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ABSTRACT

The aim of all evolutionary methods is to find the best so­
lution from search space without testing every solution in
search space. This study employs strengths and weaknesses
of solutions for finding the best solution of any problem in
genetic programming. The strengths and weaknesses are
used to assist in finding the right partners (solutions) during
crossover operation. The probability of crossover between
two solutions is evaluated using relative strengths and weak­
nesses as well as overall strengths of solutions (Improved
Comparative Partner Selection (lCPS)). The solutions qual­
ifying for crossover through ICPS criteria are supposed to
produce better solutions and are allowed to produce more
children through brood recombination. The brood recombi­
nation helps to exploit the search space close to the optimum
solution more efficiently. The proposed method is applied
on different benchmarking problems and results demonstrate
that the method is highly efficient in exploring the search
space.

Index Terms- Diversity in genetic programming. Im­
proved comparative partner selection. Brood recombination

1. INTRODUCTION

Genetic programming (GP) has received a lot of attention in
recent years due to its ability to produce human competitive
solutions [1-3). The flexibility in choosing various parame­
ters of the algorithm and the ability to produce human inter­
pretable solutions have made it superior over other evolution­
ary algorithms. However. despite numerous advantages of­
fered by GP. there are some inherent issues in GP that restrict
its performance when applied to complex problems. One of
these issues is the premature convergence towards local opti­
mum [4-7]. The main reason for such convergence is believed
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to be a loss of diversity in fairly fit population of individuals
as the population evolves.

Diversity is an important element in explaining the struc­
tural and behavioural variation within a population. Al­
though. promoting diversity maintains a wider search space.
promoting it blindly has considerable computational cost.
Numerous methods have been proposed in the literature
for preserving diversity and avoiding premature conver­
gence [8-14]. The concept of fitness sharing was introduced
in [8] where the individuals (solutions) sharing similar fitness
values were penalised. A multi objective method for promot­
ing diversity. reducing code growth and optimising fitness
was presented by Edwin. Watson and Pollack [9). Day and
Nandi [10] evaluated strengths and weaknesses of individuals
using response of individuals for each training case. The
strengths and weaknesses were utilised to promote crossover
between two diverse individuals (comparative partner selec­
tion (CPS)). Their experiments on benchmarking problems
demonstrated that the method was successful in eliminating
population-wide weakness.

The method proposed in this study is an extension of the
CPS method presented in [10). The CPS method promoted
crossover between two individuals having strengths and
weaknesses in different areas. ignoring the overall strength
during crossover. In this study we demonstrate that ignoring
overall strength in crossover might neglect potentially more
suitable partners. A hybrid approach named as improved
CPS. involving CPS method and overall strength ofindividu­
als is proposed for finding the right partners during crossover.
In addition. since the individuals selected by improved CPS
method for crossover are supposed to produce better children
than a normal crossover. they are allowed to produce more
children (brood recombination [15]). This way the search
space near optimum solutions is exploited more efficiently.

2. MEASURING DIVERSITY FOR FINDING
OPTIMUM SOLUTION

The diversity of any population can be defined in two ways.
structural diversity (genotype diversity) and behavioural di-
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Fig. l. An example of a GP Tree in a sub optimally converged
evolution for 3 bit parity problem.

versity (phenotype diversity). The genotype diversity ex­
plores the similarity between actual structures of individuals
and has been evaluated in various ways in literature (absolute
edit distance, weighted edit distance, etc). The phenotype
diversity on the other hand analyses the behaviour of individ­
uals. The most common method for evaluating this diversity
is to find the distribution of fitness values in a population.

The phenotype diversity can be further divided into two
subcategories; population-wide diversity and pairwise diver­
sity. As the name suggests, the population-wide diversity
measures the diversity across an entire population while the
pairwise diversity measures the difference between two indi­
viduals. In this study, the pairwise phenotype diversity is used
to explore the search space for finding the optimum solution.
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2.2. Comparative Partner Selection

of GP is shown in the form of a tree in the middle of Figure
I, where X I, X2 and X3 are three inputs. Since it was a sub
optimally converged run, GP was unable to find a perfect so­
lution as demonstrated by the output and binary string of the
GP tree.

