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Abstract—Model checking is used to verify the security of 
communication protocols in which the behavior is stochastic 
influenced by the environment. Automata learning settles the 
problem of obtaining formal models from observable data of 
black-box systems. It is available for different variations of finite 
automata to in model checking. Genetic Programming is a machine 
learning technique that automatically generates programs and 
outputs a fittest program. In this paper, we present an approach to 
learn markov decision progresses based on the framework of 
genetic programming. The approach outputs the fittest model with 
a set of system traces by refining iteratively models. We evaluate 
our method on one probabilistic system from the literature and 30 
randomly generated examples. 

Keywords—automata learning, genetic programming, markov 
decision processes, model checking 

I. INTRODUCTION (HEADING 1) 
Model checking is a important technique of verifying system 

security. Probabilistic model checking can offer the probability 
of satisfying some property, e.g. model checking tools Prism [10] 
accepts LTL or PCTL formulae describing the property and 
outputs the optimal probability. In practical ap- plications, the 
internal structure of a system may be unknown since the third-
party modules. Automata learning settles the problem of 
obtaining formal models from observable  test  data of black-
box systems. In fact, it is available for many variations of finite 
automata in LearnLib [12] which efficiently implements the 
learning algorithms of different automata, e.g. deterministic 
finite automata (DFA) and mealy machines. 

Genetic programming [2] is a machine learning technique 
that automatically generates programs and modifies iteratively 
these programs. Using the technique of model-based testing [13], 
some learning algorithms have learnt successfully models via 
genetic programming, such as DFA [7], [8], timed automata 
[4],[6]. It can learn a precise models consistent with a set of 
traces of black-box systems. However it is unavailable for 
Markov Decision Process (MDPs). MDPs are used to model 
stochastic systems, e.g. communication protocol. For protocol 
verification it is crucial to obtain the formal models from the 
protocols using automata learning. 

In this paper, we indicate that MDPs can be learned based 
the framework of genetic programming and we evaluate our 
method on one academic probabilistic system and 30 randomly 

generated examples. The contribution of this paper is we 
propose a heuristic method to learn MDPs that shows the learned 
models are closed to true models. The outline of this article 
shows as follows: Sect. II reviews the concepts of markov 
decision processes and genetic programming. Sect. III presents 
the method of learning MDPs based on genetic programming. 
The experimental results of our method are listed in Sect. IV 
and we provide the discussion in Sect. V. 

II. PRELIMINARIES 

A. Markov Decision Processes 
Markov decision processes (MDPs) can express the systems 

with stochastic behaviors, in which a transition happens with 
some probability depending on the chosen input. We learn 
deterministic labelled MDPs as in [1]. A labelled markov 
decision process is a tuple  where  is 
a finite non-empty set of states;  and  are finite sets of input 
and output symbols respectively,  is the initial state; 

 is the set of probabilistic transitions.  
denotes a set of . A distribution 

 over set  is a function mapping  to  
such that . Let  denotes the 

 at  which assigns 1 to ; and  
is the labelling function. An MDP is deterministic if 

. 

We use the terms traces and test sequences similarly to [1]. 
A path  through an MDP is an alternating sequence of states 
and input symbols starting in the initial state , i.e. 

. In each state , The next state  is 
selected probabilistically depending on the distribution  
such that . We observe a trace 

 during the execution of a path  
with . Notably, a trace leads to a unique 
state of an MDP .  denotes the state reached by the trace 
 or  if  is unreachable i.e. the path of MDP  corresponding 

trace  is nonexistent. A test sequence  consists of a trace  and 
a input , thus after executing test sequence ,  reaches 
the state  and enables input  to tests the response.  

The semantics of a MDP  is 
defined as a function  which maps a test sequence  to a 
distribution  if  is reachable on  or  otherwise. 
Concretely, we have  as follows: a)  if 
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; b) for ,  if , or 
 otherwise if 

.  denotes the set of traces. The 
equivalence is approximated as conformance checking between 
learned model (hypothesis) and the system under test (SUT). 
After executing test sequences, we check conformance between 
the SUT's outputs and the distributions predicted by the 
hypothesis. 

