
Hybrid robot controller synthesis with
GP and UETPN

Attila O. Kilyen
Department of Automation

Technical University of Cluj-Napoca
Romania

Email: kilyen.attila.ors@gmail.com

Tiberiu S. Letia
Department of Automation

Technical University of Cluj-Napoca
Romania

Email: Tiberiu.Letia@aut.utcluj.ro

Abstract—Controller synthesis for robotic agents has been
one of the leading topics of Genetic Programming (GP) for
decades. In this paper, a novel approach is presented to synthesise
hybrid controllers. It uses Koza style genetic programming
(GP) to generate Unified Enhanced Timed Petri Net (UETPN)
models. UETPN models combine capabilities of timed Petri-nets,
fuzzy logic systems and simple arithmetic operators. They can
handle both event-like and continuous inputs (and outputs). They
can change their inner state and execution flow based on the
existence of a particular input event, or a value provided by a
continuous input channel. In order to generate UETPN models
(with GP), an intermediate language was designed, called UETPN
Lisp. Dynamic and static editing and custom tailored crossover
operators improve the proposed evolutive system. A three-wheel
robot is modelled with a dynamic system. In order to exemplify
the potential of the presented framework, a solution to solve the
problem of corridor navigation and line following is proposed.

Index Terms—hybrid control, Petri nets, genetic programming

I. INTRODUCTION

Providing controllers automatically for robotic agents is one
of the oldest problems addressed by genetic programming and
machine learning in general. Despite the vast number of related
works, most of them approach the problem either as discrete
event systems only ([1],[2]) or in a continuous-time based
manner ([3]). These approaches do not take into consideration
that even simple mobile agents, like a sumo robot, can have
both types of inputs and outputs. This paper introduces a
framework which unites methods from discrete event systems
and discrete-time control systems, in a way that the paradigms
of genetic programming are applicable.

Unified Enhanced Timed Petri Net (UETPN) models are
the target platform of the framework presented here. They
were proven to a be an effective and comprehensive way to
model reactive application [4], and to describe classical control
techniques such as an on/off controller and PID controller.
Fuzzy rules can be defined as well, to express complex
behaviour.

An intermediate language, called UETPN Lisp, is defined
in order to generate UETPN models with GP. They are a
successor of a previously used framework, called ETPNL,
which was able [5] to synthesise Delay Time Petri nets and
to control discrete event systems.

In the presented experiment, the movement of a robot agent
equipped with line sensors or distance sensors is simulated.
The submitted work addresses two different tasks: the cor-
ridor navigator, which is a harder version of the obstacle
avoidance, and the line follower. Previous works approach the
corridor navigator problem more often ([1],[3]) than the line
follower. Nevertheless, the line follower implies the difficulty
of managing states of the program and controlling the motors
based on them. The model used here is more detailed than the
ones used in [1] and [3]. Thus the resulted controller can be
directly applied to the robot, without the need for an additional
controller.

II. EVOLVING ROBOT CONTROLLERS

Koza uses the problem of ”Obstacle-Avoiding Robot” in [6]
to exemplify the efficiency of automatically defined functions.
However, this is more similar to the artificial ant than a real-
world robot control. A grid-based representation is used in [2]
too, where the task of the robot is not only to avoid obstacles
but also to follow the walls. A similar function and terminal
set are used in [7], where the result obtained was applied to
a real-world robot.

The article [1] describes a GP based setup to generate a
controller for a simple robot with three infrared sensors. The
task of the robot is to navigate in a corridor system without
colliding with the obstacles. The authors use a high-level
function set. The reduced search space yields robust results in a
relatively small number of generations and a minor population
size. However, using high-level functions excludes a lot of
possibly advantageous solutions.

In contrast to [1], the authors of [3] use a more meticu-
lous approach to control the speed of the motors. They use
Cartesian Genetic Program with the objective of developing a
controller for obstacle avoiding robot. The solution candidate
programs always react to the current input only, they do not
preserve inner state. A separate feedback controller is needed
to control the actual speed of the motors.