In SGP, the parents for crossover (during creation of new gen­
eration) are selected just using their fitness values. This might
be limiting as two individuals solving different examples may
get same fitness value. In CPS, an additional criteria for par­
ent selection is introduced which is based on binary strings
of two parents. This criteria uses simple logical operations to
promote the crossover between two diverse (in terms of bi­
nary string) individuals. A crossover between two individuals
is encouraged if one individual shows strength for an exam­
ple for which other individual shows weakness (X () /I) and
a crossover is discouraged if two individuals share similar
weaknesses (.\" () /I). The binary string can be used to cal­
culate the probability of crossover (/~ 1',) between two indi­
viduals.

(I)I ~ I" (h I • h~ )

where I~ 1" is the probability of crossover and hi and h~

are the binary strings of two individuals. The probability of
crossover between any two similar individuals (in terms of
binary string) will be lower compared to diverse individuals.

The process of CPS follows these steps: two parents (III

and II~) are selected based on fitness value and their proba­
bility of crossover I~ 1" is calculated. A random number be­
tween 0 and I is generated and if I ~ 1" is greater than this
number, crossover takes place otherwise not (this is to include
stochasticity in the method). If the crossover does not take
place, a new second parent (/I~) is selected (without changing
III) and the above procedure is repeated. If a suitable partner
is not found after N,2 attempts (N is population size), II~ is
chosen randomly, ignoring CPS criteria. In order to penalize

2.1. Binary String Fitness Characterisation

The idea of binary string fitness characterisation (BSFC) was
introduced by Day and Nandi [10] which explains the efficacy
of an individual for each input training example. Generally, a
number of training examples are provided to GP for solving
a problem. In a standard GP algorithm (SGP), the perfor­
mance of GP individual for solving all training examples is
summed up in one parameter, the fitness function. A typical
fitness function is a sum of errors for all training examples.
Such a fitness function does not give insight into response of
a GP individual for each training example and any two indi­
viduals solving different training examples may get the same
overall fitness value. Although, the overall fitness value is im­
portant for evolving towards the optimum solution, the insight
into efficacy of individuals for each training example can help
to explore search space more efficiently. In BSFC, a binary
string (h;) is attached to each individual with as many bits as
training examples. For logical problems where the output is
either I or 0 and is generally already known, the evaluation of
h; is straightforward. If an individual finds the correct output
for a training example, it gets a "I" in the corresponding bit of
h;, otherwise "0". A "I" can be considered as strength of the
individual and a "0" as weakness. Ifall the training examples
are solved, the binary string will consist solely of ones. This
binary string gives us insight into the abilities of GP individ­
uals for solving each training example.

The assignment of binary string is not as straightforward
for non binary problems. Day and Nandi [10] proposed a
mean error based technique for regression problems. For clas­
sification problems, a technique based on the mean of output
distribution ofa class was proposed in [16]. An example ofa
h, for a GP tree for 3 bit parity problem (explained in section
4.1) in a sub optimally converged run is shown in Figure I.
On the extreme left hand side are three inputs of 3 bit parity
problem and on the extreme right is the target output. GP is
expected to take these inputs and combine them with the help
of some given functions to get the target output. One of the
combinations of inputs and functions found during evolution
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Fig. 2. An example showing CPS flaw.

the CPS for not finding a suitable partner, the probability of
crossover is decreased by L N and the probabi lity of muta­
tion is increased by I ,N, in the current generation. In the next
generation, these probabilities go back to their initial values.

rncnvrouet 1

rnorvrouat z

Indll,lldual3

p"",. =60%

p... =75%

b, b-J

0 Individual 1 Individual :? 0

1 1

1 0

0 1

0 1

0 1

1 1

1 1
Xl X3 Xc X3 Xl X3

Fig. 3. Two individuals selected by CPS for crossover.

