

Learning Markov Decision Processes Based on
Genetic Programming*

Rong Wu
School of Software Engineering

Tongji University
Shanghai, China

wu_rong@tongji.edu.cn

Jin Xu
School of Software Engineering

Tongji University
Shanghai, China

slhjin@tongji.edu.cn

Abstract—Model checking is used to verify the security of
communication protocols in which the behavior is stochastic
influenced by the environment. Automata learning settles the
problem of obtaining formal models from observable data of
black-box systems. It is available for different variations of finite
automata to in model checking. Genetic Programming is a machine
learning technique that automatically generates programs and
outputs a fittest program. In this paper, we present an approach to
learn markov decision progresses based on the framework of
genetic programming. The approach outputs the fittest model with
a set of system traces by refining iteratively models. We evaluate
our method on one probabilistic system from the literature and 30
randomly generated examples.

Keywords—automata learning, genetic programming, markov
decision processes, model checking

I. INTRODUCTION (HEADING 1)
Model checking is a important technique of verifying system

security. Probabilistic model checking can offer the probability
of satisfying some property, e.g. model checking tools Prism [10]
accepts LTL or PCTL formulae describing the property and
outputs the optimal probability. In practical ap- plications, the
internal structure of a system may be unknown since the third-
party modules. Automata learning settles the problem of
obtaining formal models from observable test data of black-
box systems. In fact, it is available for many variations of finite
automata in LearnLib [12] which efficiently implements the
learning algorithms of different automata, e.g. deterministic
finite automata (DFA) and mealy machines.

Genetic programming [2] is a machine learning technique
that automatically generates programs and modifies iteratively
these programs. Using the technique of model-based testing [13],
some learning algorithms have learnt successfully models via
genetic programming, such as DFA [7], [8], timed automata
[4],[6]. It can learn a precise models consistent with a set of
traces of black-box systems. However it is unavailable for
Markov Decision Process (MDPs). MDPs are used to model
stochastic systems, e.g. communication protocol. For protocol
verification it is crucial to obtain the formal models from the
protocols using automata learning.

In this paper, we indicate that MDPs can be learned based
the framework of genetic programming and we evaluate our
method on one academic probabilistic system and 30 randomly

generated examples. The contribution of this paper is we
propose a heuristic method to learn MDPs that shows the learned
models are closed to true models. The outline of this article
shows as follows: Sect. II reviews the concepts of markov
decision processes and genetic programming. Sect. III presents
the method of learning MDPs based on genetic programming.
The experimental results of our method are listed in Sect. IV
and we provide the discussion in Sect. V.

II. PRELIMINARIES

A. Markov Decision Processes
Markov decision processes (MDPs) can express the systems

with stochastic behaviors, in which a transition happens with
some probability depending on the chosen input. We learn
deterministic labelled MDPs as in [1]. A labelled markov
decision process is a tuple where is
a finite non-empty set of states; and are finite sets of input
and output symbols respectively, is the initial state;

 is the set of probabilistic transitions.
denotes a set of . A distribution

 over set is a function mapping to
such that . Let denotes the

 at which assigns 1 to ; and
is the labelling function. An MDP is deterministic if

.

We use the terms traces and test sequences similarly to [1].
A path through an MDP is an alternating sequence of states
and input symbols starting in the initial state , i.e.

. In each state , The next state is
selected probabilistically depending on the distribution
such that . We observe a trace

 during the execution of a path
with . Notably, a trace leads to a unique
state of an MDP . denotes the state reached by the trace
 or if is unreachable i.e. the path of MDP corresponding

trace is nonexistent. A test sequence consists of a trace and
a input , thus after executing test sequence , reaches
the state and enables input to tests the response.

