
Learning Single-Machine Scheduling Heuristics Subject to Machine
Breakdowns with Genetic Programming

Wen-Jun Yin, Min Liu, Cheng Wn
Department of Automation, Tsinghua University, Beijing 10084 China

vwiYY@lmails.tsinahua.edu.cn, liumintdcims.tsinehua.edu.cn, ~vuc(iitsin..hua.edu.cn

Abstract- Genetic Programming (GP) has been rarely
applied to scheduling problems. In this paper the use
of GP to learn single-machine predictive scheduling
(PS) heuristics with stochastic breakdowns is
investigated, where both tardiness and stability
objectives in face of machine failures are considered.
The proposed hi-tree structured representation
scheme makes it possible to search sequcing and idle
time inserting programs integratedly. Empirical
results in different uncertain environments show that
GP can evolve high quality PS heuristics effectively.
The roles of inserted idle time are then analysed with
respect to various weighting objectives. Finally some
guides are supplied for PS design based on GP-evolved
heuristics.

1 Introduction

Production scheduling problems have attracted many
research efforts over the last several decades (Conway et
a/ 1967, Roadmmer ef a/ 1988). However one important
factor that prevents many algorithms from being
practicable is that they have poor mechanisms to handle
uncertainties in manufacturing systems such as machine
breakdowns (McKay ef ol1989).

In real world, there are often two key elements in the
scheduling systems considering exceptions, i.e., schedule
genereation and revisions. Schedule generation
determines the beginning and completing times of all
operations of jobs in a given time window and then
releases the plan to shop floor. As time passes, the initial
schedule might be revised (rescheduled) by the second
element when unforseen disruptions such as breakdowns
occur. From the viewpoints of planners, those simple and
quick heuristics for scheduling and rescheduling will be
preferable in practice. Dispatching rules such as SPT
(shortest processing time first) and EDD (earliest duedate
first) are typical examples. However, the quality of the
obtained schedules using these rules is often difficult to
be assured. especially in face of disturbances.

On the other hand, the initial schedule is planned not
only to make efficient use of shop resources for high
performance but also to guide external activities such as
material procurement or downstream processes. If the
released schedule is modified due to disruptions, those

external activities may he affected as well. Hence it is
necessary to consider machine failures in the initial
schedule so as to retain stability without loss of efficiency
meanwhile (Wu et a/ 1993, O’Donovan et a/ 1999). The
methodologies based on this idea are sometimes called
Predictable Scheduling and the initial schedule is called
predictive schedule because events that may or may not
happen in the future will he perceived and considered in it.
Apparently, this idea is different from common robust
scheduling which often focuses on shop performance
measures (Daniels and Kouvelis, 1995). In building a
predictive schedule (PS), one promising way is to
deliberately keep machine idle for appropriate time even
when jobs become available. If one breakdown occures
and is then repaired just during the idle period, the
disruption will be absorbed by the inserted idle time and
make little influence on shop performance or planned
external activities. Although it seems not effective to
insert idle times in predictive schedule from classical
research viewpoints, predictive schedules with approriate
idle times will in fact amve at global balances between
producing efficiency and stability and be preferred by
practitioners. However, to build predictive schedules
with high quality, one needs to determine both job
processing sequence and inserted idle time before each
job in an integrated manner according to current job and
machine status. There is not too many relevant reports on
PS yet.

In order to solve complex real-time scheduling
problems especially under stochastic breakdowns, the
heuristics such as dispatching rules well-customized for
specific scenarios can be effective and practical methods.
Unfortunately it is often too difficult to develop simple
efficient heuristics even by domain experts. It may takes
long time and huge efforts to achieve good heuristics. In
this paper, we use genetic programming (GP) to discover
good PS heuristics for single machine with breakdowns.
As one member of the evolutionary computation family,
GP (Koza 1992, Banzhaf et a! 1998) often follows the
basic flow like genetic algorithms. But the main
difference is that GP evolves computer programs of
variable size. Thus if the solution of one problem can be
represented by a computer program, GP will be able to
search for it. In this sense, GP serves as one potential
means for machine learning, rule discovery and data
mining (Dimopoulos et a1 2001). Apparently, we can treat

0-7803-7804-0 /03/$17,00 0 2003 IEEE 1050

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:21:09 UTC from IEEE Xplore. Restrictions apply.

PS heuristics as programs and then use GP to find good
ones.

In Section 2, the scheduling problems of single
machine to minimize the mean tardiness subject to
breakdowns are formulated. The performance measures
concerning both shop efficiency and stability are then
defined. The GP learning system is then proposed
thoroughly in Section 3 with the focuses on bi-tree
structured representation, stochastic sampling and fitness
evaluation. The test results are analyzed in detail in
Section 4 and some further discussions about idle time
and evolved rules are also made. Conclusions and future
work are pointed out finally.

