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Abstract—In this paper, we propose a novel hybrid classifica-
tion method which is based on two distinct approaches, namely
Genetic Programming (GP) and Nearest Neighbour (kNN). The
method relies on a memory list which contains some correctly
labelled instances and is formed by classifiers evolved by GP. The
class label of a new instance will be determined by combining its
most similar instances in the memory list and the output of GP
classifier on this instance. The results show that this proposed
method can outperform conventional GP-based classification
approach. Compared with conventional classification methods
such as Naı̈ve Bayes, SVM, Decision Trees, and conventional kNN,
this method can also achieve better or comparable accuracies on
a set of binary problems. The evaluation cost of this hybrid
method is much lower than that of conventional kNN.

I. INTRODUCTION

Classification is of great importance both practically and
theoretically. Numerous methods have been proposed in the
last few decades. One of the most popular algorithms is
Nearest Neighbour (kNN) which is simple in nature. Unlike
many peer methods, it does not have a training phase to
build classifiers. Instead, it directly takes an unseen instance
to compare with existing labelled instances to determine the
class [12], [23]. The hypothesis of kNN often works well. That
is, the class of an instance is likely to be identical to that of its
surrounding instances (or its k number of neighbours), “Birds
of same feature flock together”. However, the computational
cost of this algorithm in application is rather high, because
each new instance to be classified requires a process of
measuring distances with the entire set of training examples.
Although there are works addressing this issue, kNN remains
a computationally expensive method [11], [15], [25].

On the other hand, evolutionary methods such as Genetic
Programming (GP) are much more time consuming and more
complicated in term of the training process. However the
classifiers generated by such process often have high accuracy
and fast in execution [7], [14], [16], [22], as the classification
of new instances is in isolation of the training examples and
the evolved classifiers are often of low complexity (usually no
loops are involved hence the complexity is somewhat linear).
Therefore we hypothesize that the combination of kNN and
GP can enhance the performance of GP without inheriting
the high cost problems of kNN. A hybrid method is therefore
proposed in this paper to take advantages of both methods.

At this stage, the main target is binary classification where
only two classes exist. Upon this investigation, a multi-class
method can be built either through binary decomposition or
direct separation of multiple classes.

The basic principle of this hybrid method is still to evolve
a classifier by GP. The classifier cumulatively builds up a
knowledge base which we called it the memory-list. The
memory list contains some of the correctly classified examples.
Based on these examples, new instances can then be classified.
So previous success does have impact on subsequent classifica-
tion. This is very different to the conventional GP classification
approach, where an instance is labelled independently from
other cases. We expect this kind of combination of evolved GP
classifiers and the kNN approach can result in an improved
classification process. More specially we aim to answer the
following questions in this study:

1) What is the suitable methodology of combining GP and
kNN so the hybridisation can inherit the advantages of
both approaches?

2) How well is this method comparing to the conventional
GP classification in some typical binary classification
problems?

3) How well is this method comparing to those widely used
classification methods including Naı̈ve Bayes, SVM, J48
decision trees, and kNN itself?

The rest of this paper is organized in the following structure.
Section II gives a brief discussion on the background of this
work and the related existing studies. Section III presents the
proposed hybrid method in detail. Section IV describes the
settings of our experiments and the five data sets used in this
study. The corresponding results are presented and discussed
in Section V. The conclusions and future works are presented
in Section VI.

II. BACKGROUND

Genetic Programming (GP) is a well-known member of
Evolutionary Computing (EC) paradigm. GP have been ex-
tensively adopted to solve variety of complex problems.
Classification is certainly one of focuses in this field since
GP trees can represent discrimination functions [4], [29]. In
particular handling binary classification is convenient using GP
approaches, because the single output of an evolved program
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tree can be directly used to indicate the class label, either a
positive case or a negative case [28]. The studies of GP on
classification are extended to general classification or domain
specific classification such as image classification, event clas-
sification from time series patterns and object classification
from video streams [24].

In the field of classification, k-Nearest Neighbour (kNN) al-
gorithm is one of the most popular method. This algorithm has
been widely used due to implementation simplicity and multi-
class classification nature 1 [19], [20]. However, conventional
kNN algorithm has three drawbacks [13], [26]:

1) High computation complexity;
2) Equality of training instances; and
3) Heavily dependent on training instances.