Nordin in [8] presents a different approach. Online learning
is used in a way that the movement and behaviour of the robot
are not simulated but executed by a miniature robot.978-1-5386-2205-6/18/$31.00 ©2018 IEEE

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:19:54 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Example of inference rules (i. e. MT) with and
without bending the graphic surface (only the indices of
the rules are marked)

x1/x2 X−2 X−1 X0 X1 X2 φ
X−2 2, 2 2, 2 2, 2 2, 1 2, 0 φ, φ
X−1 2, 2 2, 2 2, 1 2, 0 2,−1 φ, φ
X0 2, 2 2, 1 2, 0 2,−1 2,−2 φ, φ
X1 2, 1 2, 0 2,−1 2,−2 2,−2 φ, φ
X2 2, 0 2,−1 2,−2 2,−2 2,−2 φ, φ
φ φ, φ φ, φ φ, φ φ, φ φ, φ φ, φ

III. UNIFIED ENHANCED TIMED PETRI NET

The UETPN models use tokens to describe information,
similarly to classic Petri net. The proposed development
approach based on UETPN models compounds the features
of other Petri net models. They are capable of handling
continuous (real number) variables and fuzzy logic variables
and to perform simple arithmetical and logical operations with
them. UETPNs are also capable of controlling (split, join,
select or block) the execution of the model depending on some
internal calculus or external (input) variables. They are capable
of making decisions based on the existence (or lack) of tokens
in the input place of the transition. They can also handle and
signal events that associate different kinds of variables (from/to
outside the model). Therefore asynchronous and synchronous
concurrent execution can be described.

Every place has a scale (sk). The token tk assigned to a
place is always in ([−sk, sk] ∪ φ), where φ means no informa-
tion. Classical Petri nets represent no information by leaving a
place empty, however, from the perspective of UETPN a place
always has marking.

The transitions of UETPN models incorporate a mapping
table and optionally, an arithmetic operator. The mapping
table is an organised collection of fuzzy rules, which apply
to the input token(s), and determine the output token(s). Some
transitions have delays.

UETPN allows transitions with one or two input places only
and similarly, one or two output places.

A mapping of a transition is a function between the current
marking of the pre-places and post-places. It can be written
as follows (for two input and two output places):

mapi : ([−si1, si1] ∪ φ)× ([−si2, si2] ∪ φ) (1)
→ ([−so1, so1] ∪ φ)× ([−so2, so2] ∪ φ)

Table I exemplifies an MT. If the current marking of a place is
marked with xp, then one cell represents the following fuzzy
rule:

IF xi0isX0 ∧ xi1isX−2 THEN xo1isX1 ∧ xo2isX2 (2)

When a transition executes, the input tokens are fuzzified
in the first step. The limits of the membership functions
depend on the scale of the input place, as Figure 1 illustrates.
Secondly, the rules of the mapping table are executed, the
result is summarized, and defuzzified by the center-of- gravity

-s
k -S /2

k
 s

k S /2
k

0

1

x x x x x
-2 -1 1 20

Fig. 1: Membership functions

method. The defuzzification intervals depend on the scale of
the output place(s). The ranges are similar to the one in the
case of the fuzzification, presented above.

When the transition has an associated arithmetic operator,
the following equation is applied:

mapi(xi1, xi2) = (xi1 ◦ xi2) ? FLMT (xi1, xi2) (3)

where ◦ ∈ {+,−, /,×}, and FLMT (xi1, xi2) stand for the
result of mapping table deffuzified in the interval [−1, 1]. This
means that the fuzzy rules are ”bending” the result of the
original operator. If all the conclusions are X2, the outcome
of the operator remains unchanged. The result is truncated
based on the scale of the output place. Only the transitions
with two pre-places can have operators.

The MT does not have to be complete, i.e. not every fuzzy
rule has to exist. If the fuzzy rule does not exist, it is marked
with φ. The MT also has φ columns and rows, which means
that it is possible to define rules, even if one (or both) of the
input tokens are φ.

The MT is used to decide whether a transition is executable.
It is enabled to fire if there is at least one fuzzy rule with
non−φ consequence (in the MT) which applies to the current
input marking. In other words, a transition is executable if
there is a non−φ cell which is activated after the input token(s)
is defuzzified.

This definition of enabledness and the possibility to put
φ in some cells of the MT facilitates the implementation of
inhibitor arcs, reset arcs, and transitions, which are always
enabled or always blocked.