The semantics of a MDP is
defined as a function which maps a test sequence to a
distribution if is reachable on or otherwise.
Concretely, we have as follows: a) if

72

2022 2nd Asia Conference on Information Engineering (ACIE)

978-1-6654-7973-8/22/$31.00 ©2022 IEEE
DOI 10.1109/ACIE55485.2022.00023

20
22

 2
nd

 A
sia

 C
on

fe
re

nc
e

on
 In

fo
rm

at
io

n
En

gi
ne

er
in

g
(A

CI
E)

 |
 9

78
-1

-6
65

4-
79

73
-8

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

AC
IE

55
48

5.
20

22
.0

00
23

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:28:00 UTC from IEEE Xplore. Restrictions apply.

; b) for , if , or
 otherwise if

. denotes the set of traces. The
equivalence is approximated as conformance checking between
learned model (hypothesis) and the system under test (SUT).
After executing test sequences, we check conformance between
the SUT's outputs and the distributions predicted by the
hypothesis.

B. Genetic Programming
Genetic programming [2] is similar to genetic algorithm [3]

that evolves computer programs. Populations in genetic
programming consists of individuals (programs), and each
individual represents some potential solution to a specific
problem. Generally speaking, genetic programming modify
iteratively individuals in the population until an acceptable
solution is found or the maximum of iterations has been
achieved. Initial population is randomly created and then the
population is updated by genetic operators. A fitness function is
used to evaluate individuals in the population, and the next
generation of individuals are generated by applying genetic
operators to individuals selected. The selection method bases on
the fitness function to select the fittest members of the
population. Three types of genetic operators are commonly used:
reproduction, mutation, and crossover.

 Reproduction: copy an individual as a new individual in
the population.

 Mutation: change an individual introducing individual
different from the last generation.

 Crossover: make an exchange of two individuals
randomly chosen to create offspring.

III. GENETIC PROGRAMMING FOR MARKOV DECISION
PROCESSES

The genetic-programming framework for MDP is similar
with [4]. Fig. 1 depicts the procedure of genetic programming
for MDPs in which each individual is a MDP. An initial
population is generated using random strategy based on the
provided inputs and outputs of the SUT. Then each MDP (all

) of this population are evaluated by test sequences
generated before-hand and a fitness function. The fitness
function considers the amount of passing test sequences and
features of the learned MDP, e.g. size and non-deterministic
behavior. The termination criteria depends on the amount of
generations having been performed and the best individual

 of the population that passes all test cases. In other words,
the procedure terminates if either exists and the fitness is
unchanged during generations or has reached

, where and are parameters. The fittest MDP
of final generation is the output of the procedure as learned
model.

New Population is created if termination criteria is not met.
New individuals are based on the individuals existing.
Afterward, for all individuals selected we mutate them with
probability , copy it to new population with probability
and randomly select other individual to create together their
offsetting with probability . We have a new population

after performing genetic operators to individuals chosen.
Then the new population is evaluated to find the fittest MDP.

Fig. 1 Procedure of Genetic Programming for MDP

The initial population is created by randomly generating
 MDPs. A MDP is generated though randomly adding

states (the number of states at lease 2), and randomly selecting a
source state, a input and a distribution for transitions. The
number of transitions is controlled by whether the initial state of
the MDP is reachable with all the states and probability .
Distributions are generated after randomly selecting target states
and assigning a probability bigger than 0 to them such that the
sum of the probabilities equal 1. Notably, the labels of all the
target states included by the same distribution must be different
for each pair. Subsequently, we will illustrate the creation of test
sequences, fitness function and the procedure of creating a new
population in detail.

A. Creation of Test sequences
As illustrated, a test sequence is a alternating sequence of

outputs and inputs, thus the creation of test sequences is not
feasible only using random strategy since MDPs are not output-
enabledness for any output. on the other hand, the equivalence
between MDPs depends on the output distributions obtained by
executing test sequences on them. We have MDP with
semantics and MDP with semantics are equivalent
if both output distributions i.e. and are equivalent
for every test sequence . However, the output distribution of
SUT is not available directly since it is black-box. The interfaces
of SUT capturing MDP we use as follow:

 . reset SUT to the initial state, i.e. current state is
initial state.