For the first drawback (in terms of computation complexity),
the algorithm calculates the distance between the instance
being evaluated and each instance of the training set. The
training instances then needs to be sorted in order of distance
in a multi-dimensional space, then the class label is assigned
based on the class label of the majority of the k nearest
neighbours of the given instance. Hence, more time is required
to perform the classification when the collection of data is
large, and the cost is proportional to the number of instances
of the training set and the number of attributes existing per
instance.

For the second drawback of kNN algorithm, it is obvious
that conventional kNN algorithm treats all training instances
equally. It does not have a mechanism to value instances
which may have more information for discriminating different
classes. The only consideration for classification is the distance
which in many cases is not the sole factor or not that reliable
by itself.

The third drawback of conventional kNN algorithm is that
it relies heavily on existing training instances and does not use
or add newly arrived data. To avoid ignoring fresh instances
which may be more relevant than obsolete instances, the
algorithm has to recalculation every time whenever there is
a change in the training data.

In order to achieve better performance, many combinations
of different methods, including combinations of kNN and GP,
have been proposed in the literature for various tasks. In [5]
GP and kNN were combined for image classification. Their
method utilizes GP to evolve some good functions from a set
of global descriptors. The learnt function of each class of the
data set was used as a kNN classifier. Then the voting approach
is adopted to obtain the final classification result. In [27] GP
was combined with kNN to solve multi-class classification
problem. In this work, GP was used to generate features.
Then kNN was used as a classifier on these generated features.
Such combination resulted in good performance. However it
is a two-stage approach where GP and kNN are independent
from each other and responsible for different tasks. The work
presented in [3] also combined GP and kNN for classification.

1The number of classes does not impact the distance measure process in
kNN.

It is similar to the work in [27] where a two-stage approach
is adopted. GP is for generating new feature values and
kNN is for classification. However at each generation of the
evolutionary process, features generated by GP will be fed into
kNN to assist the fitness evaluation. So these two methods
intertwined coherently here.

Guo et al. [9] proposed a hybrid method that combines GP
and kNN methods to perform automatic feature extraction.
The proposed method utilizes multi-objective search to reduce
the number of input features as a mean of dimensionality
reduction. The performance of these evolved classifiers can
be enhanced because of these newly selected or extracted fea-
tures. Their method comprises three stages: 1) using discrete
wavelet transform to transform the raw data values into a more
usable form for a GP-based system; 2) applying GP and kNN
methods to evolve a new set of features based on these features
generated in the previous step; 3) verifying the performance
of extracted features from Step 2 on classification by a kNN
classifier. Two epileptic EEG detection problems were used
for evaluation. The proposed method had been compared
against the conventional kNN and achieved significantly higher
accuracy by this complex combination of GP and kNN.

Suguna and Thanushkodi combined kNN and Genetic Al-
gorithm (GA) in order to improve the classification accuracy
and to overcome some of the limitations of kNN [21]. A multi-
stage approach was adopted in their work, that is 1) reducing
the number of original features by combining Bee Colony
Optimization (BCO) and Rough Set; 2) evolving a solution by
GP to select k-neighbours from the training set; and 3) calcu-
lating the distance between each of the sample point selected
in Step 2 and the test instance, then assigning the majority
class label to that instance as its class. Five different medical
datasets were used for evaluation. This method significantly
outperformed traditional methods including kNN, SVM and
CART on all of the five datasets.

Majid et al. proposed a modified Nearest Neighborhood
(ModNN) method which aims to use GP techniques to im-
prove classification performance [18]. ModNN uses a voting
approach to determine a good value of k. Then GP is used to
find a better class mapping function that can effectively reduce
outliers. Similar to that work in [9], the proposed method
was compared against traditional kNN. The results show that
ModNN can achieve better performance. Moreover, this study
has shown another advantage of ModNN over traditional kNN,
that is, its low false alarm rate.

Although the above approaches utilized kNN with GP/GA
and achieved good performance, in some degree they all
treated evolved individuals and kNN as separate components,
responsible for different aspects of the classification task. On
the contrary, what we propose is a way to allow kNN and GP
individuals to participate in the same class labelling process,
without multiple stages.
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Fig. 1. Classification Based on the Output Value of a GP Classifier

III. METHODOLOGY

The methodology of our hybrid approach is presented be-
low. The main part is the use of kNN and voting to compensate
adversarial effect of difficult training examples. The rest of
this section shows the GP representation for classification
including the terminal set, the function set and the fitness.