3. THE PROPOSED METHOD

3.1. Improved Comparative Partner Selection

L .I.\" I)(III.II~)
(2)

3.2. Brood Recombination

The parameter .J finds the percentage of shared strengths
between two individuals. The probability of crossover in
our proposed improved comparative partner selection (ICPS)
method is an average of I ~ I" and .J, and can be calculated as

This new probability n'I" takes into account both, the ex­
amples where both individuals are strong and the examples
where atleast one of the individual is weak. The new proba­
bility (I '" I") between individual I and 2 is 49'~i) and between
individual I and 3 is 37.5'~i).

(3)
I ~ I" I .J

:2

The probability of crossover I '" I" is used to decide whether
two individuals qualify for a crossover or not. If they qualify
for crossover, the following actions are performed. A node
is randomly chosen on each individual and the sub branch
downwards from that node is swapped with each other. Each
individual may haw many crossover points and choosing only
one point for crossover may ignore some potentially good so­
lutions. Since the individuals selected for crossover by ICPS
process are supposed to produce better solutions, the search
space close to these individuals should be explored more effi­
ciently.

This fact is demonstrated by an example. Figure 3 shows
two trees (with their respective binary strings) generated by
GP for solving 3-bit parity problem and the inputs and tar­
get for these trees is same as given in Figure I. Imagine
these two trees are selected for crossover by ICPS process
for 3 bit parity problem. Looking at the binary strings, there
are four examples where strength of one individual coincides
with weakness of other individual. According to CPS pro­
cess, the chi ldren produced by crossover of these two individ­
uals should haw strengths for these four examples. Suppose
a crossover takes place at node 3 of both individuals and two

In the CPS process, the probability of crossover calculated
using equation (I ) favours the crossover between two indi­
viduals where strengths of one individual coincide with weak­
nesses of other individual. During this process the strengths
of one individual coinciding with strengths of other individ­
ual are ignored. Authors believe it is an important aspect and
can enhance the overall strength of new individuals being pro­
duced. An example is used to describe the importance of this
aspect.

Figure 2 shows the binary strings of three individuals for
3 bit parity problem. The first individual solves five training
examples, the second solves four examples while the last in­
dividual solves only one example. Imagine individual I has to
chose one of the other two individuals for crossover, Looking
at Figure 2, a crossover between individual I and 2 or between
individual I and 3 can produce a chi ld, potentially capable of
solving first six examples. Since potentially both individuals
(2 and 3) can produce an equally capable child (when crossed
with I), its just a matter of finding out which one is better
out of the two. II' we consider the two individuals alone (ig­
noring crossover), individual 2 looks like a better choice than
individual 3 since it solves four examples while individual 3
solves only one.

CPS uses equation (I) for finding the right partner for
crossover. According to equation (I), the probabi lity of
crossover (I ~ I") between individual I and individual 2 is
60'~i) while I ~ I" between individual I and 3 is 75'~i). This is
because for calculating a probability of crossover, the CPS
method considers only those examples where at least one of
the individuals is weak and ignores the examples where both
individuals are strong. The examples for which the two indi­
viduals share strengths are important in defining the overall
strength of newly produced child and should not be ignored.
A new parameter (, J) has been introduced in this study which
takes into account the shared strengths of two individuals.
The parameter .J is defined as
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Table I. Parameters used for the experimental work
Parameter I Standard Value
Generations
Population Size
function Pool

3-bit parity
5-bit parity
Multiplexer
Regression

Operators

100
100

AND, OR, NAND, NOR
AND, OR, NAND, NOR, XOR
AND, OR, NOT, If
+, -, x, sin, cos, log
Crossover, Mutation (60~'i), 40~'i))

children are produced. These children when evaluated for 3­
bit parity training examples (given in figure I) will have these
binary strings 0 I00 I0 I I and 0 I I000 I I. These binary strings
tell us that the assumption that during crossover of two par­
ents, a strength coinciding with a weakness should result in a
strength in the child may not necessarily be true. The reason
is that it is difficult to establish which part of the individual is
responsible for a certain strength. If a crossover takes place
at node 4 (individual I) and node 3 (individual 2), one of the
new individual produced by this crossover is a perfect solu­
tion and has binary string consisting solely of ones.