The UETPN platform is designed with the intention of
defining control components for hybrid systems, thus a clear
way of communication with the outside world is indispensable.
A UETPN control component has input channels which are
represented as input places. Tokens can be set in these places,
only by the exterior word (environment). The output channels
are represented as output transitions. The output transitions do
not have post-places, they send the tokens outside the current
component. This achieves a manner of connecting multiple
UETPN components.

A. Definition of UETPN

The definition of UETPN is:

UETPN = (P, T, pre, post , D, S,EFS ,Map,

Inp,Out , α, β, δ,M,M0)

where:

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:19:54 UTC from IEEE Xplore. Restrictions apply.

P0

T1

P1
T0_d1

P2

T2

P3

T6

P4

T4
P5

T5

P6

T3

P7

P8

oT7

P9

oT8

iP10

Fig. 2: Structure of the expression (# (@ i:br:0 (% o:c:0
o:c:1)) d:1)

• P is the place set, T is the transition set (P ∪ T = ∅),
while pre ⊂ (P × T) contains the arcs from places
to transitions, post ⊂ (T × P) includes the arcs from
transitions to places. D is the delay set. δ is a mapping
δ : T → D, which associates delays to transitions. Their
meaning corresponds to the ones from classic Petri nets.

• Inp ⊂ P are the input places (channels), Out ⊂ T are
the output transitions (channels).

• S = {s0, s1, s2 . . . , sm} is a set of real numbers repre-
senting the scale factor set or bound set, α is a mapping
such that α : P → S, it assigns a scale to each place from
the set P.

• M is the marking vector, while M0 is the initial marking
vector.

• EFS is the extended fuzzy set
{X−2, X−1, X0, X1, X2} ∪ φ,

• Map = {mapi|i = 0, 1, 2, · · · , n} is the set of mappings.
A mapping consists of one particular fuzzy logic rule
set, expressed in a form of mapping table (MT) and an
optional arithmetic operator. β is a mapping β : T →
Map, it assigns a mapping from the set Map to each
transition

B. Example of a UETPN model

Figure 2 illustrates the structure of a simple UETPN model.
The given example has a simple functionality: it reads the input
if the read input is positive, it sets a token to the zeroth output
(oT7), otherwise, if it is negative, it puts a token to the first
one (oT8). After that, it waits for one time-unit, and it starts
again.

The iP10 is the input place, where the outside environment
may inject a token. T6 has the role in resetting the content of
P3, it replaces the existing token, regardless of its value, with
the one from iP10. T6 has an MT, which enables its execution
if the current marking of P3 is φ. It copies the token from
iP10 to P3.

T1 has the MT which requires the presence of a non − φ
token both in P6 and in P3, and it relocates the one in P3 to
P2. The transition T2 has the role in splitting the execution:
if the token in P2 is positive, then it yields the token to P4,
meanwhile if it is negative, the token is set to P5. Table II
shows the MT for T2. Following the execution of T2, T4 or
T5 becomes enabled, as a consequence, depending on the sign
of original input, either oT7 or oT8 output transition will fire.
A token will remain in P6 or P7. It is necessary for T3 to
have an MT which enables it to execute if one of the input
places has non−φ token. T0d1 has one time-unit delay when
it finishes the execution, the entire cycle starts again.

TABLE II: MR table for T2 from 2

P2 X−2 X−1 X0 X1 X2 φ
P5 X0 X0 φ φ φ φ
P4 φ φ φ X0 X0 φ

IV. UETPN LISP

UETPN Lisp was conceived with the intention of using
classic Koza style GP to synthesise UETPN models. Not only
the structure, but the MTs and arithmetic operators have to be
specified to execute these models. Meaning that the function
and terminal set have to be defined in such a way that it fully
specifies a UETPN model.

The operators always have two operands (which can be a
terminal or another operator with its operands). A UETPN
Lisp program has one operator at least. It has no type system.
Thus all of the operators can accept any terminal or sub-
expression for operand. As consequence, it can be represented
as a binary tree.

A breadth-first traversal algorithm performs the transforma-
tion from UETPN Lisp expression to UETPN model. Every
node and leaf has a start and end place. The represented
structure has to be built up between these two. The first step
of conversion is to add two places (usually P0 and P1), and
the root node is built up between these. P0 has an initial token
(with 0 value), which initiates execution of the model.