A. Mapping GP Output to a Class Label

To establish the hybridisation of GP and kNN, firstly a
list is created for each individual. It is called memory-list, as
it “memorizes” some of the correctly classified instances of
this individual. Instead of using a threshold value to separate
between classes (e.g the positive class being output greater
than the threshold and the negative class being smaller than
the threshold), we propose the use of a set of other points to
assist the classification. As shown in Figure 1, other than the
Threshold point, they are points of Critical, Critical/2,
−Critical/2 and −Critical along the output axis. In this
figure, let us assume the area left to Threshold denotes the
negative class and the area on the righthand side is the positive.

In order to classify an instance, each individual GP classifier
takes the attribute values of that instance as inputs and returns
a value. The absolute difference between that value and the
threshold is then used to determine the class label according
to the following three scenarios.

In the first scenario, the difference is greater than a prede-
fined Critical value, as

| Threshold−GP Output | > Critical

Then the instance is classified as “positive” if the re-
turned value is greater than the threshold. Otherwise it
is considered “negative”. In other words, values outside
[−Critical, Critical] are used similar to that in normal GP
classification. Correctly classified training examples will be
added to the memory-list of that individual to be used later.

The second scenario is that the absolute difference between
the output and the Threshold is smaller than Critical but
greater than Critical/2. This means the output from this
instance falls into the area of [−Critical,−Critical/2] or
[Critical/2, Critical] in Figure 1. The possibility of mis-
classification in these areas should be higher than that in the
first scenario. In this case the classification would rely on the
instances stored in the memory-list of a GP individual. The
kNN method is then used to give the class label. Similar to that
in the first scenario, if the instance is from training data and it
is corrected classified then it will be added to the memory-list.

There are two major differences between conventional kNN
and the kNN used here. The first is that all attributes will
participate in the distance measure in conventional kNN.
However the distance measure here is only based on attributes
presented on the GP tree. So that is a subset of attributes
because GP often select a small proportion of attributes for
classification. This reduction in dimensionality of attributes
can result in less computation and more meaningful distance
calculation because it is not affected by unselected attributes.
For the very reason, each GP individual has its own memory-
list which cannot be shared among individuals since different
individuals would select different subset of attributes. The
second difference is that only a subset of “good” instances are
used here while conventional kNN uses the entire set. This
difference can further reduce the computation cost and reduce
the bias caused by misleading examples.

The third scenario is that the absolute difference between the
returned value and the threshold is within the range between
[−Critical/2, Critical/2], the middle part in Figure 1. The
possibility of misclassification is even higher here. Hence
we introduce a majority voting mechanism to enhance the
classification. The voting involves the class label based on
comparing the GP output with the threshold and the class
labels from kNN with different k values. The instance is then
labeled as the class which wins the majority votes. Unlike two
other scenarios, correctly classified instances in this scenario
will not be added into the memory-list as they are considered
as “weak” or “indecisive” instances.

There is no other significant difference between this ap-
proach and normal GP classification. The only distinction is
how an output value from individual is mapped to a class
label if the value is in the range of [−Critical, Critical].
The classification decision is a collaborative effort by GP and
kNN. So this method is named as GPkNN. Figure 2 shows a
flowchart on how the classification process is carried out in
GPkNN.

B. Function Set

The function set is made of the four standard arithmetic
operators:

Function Set = {+, −, ×, /}

They are simply addition, subtraction, multiplication and
protected division proving the return value when the denomi-
nator is 0. Each of these operators takes two parameters which
can be terminals or functions.
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Fig. 2. The Flowchart of GPkNN: how to combine GP output with nearest neighbours

C. Terminal Set

In classification each data set is often made of an N ×M
matrix, where N represents the number of instances in the
data set such that D = (I1, I2, . . . , IN ). Each instance consists
of M attributes such that Ii = (r(i,1), r(i,2), . . . , r(i,M)).
So the terminals should be able to read in these attribute
values as classifier inputs. In addition randomly generated
constants should be provided to classifiers as coefficients. So
the terminal set is:

Terminal Set = {Attribute[m], Constant}

These constants are randomly generated floating-point val-
ues in the range of [-10, 10]. The Attribute node has an index
m, which is also randomly generated but in the range of [1,
M], where M is the number of attributes available in the data
set.

D. Fitness Measure

In the case of binary classification the fitness for evolving
a classifier can be simply expressed in Equation 1.

F (x) = accuracy(x) =
TP + TN

TP + FP + TN + FN
(1)

Where TP and TN represent the number of instances been cor-
rectly labelled as positive and negative respectively. While FN

and FP are False Negatives and False Positives respectively. So
the denominator of Equation 1 is the total number of instances,
and the fitness is simply the classification accuracy.