73

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:28:00 UTC from IEEE Xplore. Restrictions apply.

 . execute an input on SUT and select probabilisti-
cally a state according to the distribution of the
probabilistic transition in which starts from current
state before and its input is the same with the input
of executing. The current state update to selected state
after .

After executing, and both return the label of
current state.

Based on the both operations and , test sequences
are generated by executing inputs step by step on SUT. Namely,
a test sequence implies MDP underlying SUT with
inputs exists a path such that where is a trace
and . We have that for all prefixes of
any test sequence , is reachable on . It is worth noting that
the length of test sequences, the amount of inputs in test
sequences, is geometrically distributed with .

As for the output distributions of SUT, we approximate them
using statistical method. In other words, we execute test
sequence on SUT to observe the outputs, and record the
frequency of every observable output by executing repeatedly .
Thus the probability of any observable output is the ratio of itself
frequency and the sum of frequencies recording all the
observable outputs after executing . For example, we have
observed outputs and after executing with on SUT,
and the frequencies of and are and respectively, so
the output distribution for is .
It is reliable for the output distributions obtained by statistical
method if the number of executing the same test sequence
exceeds a big enough number on SUT according to the law
of large numbers. The value of is decided by specific
situation.

We use to denote the structure consisting of a test
sequence and corresponding output distribution of SUT.
Algorithm 1 shows the method obtaining test sequences and
corresponding output distributions of SUT as discussed. The
fitness function illustrated later evaluates individuals using

.

B. Fitness Evaluation
It is important for genetic programming to calculate

rationally the fitness of individuals. Intuitively, the individual
with the highest score of fitness has the same reactions with SUT
if executing any test sequence. As illustrated, a deterministic
MDP returns either a distribution or the undefined
behavior when executing test sequence . The undefined
behavior means that trace is unreachable on if

. Here we define that for MDP with semantics a
test sequence is if .

It is not certain for a test sequence that is not . In general
MDPs of population are deterministic, and we just have a result
that either is a distribution or if we execute a test sequence on
learned model. However, mutation and crossover may introduce
non-deterministic behaviour to new MDPs. Non-deterministic
MDPs may lead to multiple paths existing if executing the same
test sequence. Our goal is finding a deterministic and equivalent
model in the population, thus for a learned model a test
sequence is if neither shows non-deterministic behavior

nor is unreachable during executing on . It is easy to know
a test sequence is for MDP if exhibits non-
deterministic behavior during executing .

Another factor to influence the fitness of individuals is the

distance between distributions. The verdict of test sequence just
consider the traces between learned model and SUT, and we add
the distance of output distribution as a part of fitness function.
Here we use the Kullback-Leibler Divergence (KLD) 5 to
measure the distance of distribution. According to KLD, the
distance of both the output distributions , obtained by
executing the same test sequence on learned model and SUT
respective, is defined as

where . We set a constant
 to negate the distance since smaller implies the

learned model is more fitted. Thus we have
 denotes the similarity of between both the output

distributions , from learned model and SUT respective.

We use weights to control the fitness of individuals. As
discussed, denotes the fitness of the test sequence
for MDP , controlled by weights , , and

. we have

where is the verdict of test sequence for MDP .
The fitness function is defined as

74

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:28:00 UTC from IEEE Xplore. Restrictions apply.

where is the set of test sequences obtained before-hand, and
 is related to the size of , e.g. the numbers of states

and transitions. If two individuals have the same fitness of test
sequence for every test sequence but the size of them is different,
the individual of bigger size is redundant.

C. Creation of New Population
As discussed, a new population generated by applying

genetic operators to selected individuals. Here, we use
tournament selection to select individuals according to their
fitness. Tournament selection chooses the fittest individual of a
subset of population, and the subset of population also randomly
selected.

Based on Mutation, we design some operations to change a
part of origin MDP respectively. TABLE I. lists operators
related to distribution. The others is the same with [4] (except
for operations related to clocks), such as changing the source
state of a transition, removing or adding a transition, splitting a
state or a transition and adding or merging states.