A. Operators of UETPN Lisp

The sequence operator is the basic building block of the
language. It is denoted by ”@”, and it means that the second
operand comes after the first one, separated by one place.
When the first sub-expression terminates its execution, it sets
a token to the place in the middle, and the second one can start
its execution. In Figure 2, the transition T1 and the structure
that begins at T2 ends at T3 are in a sequential relationship.

The loop operator (denoted by #) and the selection operator
(indicated by ?) do not build any additional construct to the
Petri net. The loop operator calls its first operand, whose start
and end place corresponds to the bound places of the operator.
Meanwhile, the second child is decoded to the same places,
but in reverse order. In Figure 2, the transition T0 d1 is the
second operand of the loop operator, and the structure from
T1 to T3 is the first.

The selection operator calls both of his operands with its
start place as start place and with its end place as end place.
The structure between P2 and P1 in Figure 3 exemplifies this
operator. One of the branches is the transition T6 d1, while
the structure containing T7 and T8 is the other. Depending on
which transition is enabled, only one branch executes.

The following operators: concurrency (&), addition (+),
multiplication (*) and positive-negative split (%) have the
same structure, the differences between them are the associated
MTs operators. They have the same building algorithm. Figure
2 contains such a layout, where the P2 is the start place of
the original operator, and P1 is the end place. The transition

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:19:54 UTC from IEEE Xplore. Restrictions apply.

P0

T1

P1
T0

P2

T6_d1

T7

P3

T3

P4

T5

P5

T2 *
P6

P7

T9

P8

T4
P9

P10

T8
P11

T10

P12

oT11

iP13

iP14

Fig. 3: Structure of expression (# (@ (* i:br:0 c:2.0) (? (@
i:enp:1 o:c:0) d:1)) d:0)

T1, T3 and the places P4, P5, P6, P7 are introduced when the
positive-negative split operator is built up.

The central role of the concurrency operator is to bifur-
cate the execution. The two operands become two separate
branches, and they run independently. However, at the end of
the construct, the two bifurcated branches join (at the transition
ts).

The addition and multiplication operators work similarly to
concurrency. They execute the two branches independently.
The main difference is that the MT of transition contains
only X2 rules on the non-φ columns and rows, and they have
addition or multiplication as associated arithmetical operators.

B. Operands of UETPN Lisp

Most of the terminals of the UETPN Lisp is connected as
a single transition to the main branch of the model. However,
some of them require auxiliary constructions.

The first terminal presented here is the input leaf denoted
i:ty:nr, where ty stands for the input type, and nr specifies
the input channel. This number is bound to the problem
specification, for example, to a specific sensor. The ty stands
for the input type, which defines the MT associated with the
primary input transition.

In Figure 2, the structure T6, P3, T1 represents the input leaf
i:br:0. T6 is the primary transition, its MT is defined by the
type of the input leaf, blocking reader (abbreviated as ”br”)
in this particular case. The place P3 acts as a buffer for this
input leaf. Similar structures can be observed in Figure 3 at the
transitions T3 and T7. These are associated with input leaves.

The blocking reader copies the value of the input token
to the primary execution branch, if it is not φ, otherwise
it blocks the main execution flow. The non-blocking reader
(”nr”) acts similarly in the case of non-φ tokens. If the token is
φ, then it lets the token in the primary branch through without
modification.

If the input is event-like, the input types enable if not φ
(”enp”) and enable if φ (”eip”) are more suitable. These do
not modify the token from the main branch. The enp is blocked
until the input place has a token, respectively, the eip remains
blocked until there is a no token in the input place.

Other types are: shift up (”su”), shift down (”sd”), enable
if zero (”eiz”), enable if not zero (enz). As it was mentioned
earlier, these types are predefined MTs, as a consequence, it
is accessible to defined new ones if it is necessary.

The second terminal discussed here is the output leaf
(o:ty:nr), which is the counterpart of the input leaf for outputs.
Its role is it yields an output to a specified output channel. The

output channel is specified by nr, similarly to the input leaf,
ty stands for type. The only typed used currently is the copy
type (”c”), with the possibility of defining others if necessary.
The copy type yields the token from the main branch to the
output without modifying it.