2 Problem Formulation

2.1 Predictive Scheduling and Rescheduling
Given a problem instance q with N jobs to be

processed on a single machine. The release time 5 ,
processing time pi and duedate d, for each job

i E N are deterministic and known apriori. What can be
known about breakdowns are their probability
distributions of occurring frequencies and durations
which may be obtained from previous maintenance
records and are assumed to be known a priori in the
following.

Let S,(q,h) = {K,K~...IT~} be the predictive

schedule of problem q using some heuristic h , where

permutation { I T , K ~ . .nN} is the processing sequence of

N jobs. For each job i in the sequence, denote bpi its

beginning time, cpi its completing time and iti the

inserted idle time before it. We have
b,, = max{c,,-, > y,, } + it,

(1)
C,’”, = bpn, + P , (1 2 i 2 N)

where b,, - - cpzu = 0

The initial schedule S,(q,h) is then released to the

shop floor and modified(reschedu1ed) if necessary. When
all jobs are completed, we have a realized schedule
S,.(q) where the real completing time of each job i is

c,, , Since we focus on obtaining effective predictive
scheduling heuristics, the rescheduling strategy adopted
here is right-shift rescheduling and the preempt-resume
case is assumed. That is, the job in process can be
resumed without loss of prior work as soon as the
machine is repaired and the sequence in the predictive
schedule is still maintained.

2.2 Performance Measures
For problem instance q under stochastic breakdowns, the
tardiness of a given job i using heuristic h is defined as

7; (q,h) = max{rnax(cpj,c,,) -d , ,0} (2)
where both the planned and realized completing time of
job i are considerd because they serve as bases for
calculating job tardiness at the beginning and end of
planning horizon respectively in practice.

The mean tardiness of the problem with h is then
defined as

To reduce the impact of breakdowns on external
activities, the realized completing time of each job is
hoped not too different from the orginal plan. Thus, we
can measure the stability of heuristic h on problem q by
the mean completing time .deviations between the intial
and final schedules. That is

For a given instance q , the effect of predictive

scheduling with heuristic h on shop performance and
stability could be measured by (3) and (4) respectively.
These hicritena can he combined into a single objective
weighted by wr E [0,1] ,

f(q,h)=w,T(q,h)+(l-w,)CD(q,h) (5)
-

Furthermore, the performance of h on certain
problem instance set Q = {q} can be calculated by

where IQ1 is the size of set e. The less FQ(h) becomes,

the better h acts on Q

3 Genetic Programming for PS Heuristics

In GP, each individual (program) takes a number of
inputs that are relevant to the considered problem,
manipulates them through a number of functions and then
outputs the requried results. For PS heuristics, it is hoped
to get both job sequence and inserted idle time before
each job fiom available shop information, which will be
achieved in the following through the chosen terminal
and function sets and appropriate individual structures.

3.1 Terminals and Functions
The search space in GP is the space of all possible
programs composed of terminals and functions. When
applying GP to predictive scheduling problems of a single
machine with breakdowns, we choose the following
scheduling attributes as to form the terminal set.

pi - processing time ofjob i
di - duedate of job i
5 - release time ofjob i

1051

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:21:09 UTC from IEEE Xplore. Restrictions apply.

.M - total job number
N,. - remained job number
RPSurn - sum of processing time of remained jobs
R D S m - sum of duedate of remained jobs
BP - expected period of breakdown occurrence
MP - expected duration of breakdown
t - current time
Const - constant integer in [-551.

And the function set is comprised of the following
operations

(+,-,X,%)- addition, subtraction, multiplication and
division where % refers to protected division which
will return 1 if the value ofthe denominator equals 0
(Inin, max)- minimum and maximum of two numbers
8 - 6(x ,y) = 1 if x > y and 0 otherwise.

3.2 Bi-tree Structured Representation
In GP, each possible PS heuristic is treated as a candidate
computer program (individual) to be evolved. The
program is represented with two subtrees,

where each subtree serves as a function that collects the
input information to calculates the output (See in Fig. 1).
For one problem instance q , subtree ptree calculates

the priority index pri(i,t) of each available job i on
current time t and subtree itree then output the to-be-

inserted idle time itime(i*,t) before processing i', the
job of the highest priority index. Obviously,

prog = {ptree,itree} (7)

Update the simulating time as t = c and repeat

selecting the remaining jobs according to the above
procedure until1 all jobs have been planned. Then one
predictive schedule s,, (q , prog) is obtained

P'.

ptr'% ilree

pri(i,t)=(d,-p,l X(I+N) irimefi.t)=p. Xlp,-tl

Fig. I Demonstration of bi-tree structured representation

What can be seen is that the bi-tree structured
representation scheme integrates two subprocesses of PS
by two subtrees in a more nature way. That is, each time
one job is selected and the inserted idle time is then
calculated. These two subtrees co-evolve in the space of
all possible PS programs with their size and shape

changed dynamically. With the help of GP searching
mechanisms like genetic algorithms, optimal or near-
optimal PS heuristics will be achieved.