IV. EXPERIMENTS

The hybrid classification method was implemented based
on the Evolutionary Computation Java-based package (ECJ)
[17]. To compare the performance of our methods, different
classifiers including Naı̈ve Bayes, Support Vector Machine
(SVM), Decision Trees (J48), and kNN implemented in Weka
[10] were evaluated against a same set of data.

A. Data Sets

Five different data sets have been used in this study to
measure the performance of the proposed method. The data
sets are varying in number of instances and number of at-
tributes as detailed below. However, these data sets are for
binary classification where each instance is belonging to one
of two categories. Except Leukemia [8] and Colon Cancer
[2] data sets, all other data sets have been taken from the UCI
Machine Learning Repository [6]. No big data set was used as
the disadvantage of kNN would be more obvious on them since
the number of instances directly affect the computational cost
in kNN. Leukemia and Colon Cancer data sets were selected
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TABLE I
DETAILS OF THE FIVE DATASETS USED IN EXPERIMENTS

Training Set Test Set Overall #Attributes
Positive Negative Total Positive Negative Total

PIMA 250 134 384 250 134 384 768 8

Heart 73 62 135 77 58 135 270 13

WDBC 178 106 284 179 106 285 569 30

Colon 19 12 31 21 10 31 62 2000

Leukemia 27 11 38 20 14 34 72 7129

because of their large number of attributes. So the effect of
GPkNN utilising GP’s attribute selection may be observed.

The first data set is Pima Indians Diabetes Database. This
data set is made of 768 instances, where each has 8 feature
values. The data set has 500 instances of patients have tested
negative for diabetes and 268 instances for patients have tested
positive. The total number of instances of the two classes
was equally divided between training and test sets that each
consists of 250 and 134 instances of negative and positive
respectively.

The Statlog Heart data set was the second data set that
was used to evaluate the performance of GPkNN. This data
set represents a slightly modified version of the original Heart
Disease databases, where only 13 features have been extracted
out of 75. In total, this data set has 270 instances that fall into
either absence or presence of heart disease. Worth to mention,
that the number of instances of each class was nearly equally
divided into training and test samples.

Wisconsin Diagnostic Breast Cancer (WDBC) represents
the third data set we used in this study. This data set consist
of 569 instances in total where each of them represents either
malignant or benign case. The number of instances of benign
and malignant cases is 357 and 212 respectively that was
equally split between training and test sets. Each instance
is made of 30 real-valued input features, where 10 of them
represent the different computations of the cell nucleus.

The fourth data set is Colon Cancer that overall has 62
gene expression patterns of colon instances that fall into two
categories: 1) tumours; and 2) normal tissues. The number of
samples that has tumour as class label is 40 and the other 22
samples has normal as class label. Furthermore, each instance
of this data set consists of 2000 real-valued features.

The fifth and last data set is Leukemia which consists of 72
samples. The data set indicates two types of leukemia cancer:
1) Acute myeloid leukemia (AML); and 2) Acute lymphoblastic
leukemia (ALL), where 25 samples have been labelled as
AML, and 47 samples were labelled as ALL. Each sample
of this data set has 7129 features that each represents an
expression level of a gene.

Table I lists the number of instances, either positive or
negative, in the training and test sets for each data. There is
no severe imbalance in these data sets. Handling unbalanced
data is beyond the scope of this paper, but will be investigated
in future work.

B. Experimental Settings

Since the proposed method combines GP and kNN methods,
parameters for both aspects need to be supplied. As mentioned
in methodology, the kNN method is used for two of three
scenarios when mapping the single program output to class
labels, the k value is required. In the second scenario, k is set
as 1, e.g. simply the nearest neighbour. In the third scenario,
where voting is used, we used two kNN methods in the voting
committee. Their k values are 1 and 5 respectively.

As for the GP parameters, we set crossover, mutation
and reproduction rates to 0.8, 0.19 and 0.01 respectively.
Standard crossover and mutation operators are used here. The
reproduction is simply moving the selected individuals to the
next generation. The size of the generated trees was set to
minimum depth of 2 levels (including the root node) and
maximum of depth 10 to allow variety range of solutions.
Population size is set to 2000 individuals in order to alleviate
the problem of early convergence. The maximum number of
generation is set to 20, because convergence is usually reached
before that .

Table II summarises these experimental parameters. Note
the goal of this study is not to find the optimal setting for
classification. The choice of this set of parameters is empirical
but consistent with that in many studies on GP classification.