TABLE I. MUTATION OPERATIONS

Operation Short description

add target

selects a distribution of a transition, adds a
new state to the distribution with label
different with labels existing, and assigns
probabilities to target states of the
distribution

change target

selects a distribution of a transition and
changes one of target states into a selected
state with label different with labels
existing

remove target selects a distribution of a transition and
removes one of target state

change
probabilities

selects a distribution of a transition and
assigns new probabilities to origin targets

We implement crossover as a parallel composition of two
individuals defined in [11]. Namely, for the parents

 we have the offspring of them
is such that, for
each state pair and input :

- , we have

where such that
 for and .

- the labelling function is given by
, i.e. randomly selected between

and .

IV. CASE STUDY
It is difficult to achieve complete equivalence between a

learned model and the target model represented by the SUT if
the models exhibit probabilistic behavior. So we evaluate the
accuracy between learned models and target models using two
measurements as in [1]: the discounted bisimilarity distance [9]
between the learned model and the target model and compare
probabilities of temporal properties predefined with all models
by PRISM [10].

For deciding the distribution whether adequately close true
output distribution, we set . As for the value of
constraint , we set according to the experiments. The
parameters related to genetic programming is similar for all
experiments. we set , ,

, . We set , to
control the generation of MDPs and test sequences. As for the
weights of fitness function, we set ,

, , . We all evaluate 3 academic
probabilistic systems. All Experiments run on a notebook with
16 GB RAM, an Intel Core i7-9750H CPU operating at 2.6 GHz
and running Windows 10. The measurement results of 32 target
models show in TABLE II. The outputs represents the number
of executed .

In addition to the academic probabilistic system (coffee
machine, grid world robot), we have three groups of random
MDPs, each containing ten MDPs: 10_4_4, 20_4_4, 30_4_4,
where the first number gives the number of states, the second
and the third the number of inputs and outputs. For random
Examples, we have not verify the temporal properties, and we
just evaluate the discounted bisimilarity distance with .
We set . The average discounted bisimilarity
distance are at most 0.1977 for the group 10_4_4, 20_4_4 and
30_4_4.

TABLE II. MEASUREMENT RESULTS

target models states outputs time(min)

coffee machine 3 0.0329 65868 0.05

grid world robot 36 0.1997 76525285 376

10_4_4 10 0.1873 21463472 20

20_4_6 20 0.1937 48413822 81

30_4_10 30 0.1963 70138697 137

Coffee Machine is a small and easy model to express the
behavior of obtaining a coffee with the probability 0.8 and
occurring a faulty with the probability 0.2 if putting a coin in the
machine. The true model of coffee machine has 3 different states
and 2 input symbols. We set , ,

, , . Specially, it is
adequate to set and . The evaluation of
bisimilarity distance with to the true model is 0.0329.

Grid world robot is a control strategy similar with [1], in
which a robot move from an initial location to a goal location.
But the movements of the robot may arise faulty with a certain
probability. The true model of grid world has 35 different states

75

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:28:00 UTC from IEEE Xplore. Restrictions apply.

and 4 input symbols. We set . The evaluation of
bisimilarity distance with to the true model is 0.1997.
The probabilities of temporal properties between true model and
learned model are listed in TABLE III. These temporal
properties ask for the maximum probability of reaching the goal
within a vary amount of steps. and represent the
probabilities of true model and learned model respectively. The
absolute different between and is at most 0.0391.

TABLE III. EVALUATION OF GRID WORLD ROBOT FOR TEMPORAL
PROPERTIES

temporal properties

 0.9622 0.9441

 0.6499 0.6139

 0.6912 0.6521

V. CONCLUSION
In this paper, we present a heuristic method to learn MDPs

that is based the framework of genetic programming. According
to the general framework of genetic programming, we make an
adaption in the generation of test sequences, the fitness function
and the implementation of creating new population. The method
outputs a learned model that is consistent with traces from black-
box system. We evaluate one academic probabilistic system and
30 random examples that could be closed to true models.