3.3 Stochastic Sampling and Fitness Evaluation
The fitness of individual (program) is determined by its
test quality on certain set of fitness cases Q = {q}
according to Formula (6).

is
too large, extensive computational resources will be spent
on calculting fitness. To save time-consumption, we
modified the fitness evaluation procedure with stochastic
sampling (SS) techniques. During the process of SS
evaluation on a program, one random subset of e is
firstly generated. The fitness value is then acquired from
(6) based on this smaller subset. Another consideration of
using SS here is to avoid over-fitting phenomena during
learning.

3.4 Configurations of CP
The proposed GP for learning PS heuristics is configed as
follows.

Homologoiis Sibtree Crossover. Crossover is carried
out between the subtrees of similar functions, i.e., one
parent ptree recombines with the other ptree and so
does itree. The crossover probability is set 0.9.

Mutation. Both subtrees mute randomly and the
mutaion probability is set 0.5. The chosen crossover and
mutation parameters have shown effective in our
experiments.

However, when the size of learning problem set

Selection. Tournament selection is applied with size 7.
Others. The population size is set 50, the maximum

generation 80, the maximum number of subtree nodes 80.
When an individual is evaluated on training set with
stochastic sampling, a subset containing 1/5 random
problem cases of is sampled.

4 Empirical Results and Analyses

4.1 Training and Testing Problem Cases
The proposed GP algorithms are run in various
environments with different characteristics such as
breakdown distribution and duedate tightness. Each
environment consists of two problem case sets of the
same size, i.e., training .set e and testing set T . Each

time the GP is trained on to learn high quality PS

heuristics and then the evolved program is tested on T
for comparisons.

and Tare generated randomly in
the same way.

N - five levels are considered (N=15, 25, 40, 60,
80).
pi - random number from the discrete uniform
distribution U[l.ZO].

The problems of

1052

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:21:09 UTC from IEEE Xplore. Restrictions apply.

U', W1 w; W4 Wr
BNMI 2.0(-93.3) 31.01-49.8) 54.8(-41.8) 63.8(-49.5) 81.4(-48.7)
BiMi 62-93.6) 27.1(-79.2) 46.31-71.9) 65.8-66.9) 84.8(-63.6)
BIM; 12.6(-94.0) 38.6(-84.4) 56.41-80.3) 77.3(-76.1) 97.1(-73.2)
B M 3.6(-59.5) 23.71-43.1) 42 .842 .3) 62.4(-41.6) 8W-41.6)
B.Ml 9.2(-66.4) 38.0(-41.1) 58.5(-42.4) 78.1(-43.6) 98.9(-43.7)
B.M, 25.31-53.8) 53.0(-46.0) 75.9(-46.4) 98.0(-47.0) I19.0(-47.9)
BlMl 7.2(4.4) 31.3(-31.0) 52.5(-32.5) 70.7(-35.8) 90.5(-36.6)
B I M ~ 16.2(46.5) 47.1(-29.6) 68.7C33.7) 108.3(-22.8) I15.1(-34.9)
B,Mi 32.6(-47.7) 87.5(-16.1) 120.6(-17.4) 139.3(-25.9) 158.4(-31.1)
Db 16.4(-73.6) 43.4(-58.1) 69.6(-5?.01 97.6(-47.7) 121.2(-46.8)
D-. 18.4(-68.2) 41.3k56.4) 62.3(-52.9) 83.3(-50.8) 104.4(-49.5)
D; 19.5-67.9) 35.8-60.9) 54.01-55.9) 71.8(-53.1) 87.3(-5?.5)

Table 1 Values of FTcp and Ar(%)

ri - random number from the discrete uniform
distributions u[o, pNE(p i)] , where E (p i) is the
expected processing time and two levels of p are
included (p = 0.25,0.50).
d, - di = rj +pi where y follows the continuous
uniform distributions U[u.b] and three values of (a,b)
are considered, i.e., (0,1.2), (1,3) and (3 3 which we
refer to as DI through D,. Here, D , has the tightest
duedates while D, the loosest.
BP - the time between breakdowns is generated
from the exponential distributions with mean
BE(p,) and three values of 0 are considered, i.e.,
10, 5, and 2 which we refer to as BI-B,. In B,
situation, breakdowns occur more frequently than in
B , and B?.
MP - the breakdown durations follow some uniform
distributions U [p , E (p j) , P z E (p i)] and three pair
values of (p,,pz) are considered, i.e., (0.1,0.5),
(0.5,1.5) and (1.3) which we refer to as M1-M3. In the
case of (1,3), mean repair time will he higher than in
the other two cases. Both BP and M P are
anticipated in advance and then keep fixed during the
problem instance is solved.