B. Genetic Programming 
Genetic programming [2] is similar to genetic algorithm [3] 

that evolves computer programs. Populations in genetic 
programming consists of individuals (programs), and each 
individual represents some potential solution to a specific 
problem. Generally speaking, genetic programming modify 
iteratively individuals in the population until an acceptable 
solution is found or the maximum of iterations has been 
achieved. Initial population is randomly created and then the 
population is updated by genetic operators. A fitness function is 
used to evaluate individuals in the population, and the next 
generation of individuals are generated by applying genetic 
operators to individuals selected. The selection method bases on 
the fitness function to select the fittest members of the 
population. Three types of genetic operators are commonly used: 
reproduction, mutation, and crossover.  

 Reproduction: copy an individual as a new individual in 
the population. 

 Mutation: change an individual introducing individual 
different from the last generation. 

 Crossover: make an exchange of two individuals 
randomly chosen to create offspring. 

III. GENETIC PROGRAMMING FOR MARKOV DECISION 
PROCESSES 

The genetic-programming framework for MDP is similar 
with [4]. Fig. 1 depicts the procedure of genetic programming 
for MDPs in which each individual is a MDP. An initial 
population is generated using random strategy based on the 
provided inputs and outputs of the SUT. Then each MDP (all 

) of this population are evaluated by  test sequences 
generated before-hand and a fitness function. The fitness 
function considers the amount of passing test sequences and 
features of the learned MDP, e.g. size and non-deterministic 
behavior. The termination criteria depends on the amount of 
generations  having been performed and the best individual 

 of the population that passes all test cases. In other words, 
the procedure terminates if either  exists and the fitness is 
unchanged during  generations or  has reached 

, where  and  are parameters. The fittest MDP 
of final generation is the output of the procedure as learned 
model.  

New Population is created if termination criteria is not met. 
New individuals are based on the individuals existing. 
Afterward, for all individuals selected we mutate them with 
probability , copy it to new population with probability  
and randomly select other individual to create together their 
offsetting with probability . We have a new population 

after performing  genetic operators to individuals chosen. 
Then the new population is evaluated to find the fittest MDP. 

 
Fig. 1 Procedure of Genetic Programming for MDP 

The initial population is created by randomly generating 
 MDPs. A MDP is generated though randomly adding 

states (the number of states at lease 2), and randomly selecting a 
source state, a input and a distribution for transitions. The 
number of transitions is controlled by whether the initial state of 
the MDP is reachable with all the states and probability . 
Distributions are generated after randomly selecting target states 
and assigning a probability bigger than 0 to them such that the 
sum of the probabilities equal 1. Notably, the labels of all the 
target states included by the same distribution must be different 
for each pair. Subsequently, we will illustrate the creation of test 
sequences, fitness function and the procedure of creating a new 
population in detail. 

A. Creation of Test sequences 
As illustrated, a test sequence is a alternating sequence of 

outputs and inputs, thus the creation of test sequences is not 
feasible only using random strategy since MDPs are not output-
enabledness for any output. on the other hand, the equivalence 
between MDPs depends on the output distributions obtained by 
executing test sequences on them. We have MDP  with 
semantics  and MDP  with semantics  are equivalent 
if both output distributions i.e.  and  are equivalent 
for every test sequence . However, the output distribution of 
SUT is not available directly since it is black-box. The interfaces 
of SUT capturing MDP  we use as follow: 

 . reset SUT to the initial state, i.e. current state is 
initial state. 
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 . execute an input on SUT and select probabilisti-
cally a state according to the distribution of the 
probabilistic transition in  which starts from current 
state before  and its input is the same with the input 
of executing. The current state update to selected state 
after . 

After executing,  and  both return the label of 
current state. 

Based on the both operations  and , test sequences 
are generated by executing inputs step by step on SUT. Namely, 
a test sequence  implies MDP  underlying SUT with 
inputs  exists a path  such that  where  is a trace 
and . We have that for all prefixes  of 
any test sequence ,  is reachable on . It is worth noting that 
the length of test sequences, the amount of inputs in test 
sequences, is geometrically distributed with .  