But this work has some aspects that are worthy of
improvement. The accuracy of the learned models depends on
whether the test data include completely the behavior of the
target model. Although the test sequences we use are randomly
generated, it outputs precise learned models based on massive
data. Thus the future works we are considering include to reduce
the amount of data by interacting with the systems.

REFERENCES
[1] Martin Tappler, Bernhard K. Aichernig, Giovanni Bacci, Maria

Eichlseder, and Kim G. Larsen. 2019. L*-Based Learning of Markov
Decision Processes (Extended Version). CoRR abs/1906.12239 (2019).
arXiv:1906.12239 http://arxiv.org/abs/190

[2] J. R. Koza. Genetic Programming: On the programming of Computers by
Means of Natural Selection. MIT Press, London, England, 1992.

[3] Melanie Mitchell. An introduction to genetic algorithms. MIT Press, 1998.
[4] Tappler, M., Aichernig, B.K., Larsen, K.G., and Lorber, F. (2018).

Learning Timed Automata via Genetic Programming. ArXiv,
abs/1808.07744.

[5] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley
Series in Telecommunications. John Wiley and Sons, 1991.

[6] Aichernig B.K., Pferscher A., Tappler M. (2020) From Passive to Active:
Learning Timed Automata Efficiently. In: Lee R., Jha S., Mavridou A.,
Giannakopoulou D. (eds) NASA Formal Methods. NFM 2020. Lecture
Notes in Computer Science, vol 12229. Springer, Cham.

[7] B. D. Dunay, F. E. Petry and B. P. Buckles, "Regular language induction
with genetic programming," Proceedings of the First IEEE Conference on
Evolutionary Computation. IEEE World Congress on Computational
Intelligence, 1994, pp. 396-400 vol.1.

[8] Alberto Bartoli, Giorgio Davanzo, Andrea De Lorenzo, Marco Mauri,
Eric Medvet, and Enrico Sorio. 2012. Automatic generation of regular
expressions from examples with genetic programming. In Proceedings of
the 14th annual conference companion on Genetic and evolutionary
computation (GECCO '12). Association for Computing Machinery, New
York, NY, USA, 1477–1478.

[9] Bacci, G., Bacci, G., Larsen, K.G., Mardare, R.: The BisimDist library:
Efficient computation of bisimilarity distances for Markovian models. In:
Joshi, K.R., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) Quantitative
Evaluation of Systems - 10th International Conference, QEST 2013,
Buenos Aires, Argentina, August 27-30, 2013. Proceedings. Lecture
Notes in Computer Science, vol. 8054, pp. 278–281.Springer (2013).

[10] Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: Verification of
probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.)
Computer Aided Verification - 23rd International Conference, CAV 2011,
Snowbird, UT, USA, July 14-20, 2011. Proceedings. Lecture Notes in
Computer Science, vol. 6806, pp. 585– 591. Springer (2011).

[11] Segala, R., Lynch, N.: Probabilistic simulations for probabilistic
processes. Nordic Journal of Computing 2(2), 250–273 (1995).

[12] Malte Isberner, Falk Howar, and Bernhard Steffen. 2015. The Open-
Source LearnLib: A Framework for Active Automata Learning.
https://doi.org/10.1007/978-3-319-216

[13] Martin Tappler, Bernhard K. Aichernig, and Roderick Bloem. 2017.
Model-Based Testing IoT Communication via Active Automata Learning.
In 2017 IEEE International Conference on Software Testing, Verification
and Validation (ICST). 276–287. https://doi.org/10.1109/ICS

[14] James Aspnes and Maurice Herlihy. 1990. Fast randomized consensus
using shared memory. Journal of Algorithms 11, 3 (Sept. 1990), 44

76

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:28:00 UTC from IEEE Xplore. Restrictions apply.