Examples of output leaves can be found in Figure 2, where
the structure for T5 -P9-oT8 stands for the o:c:1, while the
structure T4 -P8-oT7 for o:c:0.

Similarly to the input leaf, the auxiliary constructions are
needed to use independently the same input or output channels
multiple times.

One of the simplest leaves is the delay leaf (d:nr, where
”nr” specifies the amount of the delay). This terminal inserts a
transition with the specified amount of delay. Figure 2 contains
an example, namely the transition T0 d1 is built as a result
of the leaf d:1. The default MT is assigned to the transitions
constructed by delay leaves.

At this point every element of the expression (# (@ i:br:0
(% o:c:0 o:c:1)) d:1) is known, whose structure is displayed
in Figure 2, and its behaviour is detailed in section III-B. One
can foresee the response of the model based on the expression,
without having to build the structure up.

Other simple leaves are the negation leaf (”n”) and the
blocking leaf (”b”). These two, similarly to the delay leaf,
insert a single transition only. Nevertheless the associated MTs
are different. In the case of the blocking leaf, all of the cells
in the MT contain φ, which means that the inserted transition
will never be executable.

A table, which changes the sign of the token from the main
branch, is associated with the transition of the negation leaf.
This type of leaf helps to achieve subtraction. There is also an
inversion leaf (”v”), which returns one divided by the original
token, but it has to be defined a more complicated way.

Constant leaf has the role of providing a mathematical con-
stant. ”c:val” abbreviates it, where val is the a real number, the
value of the constant. The structure P8-T4-P9-T5 corresponds
to a constant leaf in Figure 3. The constant leaf specifies the
value of the initial token in P8. The execution of T4 is enabled
if P9 has φ. Overall, it copies the value of the original token
in T8 to P6 without consuming it.

At this point, every element of the expression (# (@ (*
i:br:0 c:2.0) (? (@ i:enp:1 o:c:0) d:1)) d:0) is known, whose
structure is presented in Figure 3. The behaviour of the model
is evident from the expression itself: The value read from the
zeroth input is multiplied by two. This value is set to the zeroth
output if there is any non-φ token at the first input channel.
Otherwise, the execution of the net blocks for one time-unit.
When one of the possibilities is finished, the whole process
starts over.

Memory leaf delays the value of the token without blocking
the execution flow of the net. It is abbreviated as ”m:nr”, where
nr is the number of time units by which the value of the token
is delayed. If the current value (at the t-th moment) of the
starting place is tst[t], then the marking of the end place can
be expressed as tend[k] = tst[k − nr]. This type of operation

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:19:54 UTC from IEEE Xplore. Restrictions apply.

P0
T6

P1

T0_d1

P2

T1

P3

T2

P4

oT12

P5

T7

P6

T5

P7

T3_d1

P8

T4_d1
P9

P10 T11

P11

T10

P12

T8 /

P13

P14

T9

P15
iP16

Fig. 4: Structure of expression (# (@ (@ (@ i:br:0 v) m:2)
o:c:0) d:1)

is critical in the case of discrete control systems, for example,
it is essential to define the PID controller.

An example of the structure of m:2 leaf can be found
between P3 and P2 in Figure 4. T3 d1 and T4 d1 have one
time-unit delay and they memorise the past values of the input
tokens. P8 and P9 have zero tokens as initial marking, which
are the values returned by the leaf in the first two cycles. The
T2-P6-T5 structure acts as a guard, preventing the leaf to leak
tokens before P3 (the start place) has a non-φ marking.

In Figure 4, the structure of expression (# (@ (@ (@ i:br:0
v) m:2) o:c:0) d:1) is displayed. It behaves as follows: it reads
and inverses the input, then the resulted value is shifted back
with two time-units. It returns the result to the output and the
whole execution starts again.

C. Problem specification

The scales of the places were not mentioned in the de-
scription of UETPN Lisp, because the language itself was not
intended to specify the scales of each place separately. The
default scale is part of the problem specification consisting of
the number of the input, the scale of each input, the number
of the output, the scale of each output and the default scale.
The auxiliary construction for a particular input or output is
scaled accordingly to the problem specification, while the rest
of the places have the default scale.