In order to obtain reliable performance measure, every
experiment involving GP was repeated 30 times using different
random seeds. However, the exact seed value that was used
in a normal GP run was also used in the hybrid counterpart.
This is to ensure an identical start point in both cases as seed
values may significantly affect the final results.

V. RESULTS

Two series of experiments were conducted in this study. The
focus of the first series of experiments was on comparing the
accuracies of normal GP classification and the hybrid method
(GPkNN). That of the second series was on comparing the
accuracies of GPkNN with traditional methods. Additionally
their execution time were evaluated.

A. GPkNN vs GP

Table III shows the gathered experimental results from
30 × 2 × 5 = 300 runs in total of both GP-based methods
(GP and GPkNN). This table consists of five blocks from
the top to the bottom, each presenting the results for one of
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TABLE II
SUMMARY OF PARAMETER VALUES

Parameter Value
k-Nearest Neighbour

K1 1
K2 5

Genetic Programming

Generations 20
Population Size 2000
Crossover Rate 0.80
Mutation Rate 0.19
Elitism Rate 0.01
Tree Depth 2-10
Selection Type Tournament
Tournament Size 7
Builder Type Ramped HALF-AND-HALF

Other parameters

Threshold 0
Critical value 10

the five data sets. Both training and test accuracies are listed
in a form of minimum (worst), maximum (best), mean and
standard deviation. They are from the 30 runs for each task.
For comparison (t-test) was perform on each pair of results
from the baseline GP and the hybrid GPkNN. The significance
is indicated by asterisks2.

For all data sets, except colon cancer, the results show
significant increase in training accuracies comparing GPkNN
with standard GP. However in the case of colon cancer data,
GPkNN actually showed significant difference on test. The
superior performance of GPkNN compared to GP is consistent
in test on all five data sets. The performance differences
between the two methods are considered highly significant in
the case of PIMA, Heart and WDBC data, and still statistically
significant in the case of colon cancer and leukemia data.

The performance evaluation method presented in this paper
is the two-fold training and test approach. Another common
way is the n-fold cross validation which iteratively trains on
n − 1 folds of data and tests on the remaining fold until
all folds have been involved in both training and test. We
performed 10-fold cross-validation on the same data. There
was no statistically significant differences between these two
evaluation approaches.

B. GPkNN vs Traditional Methods

The second set of experiments compare our GPkNN with
conventional classification methods such as Naı̈ve Bayes,
SVM, J48 decision trees, and kNN with k = 1 and k = 5.
Table IV presents this comparison on test accuracies. The
programs achieved the best test accuracy on each data set
from the above experiments were used. They actually are more
accurate than their counterparts on every data set. It is true that
GPkNN appears average, if we compare not the best but the

2∗ Means GPkNN significantly better than GP, with a confidence level
95%
∗∗ Means GPkNN is even better, with a confidence level 99%

mean test accuracies. Due to the stochatic nature of GP, the
performance of evolved solutions fluctuate significantly. So the
mean accuracy does not reflect the potential of GPkNN which
could outperform these conventional methods or at least be
comparable to them.

C. Comparisons on Execution Speed

To verify the benefit of GPkNN in terms of computational
cost, three methods were used to evaluate the five data sets
on a machine with a 4-core 2.2 GHz Intel i7-2670QM CPU,
running Ubuntu 4.6 and Java 6. These three methods are the
conventional kNN (k = 1), the conventional GP (the best indi-
viduals evolved from experiments in Section V-A) and GPkNN
(also the best from Section V-A). The process was repeated
30 times on each data set. The execution time are presented in
Table V which include the minimum, the maximum, the mean
and the standard deviation of each 30 runs. A“0” in the table
means the time is less than recording precision. Clearly kNN
took much longer than other two methods on every data set.
GPkNN was slower than programs evolved by conventional
GP. That is expected as there is no distance calculation in
conventional GP. However the difference between GPkNN
and GP is not that significant. For example they are almost
the same on Leukemia while kNN took more than 250 times
longer. Because Leukemia has 7129 attributes, the distance
measure of kNN is very expensive. Both GPkNN and GP only
use a handful of attributes. So their execution is very fast.
GPkNN is more sensitive to the number of instances though.
It took much longer on PIMA and WDBC which have the
highest number of instances among the five sets (See Table I).