As for the output distributions of SUT, we approximate them 
using statistical method. In other words, we execute test 
sequence  on SUT to observe the outputs, and record the 
frequency of every observable output by executing repeatedly . 
Thus the probability of any observable output is the ratio of itself 
frequency and the sum of frequencies recording all the 
observable outputs after executing . For example, we have 
observed outputs  and  after  executing with  on SUT, 
and the frequencies of  and  are  and  respectively, so 
the output distribution  for  is . 
It is reliable for the output distributions obtained by statistical 
method if the number of executing the same test sequence 
exceeds a big enough number  on SUT according to the law 
of large numbers. The value of  is decided by specific 
situation.  

We use  to denote the structure consisting of a test 
sequence and corresponding output distribution of SUT. 
Algorithm 1 shows the method obtaining test sequences and 
corresponding output distributions of SUT as discussed. The 
fitness function illustrated later evaluates individuals using 

. 

B. Fitness Evaluation 
It is important for genetic programming to calculate 

rationally the fitness of individuals. Intuitively, the individual 
with the highest score of fitness has the same reactions with SUT 
if executing any test sequence. As illustrated, a deterministic 
MDP  returns either a distribution  or the undefined 
behavior  when executing test sequence . The undefined 
behavior  means that trace  is unreachable on  if 

. Here we define that for MDP  with semantics  a 
test sequence  is  if .  

It is not certain for a test sequence that is not . In general 
MDPs of population are deterministic, and we just have a result 
that either is a distribution or  if we execute a test sequence on 
learned model. However, mutation and crossover may introduce 
non-deterministic behaviour to new MDPs. Non-deterministic 
MDPs may lead to multiple paths existing if executing the same 
test sequence. Our goal is finding a deterministic and equivalent 
model in the population, thus for a learned model  a test 
sequence  is  if neither shows non-deterministic behavior 

nor is unreachable during executing  on . It is easy to know 
a test sequence  is  for MDP  if  exhibits non-
deterministic behavior during executing . 

 
Another factor to influence the fitness of individuals is the 

distance between distributions. The verdict of test sequence just 
consider the traces between learned model and SUT, and we add 
the distance of output distribution as a part of fitness function. 
Here we use the Kullback-Leibler Divergence (KLD) 5 to 
measure the distance of distribution. According to KLD, the 
distance of both the output distributions ,  obtained by 
executing the same test sequence on learned model  and SUT 
respective, is defined as  

where . We set a constant 
 to negate the distance since smaller  implies the 

learned model is more fitted. Thus we have 
 denotes the similarity of between both the output 

distributions ,  from learned model  and SUT respective. 

We use weights to control the fitness of individuals. As 
discussed,  denotes the fitness of the test sequence  
for MDP , controlled by weights , ,  and 

. we have  

 

where  is the verdict of test sequence  for MDP . 
The fitness function is defined as 
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where  is the set of test sequences obtained before-hand, and 
 is related to the size of , e.g. the numbers of states 

and transitions. If two individuals have the same fitness of test 
sequence for every test sequence but the size of them is different, 
the individual of bigger size is redundant. 

C. Creation of New Population 
As discussed, a new population generated by applying 

genetic operators to selected individuals. Here, we use 
tournament selection to select  individuals according to their 
fitness. Tournament selection chooses the fittest individual of a 
subset of population, and the subset of population also randomly 
selected.   

Based on Mutation, we design some operations to change a 
part of origin MDP respectively. TABLE I. lists operators 
related to distribution. The others is the same with [4] (except 
for operations related to clocks), such as changing the source 
state of a transition, removing or adding a transition, splitting a 
state or a transition and adding or merging states. 

TABLE I.  MUTATION OPERATIONS 

Operation Short description 

add target 

selects a distribution of a transition, adds a 
new state to the distribution with label 
different with labels existing, and assigns 
probabilities to target states of the 
distribution 

change target 

selects a distribution of a transition and 
changes one of target states into a selected 
state with label different with labels 
existing 

remove target selects a distribution of a transition and 
removes one of target state 

change 
probabilities 

selects a distribution of a transition and 
assigns new probabilities to origin targets 

 

We implement crossover as a parallel composition of two 
individuals defined in [11]. Namely, for the parents 

 we have the offspring of them 
is  such that, for 
each state pair  and input : 

- , we have 

 

where  such that 
 for  and . 