The problem specification also has to provide the maximum
amount delay, which can be associated with transitions. This
limit applies to the memory leaf as well.

With this information one can not only convert the UETPN
Lisp expression to UETPN model, but it is also possible
to generate random trees. Besides the fitness function, the
problem specification is the other necessary input information
for the presented framework to produce a hybrid controller.

V. GENETIC OPERATORS

The primary focus of this section is the exclusive operations
on UETPN Lisp in the context of GP. The established operators
are mentioned but not described here in detail.

The experiments use the ”ramped half and half” method to
initialize the population. Classic subtree mutation is used. The
usual configuration is the following: 19% of mutation, 19% of
survival, 2% of elite, while the rest of the population is the
result of one of the crossover operators (60%).

A. Static and dynamic editing

The initial experiments indicated that the presented lan-
guage is prone to bloat. Huge expressions diminish the time

performance of the framework so that even the use of small
population needs hours to run.

The main difference between static and dynamic editing
is, that the static editing is based only on the form of the
expression itself, while the dynamic editing needs attributes
recorded during the execution. Both of them have the purpose
of reducing the size of the tree without changing its behaviour.

Static editing or simplification resembles the editing process
described by Koza at [9]. It is realised based on the rules
specific to UETPN Lisp. Some of these are related to math-
ematical operators. For example, calculations with constants
are substituted with the result. Other operators have similar
features, for example, in the case of the sequence operator, the
expression (@ d:1 d:1) can be replaced with a single delay
leaf with two delays.

Dynamic simplification (or editing) is done after the model
is executed. The leaves which generate unused (not fired)
transitions are replaced with blocking leaves.

The static and dynamic simplification supplement each
other. However, dynamic simplification is feasible only after
the fitness analysis. As a consequence, the simplification has
three steps. Firstly, the static simplification is applied. After-
wards, the UETPN Lisp expression is converted to UETPN
model, which is executed. As the second step, the dynamic
simplification is employed. Finally, the static simplification is
used again in order to clear away the unnecessary blocking
leaves created by the dynamic simplification.

B. Crossover

The proposed framework employs three types of crossover.
The standard subtree crossover ([9]) and the uniform crossover
([10]) are used conventionally, and they apply to any tree.

In contrast with ones mentioned above, the usage-based
crossover is specific to UETPN Lisp. It works similarly to
the standard crossover, the difference being the way how the
subtrees are selected. During the execution of the UETPN
model, it is recorded when a transition is fired, and it also
counted, how many times it does (called the usage count).
This information is used to select relevant subtrees.

The performance comparison of these crossover operators is
a delicate issue because it is highly sensitive to the problem.
In order to achieve a robust framework, the three crossover
operator is used evenly proportional.

VI. ROBOT CONTROL

The same robot model was used to perform two different
tasks.

A. Robot model

The robot motion model is detailed in [11]. The modelled
robot consists of two wheels connected to DC motors and a
third caster wheel. The model takes into account the forces
produced by the two electric motors. It describes the dynamic
behaviour of the chassis, based on its centre of mass. A
resembling model is used and validated at [12].

The model presented at [11] has a linear part, described as
state-space representation. It has two inputs: uL and uR, which

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:19:54 UTC from IEEE Xplore. Restrictions apply.

(a) Line Follower (b) Corridor navigator

Fig. 5: Behaviour of the found solutions

are the supply voltages for the two motors. The momentary
speed (vp) and speed of rotation (ωp) of a selected point p
of the robot are the output variables. The given state-space
matrix is transformed into discrete form with Ts = 0.025s.
As a result, the vp and the ωp are achieved for given input
in every discrete time moment. Based on these, the position
(xp, yp) and the current orientation (θp) of the robot can be
easily calculated.

In order to facilitate the synthesis of the controllers, two
intermediate variables are used as outputs: uc and ud. The
control voltages are achieved by the equations: uL = uc+ud/2
and uR = uc− ud/2 where uL and uR are the input voltages
for the left and right motor for the robot model.

