complex.

V. CONCLUSION AND FURTHER WORK

In this paper, we propose an extension to genetic
programming (GP), called non-revisiting genetic
programming (NrGP), which applies memory to record all
visited points in the search space. By recording the visited
points, NrGP guarantees that no point will be revisited in the
search space. Therefore no computational resource will be
wasted in duplicated fitness evaluation. Our contention is that
in expensive and/or time consuming fitness evaluations,
duplicated fitness evaluations is an unjustifiable waste of
resources and should be avoided, and for such applications,
the memory required to store all visited solutions are
manageable (since the number of fitness evaluations will not
be large). To further increase solution generation and memory
storage efficiency, an S-expression trie data structure is also
reported for storing visited points and querying whether a
search point is a revisit.

The performance of conventional GP and NrGP is
compared by using two bench mark GP problems, namely,
symbolic regression problem and even N-parity problem. In
each case, NrGP brings significant performance gains to GP.

From the empirical results, we conclude that the idea of
“non-revisiting stochastic search” is a good extension part to
conventional GP that delivers a performance gain.
Moreover, the idea can be applied to other more advanced
types of GP and performance gain is expected. This is one
area for future work. Another area is to investigate
techniques that use the memorized data more effectively. This
includes adaptive mutation and other search-history-driven
techniques.

An independent contribution of this paper is the
introduction of a new computational effort (CE) measure.
We propose to eliminate the estimation uncertainty inherent
with sample sizes in the original CE by computing the
statistical lower confidence bound. We suggest using the
notation CE (% confidence) to denote this new CE measure.
Since the number of independent trials for GP and NrGP are
deliberately set to be the same in our experiment, the new CE
does not make any qualitative difference to our results in the
paper. However, we believe that the new CE will be useful
for an unbiased comparison of GP in the literature. Since CE
is a generic, algorithm independent measure, it can equally be
applied to compare other evolutionary algorithms as well.

REFERENCES

[1] J. Koza, Genetic Programming: On the Programming of Computers by
Means of Natural Selection. Cambridge, MA: MIT Press, 1992.

[2] K. F. Fong, V. I. Hanby and T. T. Chow, "HVAC system optimization
for energy management by evolutionary programming," Energy and
Buildings, vol. 38, pp. 220-231, 2006.

[3] Q. X. Chu, K. F. Chan and C. H. Chan, "Parallel FDTD analysis of
active integrated antenna array," Microwave and Optical Technology
Letters, vol. 34, pp. 317-319, 2002.

[4] J. Koza, Genetic Programming II: Automatic Discovery of Reusable
Programs. Cambridge, MA: MIT Press, 1994.

[5] K. Bearpark and A. J. Keane, "The use of collective memory in genetic
programming," in Knowledge Incorporation in Evolutionary
Computation Y. Jin, Ed., pp. 15-36, 2004.

[6] A. Teller, "Genetic programming, indexed memory, the halting
problem, and other curiosities," in Proceedings of the 7th Annual
Florida Artificial Intelligence Research Symposium (FLAIRS -94),
1994, pp. 270-274.

[7] J. A. Walker and J. F. Miller, "The Automatic Acquisition, Evolution
and Reuse of Modules in Cartesian Genetic Programming," IEEE
Transactions on Evolutionary Computation, vol. 12, 2008, pp.
397-417.

[8] S. Ok, K. Miyashita and S. Nishihara, "Improving performance of GP
by adaptive terminal selection," PRICAI 2000 Topics in Artificial
Intelligence: 6th Pacific Rim International Conference on Artificial
Intelligence (PRICAI 2000), pp. 435-445, 2000.

[9] D. Andre, "Evolution of mapmaking: learning, planning, and memory
using genetic programming," in Proceedings of IEEE Conference on
Evolutionary Computation, 1994, pp. 250-255.

[10] S. Y. Yuen and C. K. Chow, "A non-revisiting Genetic Algorithm," in
Proceedings of IEEE Congress on Evolutionary Computation (CEC
2007) , 2007, pp. 4583-4590.

[11] S. Y. Yuen and C. K. Chow, "A Genetic Algorithm that Adaptively
Mutates and Never Revisits," IEEE Transactions on Evolutionary
Computation, to be published.

[12] S. Y. Yuen and C. K. Chow, "Applying non-revisiting genetic
algorithm to traveling salesman problem," in Proceedings of IEEE
Congress on Evolutionary Computation (CEC 2008) , 2008, pp.
2217-2224.

[13] S. Y. Yuen and C. K. Chow, "A non-revisiting simulated annealing
algorithm," in Proceedings of IEEE Congress on Evolutionary
Computation (CEC 2008) , 2008, pp. 1886-1892.

[14] C. K. Chow and S. Y. Yuen, "A non-revisiting particle swarm
optimization," in Proceedings of IEEE Congress on Evolutionary
Computation (CEC 2008) , 2008, pp. 1879-1885.

[15] C. W. Sung and S. Y. Yuen, "On the analysis of the (1+1) evolutionary
algorithm with short-term memory," in Proceedings of IEEE Congress
Evolutionary Computation (CEC 2008) , 2008, pp. 235-241.

[16] E. Fredkin, “Trie memory,” in Communications of the ACM, 1960, vol
3, pp. 490-499.

[17] R. Crawford-Marks and L. Spector, "Size control via size fair genetic
operators in the PushGP genetic programming system," in
Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 2002) , 2002, pp. 733-739.

[18] A.P. Engelbrecht, Computational Intelligence, 2ndEd, Wiley 2007
[19] S. Christensen and F. Oppacher, “An analysis of Koza’s computational

effort statistic for genetic programming,” Genetic Prgramming: 5th

European Conference (EuroGP 2002) , 2002, vol. 2278, Lecture Notes
in Computer Science, pp. 182–191.

[20] J. Niehaus and W. Banzhaf, “More on computational effort statistics
for genetic programming,” Genetic Programming: 6th European
Conference (EuroGP 2003) , 2003, vol. 2610, Lecture Notes in
Computer Science, pp. 164–172.

[21] S. Y. Yuen, C. K. Fong and H. S. Lam, "Guaranteeing the probability
of success using repeated runs of genetic algorithm," Image and
Vision Computing, vol. 19, pp. 551-560, 2001.

[22] E.L. Lehmann, Testing statistical hypotheses, 2nd Ed., Wiley, 1986.

866 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:17:25 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