- the labelling function is given by 
, i.e. randomly selected between  

and . 

IV. CASE STUDY 
It is difficult to achieve complete equivalence between a 

learned model and the target model represented by the SUT if 
the models exhibit probabilistic behavior. So we evaluate the 
accuracy between learned models and target models using two 
measurements as in [1]: the discounted bisimilarity distance [9] 
between the learned model and the target model and compare 
probabilities of temporal properties predefined with all models 
by PRISM [10].  

For deciding the distribution whether adequately close true 
output distribution, we set . As for the value of 
constraint , we set  according to the experiments. The 
parameters related to genetic programming is similar for all 
experiments. we set , , 

, . We set ,  to 
control the generation of MDPs and test sequences. As for the 
weights of fitness function, we set , 

, , . We all evaluate 3 academic 
probabilistic systems. All Experiments run on a notebook with 
16 GB RAM, an Intel Core i7-9750H CPU operating at 2.6 GHz 
and running Windows 10. The measurement results of 32 target 
models show in TABLE II. The outputs represents the number 
of executed . 

In addition to the academic probabilistic system (coffee 
machine, grid world robot), we have three groups of random 
MDPs, each containing ten MDPs: 10_4_4, 20_4_4, 30_4_4, 
where the first number gives the number of states, the second 
and the third the number of inputs and outputs. For random 
Examples, we have not verify the temporal properties, and we 
just evaluate the discounted bisimilarity distance with . 
We set . The average discounted bisimilarity 
distance are at most 0.1977 for the group 10_4_4, 20_4_4 and 
30_4_4. 

TABLE II.  MEASUREMENT RESULTS 

target models states  outputs time(min) 

coffee machine 3 0.0329 65868 0.05 

grid world robot 36 0.1997 76525285 376 

10_4_4 10 0.1873 21463472 20 

20_4_6 20 0.1937 48413822 81 

30_4_10  30 0.1963 70138697  137 

 

Coffee Machine is a small and easy model to express the 
behavior of obtaining a coffee with the probability 0.8 and 
occurring a faulty with the probability 0.2 if putting a coin in the 
machine. The true model of coffee machine has 3 different states 
and 2 input symbols. We set , , 

, , . Specially, it is 
adequate to set  and . The evaluation of 
bisimilarity distance with  to the true model is 0.0329.  

Grid world robot is a control strategy similar with [1], in 
which a robot move from an initial location to a goal location. 
But the movements of the robot may arise faulty with a certain 
probability. The true model of grid world has 35 different states 
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and 4 input symbols. We set . The evaluation of 
bisimilarity distance with  to the true model is 0.1997. 
The probabilities of temporal properties between true model and 
learned model are listed in TABLE III. These temporal 
properties ask for the maximum probability of reaching the goal 
within a vary amount of steps.  and  represent the 
probabilities of true model and learned model respectively. The 
absolute different between and  is at most 0.0391. 

TABLE III.  EVALUATION OF GRID WORLD ROBOT FOR TEMPORAL 
PROPERTIES 

temporal properties   

 0.9622 0.9441 

 0.6499 0.6139 

 0.6912 0.6521 

 

V. CONCLUSION 
In this paper, we present a heuristic method to learn MDPs 

that is based the framework of genetic programming. According 
to the general framework of genetic programming, we make an 
adaption in the generation of test sequences, the fitness function 
and the implementation of creating new population. The method 
outputs a learned model that is consistent with traces from black-
box system. We evaluate one academic probabilistic system and 
30 random examples that could be closed to true models. 

But this work has some aspects that are worthy of 
improvement. The accuracy of the learned models depends on 
whether the test data include completely the behavior of the 
target model. Although the test sequences we use are randomly 
generated, it outputs precise learned models based on massive 
data. Thus the future works we are considering include to reduce 
the amount of data by interacting with the systems. 
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