B. Line follower

In order to simulate the line follower behaviour, firstly,
the line itself is defined as a list of segments with a start-
and an end-point. Each line sensor is defined as a coordinate
relative to the base point of the robot. In the case of the
presented experiment, five line sensors were used, which are
symmetrically placed on the front of the robot. These were
the inputs for the controller.

The raw fitness of the line follower is evaluated by breaking
the original lines into smaller segments (5 cm). During the
execution of the controller, the time unit when the robot
touches a small segment is recorded. The raw fitness value
is given by the number of the segments touched in a correct
order.

The behaviour of a solution considered adequate (based on
this criteria) is shown in Figure 5a. The presented framework
can produce similar results with a population of 4000 individ-
uals, 120 iteration around 7 hours of computational time.

C. Corridor navigation

The infrared distance sensors are defined by the relative
coordinate and the relative angle to the current position and
orientation of the robot. The calculated distance is transformed
into output voltage based on the characteristics of a real sensor
(Sharp GP2Y0A41SK0F). They can sense obstacles up to
40 cm. However, the output in the extremes of the range
is very close to zero. The value of the output voltage is
injected to the controller in each time unit. In the presented

experiment, five sensors are used with the following relative
angles: 0°, 10°,−10°, 45°,−45°, hence the controller has five
continuous inputs.

For fitness evaluation, a path made by segments was defined
similarly to the line follower. In contrast to the line follower,
the corridor navigator does not detect the track, which is only
used for fitness evaluation. A solution candidate is penalised,
in case the robot crashes into the walls of the corridor.

Figures 5b presents the behaviour of example solutions.
These solutions were found in an experiment with a population
of 4000 individuals, 150 iterations that took around 10 hours
to run.

VII. CONCLUSION

The current work focuses mostly on the definition of the
framework, which is released 1 under an open-source license.
Besides the presented experiment, other more straightforward
problems were addressed with success, such as the artificial
ant problem or controlling a first-order dynamic system. Based
on these experiments, can be concluded that the presented
framework has the potential to generate controllers for hybrid
systems successfully.

REFERENCES

[1] B. Bonte and B. Wyns, “Automatically designing robot controllers and
sensor morphology with genetic programming.” in AIAI. Springer,
2010, pp. 86–93.

[2] C. Lazarus and H. Hu, “Using genetic programming to evolve robot be-
haviours,” in Proceedings of the 3rd British Conference on Autonomous
Mobile Robotics and Autonomous Systems, 2001.

[3] S. Harding and J. F. Miller, “Evolution of robot controller using cartesian
genetic programming.” in EuroGP, vol. 3447. Springer, 2005, pp. 62–
73.

[4] T. S. Letia and A. O. Kilyen, “Unified enhanced time petri net models
for development of the reactive applications,” in 2017 3rd International
Conference on Event-Based Control, Communication and Signal Pro-
cessing (EBCCSP), May 2017, pp. 1–8.

[5] ——, “Evolutionary synthesis of hybrid controllers,” in 2015 IEEE
International Conference on Intelligent Computer Communication and
Processing (ICCP), Sept 2015, pp. 133–140.

[6] J. R. Koza, “Genetic programming ii: Automatic discovery of reusable
subprograms,” Cambridge, MA, USA, 1994.

[7] M. Ebner, “Evolution of a control architecture for a mobile robot,”
Evolvable Systems: From Biology to Hardware, pp. 303–310, 1998.

[8] P. Nordin and W. Banzhaf, “Real time control of a khepera
robot using genetic programming,” Cybernetics and Control,
vol. 26, no. 3, pp. 533–561, 1997. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.52.6310

[9] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, MA, USA: MIT Press,
1992.

[10] R. Poli and W. B. Langdon, “On the search properties of different
crossover operators in genetic programming,” Genetic Programming, pp.
293–301, 1998.

[11] F. Dušek, D. Honc, and P. Rozsı́val, “Mathematical model of differen-
tially steered mobile robot,” in 18th International Conference on Process
Control, Tatranská Lomnica, Slovakia, 2011.

[12] F. A. Salem, “Dynamic and kinematic models and control for differential
drive mobile robots,” International Journal of Current Engineering and
Technology, vol. 3, no. 2, pp. 253–263, 2013.

1https://github.com/AttilaOrs/FuzzP

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:19:54 UTC from IEEE Xplore. Restrictions apply.