VI. CONCLUSIONS

This paper proposes a hybrid method of GP and kNN for
binary classification. It uses a memory-list to store some good
instances that have been correctly classified and then applies
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TABLE III
COMPARISON BETWEEN CONVENTIONAL GP AND THE HYBRID METHOD GPKNN

Training (%) Test (%)
Min Max Mean±St.dev Min Max Mean±St.dev

PIMA GP 68.23 75.52 70.56 ±1.87 65.10 78.91 71.07 ±4.11

GPkNN 71.61 76.30 73.51 ±1.12 ∗∗ 70.31 79.95 76.45 ±2.21 ∗∗

Heart GP 79.26 87.41 82.76 ±2.03 75.56 85.19 80.44 ±2.72

GPkNN 81.48 88.15 85.24 ±1.42 ∗∗ 76.30 85.44 82.24 ±2.16 ∗∗

WDBC GP 89.82 96.49 93.22 ±1.75 84.15 95.77 91.51 ±3.01

GPkNN 95.09 96.49 95.98 ±0.35 ∗∗ 92.96 96.83 95.05 ±1.01 ∗∗

Colon GP 87.10 100.0 95.27 ±3.86 67.74 87.10 75.59 ±5.06

GPkNN 87.10 100.0 96.34 ±3.47 70.52 87.12 78.10 ±3.25 ∗

Leukemia GP 89.47 100.0 95.97 ±3.64 50.00 91.18 72.80 ±5.86

GPkNN 97.37 100.0 99.74 ±0.80 ∗∗ 60.24 94.12 76.41 ±5.31 ∗

TABLE IV
COMPARISON BETWEEN CONVENTIONAL CLASSIFIERS AND THE HYBRID GPKNN

GPkNN Naı̈ve Bayes SVM DT(J48) kNN (k=1) kNN (k=5)
PIMA 79.95 77.60 79.69 78.13 71.88 74.48

Heart 85.44 84.44 84.44 80.74 74.82 79.26

WDBC 96.83 95.78 96.48 91.20 95.42 96.13

Colon 87.12 70.97 87.01 77.42 80.65 77.42

Leukemia 94.12 85.29 88.24 88.24 70.58 70.59

TABLE V
COMPARISON OF EXECUTION TIME ON FIVE DATA SETS (IN MILLISECONDS)

Conventional kNN Conventional GP GPkNN
Min Max Mean±Stdev Min Max Mean±Stdev Min Max Mean ±Stdev

PIMA 51 170 56.83 ±21.43 0 1 0.20 ±0.41 2 24 10.53 ±5.77

Heart 8 75 12.53 ±13.12 0 1 0.13 ±0.35 0 5 1.6 ±1.63

WDBC 71 227 79.00 ±28.04 0 1 0.40 ±0.50 0 42 15.8 ±7.08

Colon 51 67 53.13 ±3.08 0 1 0.03 ±0.18 0 1 0.20 ±0.41

Leukemia 251 274 255.23 ±5.48 0 1 0.04 ±0.20 0 1 0.27 ±0.45

kNN method on these stored instances to classify unseen
instances. The output from a GP classifier and a predefined
Critical value will determine how to map the program return
value into a class label.

The proposed method has been evaluated using five different
data sets that vary in number of instances and number of
attributes per instance. The results show that the proposed
hybrid method can significantly outperform GP without this
hybridised mechanism. Furthermore, the performance of the
best evolved program has been compared to other widely
used classifiers such as Naı̈ve Bayes, SVM, Decision Trees,
and kNN. This hybrid GP method can be better than or at
least comparable to those classifiers. In addition, this method’s
computational cost on evaluating a data set is not vastly more
than that of a normal GP classifier, but significantly lower

than that of kNN method. In particular the large number of
attributes has little impact on its evaluation cost because the
GPkNN method only select a small subset of attributes to
participate in the classification process.

In conclusion, the proposed method for combining GP and
kNN is feasible. It can achieve good classification performance
without causing high computational cost.

VII. FUTURE WORKS

Due to the limited scope of this study, the work presented
here can not address all concerns and questions. In the near
future we will continue to investigate and extend this hybrid
methodology, for example what is the optimal ‘Critical Value”
and how to set this value dynamically to fit different problems;
could it be possible that the selected “Critical” value divides
one cluster of data points, hence be counterproductive.
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Furthermore we will also extend this method to handle
multi-class problems. In addition we will systematically inves-
tigate the impact of parameters like k and Critical although
they did not effect the results much in the above experiments.
Issues like over-fitting and class imbalance will also be stud-
ied. Another extension is to combine GPkNN with Two-Tier
GP [1] for image classification.
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