The above discussion clearly shows that choosing one
crossover point may ignore potentially good solutions. In this
study the individuals selected by ICPS are allowed to pro­
duce ten children (instead of two), each time with a different
crossover point. The best two children (in terms of fitness)
out often are selected and the rest are discarded. This way the
search space close to ICPS selected parents is exploited more
efficiently. This idea of allowing certain parents to produce
more children is called brood recombination (BR) [15].

4, EXPERIMENTS AND RESULTS

4,1, Problems Used and GP Parameter Settings

In this study, four benchmarking problems have been used to
compare the proposed method with existing methods. These
problems belong to two different domains, logical (3-bit and
5-bit even parity, II-bit multiplexer) and regression (quartic
polynomial). The details about these problems is given in
[10]. The fitness function for all the problems is the sum of
errors. Different GP parameters used for these problems are
given in Table I.

4,2, Results

figure 4 shows a comparison between SGP, CPS and the pro­
posed method (ICPS with BR) for all the problems. Exper­
iments for each method and for each problem were run 100
times, and the average fitness of best individuals is shown in
the figure where a lower fitness means a better individual. It
is clear from the figure that the proposed method outperforms

Fig, 4. fitness comparison for 100 generations averaged over
100 runs.

Table 2 Time taken for 100 runs in hours
Prob lem/ Method SGP CPS ICPS with BR

3-bit parity 6 5 4
5-bit parity 17 t) 12
Regression 13 X 13

I I-bit multiplexer X 5 It)

the other two methods for all the problems and the difference
in performance is more evident for more complex problems
(5-bit parity and II-bit multiplexer).

The number ofoptimum solutions found by SGP, CPS and
ICPS with BR were {53, 74, XX} for 3-bit parity problem,
{37, 54, 64} for 5-bit parity problem, and {XX, t)0, t)7} for
regression problem. for multiplexer problem, only ICPS with
BR was able to find t) optimum solutions, while the other two
methods failed to find any optimum solution. It is clear from
this discussion that ICPS with BR performs better than the
other two methods.

The complexity comparison in terms of time is given in
Table 2. for 3-bit parity problem the time taken by the pro­
posed method is less than the other two methods. Since for
this problem the proposed method finds the optimum solu­
tion for most of the runs very early in the run, it takes less
time than other methods. The time taken by the proposed
method for other problems is either equal to or less than the
other methods except for multiplexer problem where it takes
more time. The main reason for this increase in time is the
choice of function pool. Since a simple function pool was
chosen for multiplexer problem, the search for the optimum
solution became difficult. If the function pool was richer, the
probability of finding the optimum solution would increase,
causing a reduction in the time taken. The CPS method takes
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less time than other methods for most of the problems due to
the fact that it increases probability of mutation once it fails
to find suitable partners and the complexity of mutation is al­
most half of crossover. The ICPS process on the other hand,
finds suitable partners most of the time for crossover due to
the ;3 factor and does not allow mutation probability to in­
crease that much.

In a nutshell, the proposed method performs better than
other methods in terms of fitness values and the number of
optimum solutions produced. The time taken by the proposed
method is higher than the other methods but it can be reduced
by using a richer function pool. Our future work will focus
on adopting various techniques to reduce the training time of
the proposed algorithm for complex problems.

5. CONCLUSIONS

This paper proposes a method for guiding the search towards
the optimum solution in genetic programming. The relative
and overall strengths of solutions are exploited for promoting
more fruitful crossover operation. The partners found using
the proposed method are allowed to produce more children
since they are expected to be close to the optimum solution.
The results demonstrate that the performance of the proposed
method is much better than traditional methods.
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