To consider diffemet breakdown characteristics, we
have nine parameter combinations of B,M,
(1 I i, j < 3). For each combination, there are total 5 X 2
X 3 = 30 subcombinations of the other parameters
(N,p ,y) and we generate 12 instances for each

subcombination. Thus, for each environment BiMj ,
there are 360 problem instances for training and 360 ones
for testing.

The second class of environments focuses on duedate
tightness D, (15 d < 3). There are total 5 X 2 X 3 X

3=90 subcombinations for the remained parameters and
we generate 4 instances for each subcombination. Thus
the training and testing sets are composed of 360 problem
instances respectively in each environment D,

Altogether, there are nine environments fociising on
brrnkdown types and three environments on duedate
restrictions. For each environments, five values of weight
M ' ~ is considered, i.e., 0, 0.15, 0.50, 0.75.and 1.0 which

we refer to as W,-W5. GP algorithms are trained to
produce high quality PS heuristics in each environment
with each weight.

4.2 Comparisons with Other Heuristics
In order to test the performance of GP-evolved heuristics,
we choose ATC(Z)+OSMH heuristics for comparison
which have performed well as reported (O'Donovan
1999). For each environment, the objectives of GP-
evolved program and ATC(Z)+OSMH on testing set T
are denoted FTcp and IT,?, respectively. Define the
improvement ratio of GP relative to ATC(Z)+OSMH as

where Ar < 0 means performance improvement of GP
over ATC(2)cOSMH. The lesi I F is. the better GP
shows. The values of FT,, and Ar in all scenarios are
illustrated in Table 1 where the numbers outside brackets
are FTGp and those inside brackets are Ai'.

It can be seen from Table 1 that GP achieves
significant improvement over ATC(Z)+OSMH in all
scenarios (A r 5 -16.1%). And it might be interpreted
as the flexible integration of sequencing and idle time-
inserting mechanisms with bi-tree structures and GP's
powerful ability to search in heuristic space. Additionally,
this result indicates that man-made or knowledge-based
heuristics like ATC(2)+OSMH are not suitable for
general scenarios although huge efforts might have been
spent on developing them. Thus it is better to find specific
heuristics for specific scheduling environments. Machine
learning like proposed GP will possibly supply promising
ways.

It can also be concluded that in most cases, FTGp
degrades as breakdowns occur more frequently (e.g.,
BIM?-BJM2 with W]), repair' durations become longer
(e.g., BIMI-BIMI with W,) or duedate restricts get tighter
(e.g., D r D I with W?). Therefore breakdown or duedate
characteristics will mainly influence PS performance.

4.3 Roles of Idle time
Just as mentioned nhovc. the inserted idle time serves as
Ihr buffer to absorb unpredictable disruptions with shop

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:21:09 UTC from IEEE Xplore. Restrictions apply.

performance maintained well. To get further perceive
about how idle time performs in predictive scheduling, we
define the averaged idle time (AIT) of heuristic h on
testing set T as

Table 2 shows the AIT values of GP-evolved programs
in 12 environments. It can he seen that in a certain
environment (e.g., B2MI), the AIT becomes smaller as
weight on tardiness gets larger (W,-W5). In the extreme
cases where wT = 1 .o (Wj), AIT often approaches zero.

The reason is that as wr gets larger, requriements on
high shop performance gets stronger and in the case of
Wj, the problem becomes robust scheduling and less
inserted idle time is preferred. On the other hand, when
wr gets smaller, the planner focuses more on preserving
stability and larger AIT is therefore expected to weaken
the impact of unavoided failures or contingencies on
manufacturing systems.

W I w. w, w, wi
BIM, 0.2 1.0. 1.6 0.7 0.2
B,MI 0.7 0.4 0.5 0.3 0.0
BIM, 1.0 0.0 0.6 0.6 0.0
B2MI 0.6 0.3 0.2 0.2 0.0
B?MI 1.5 0.1 0.0 0.0 0.0
B?MI , 1.8 1.0 1.0 0.8 0.3
B;M, 0.8 1.0 0.9 0.2 0.0
B3M: 3.1 1.0 2.0 6.2 0.0
BIM, 8.9 0.0 0.1 0.2 0.0

D, 1.8 1.3 1.5 0.5 ‘ 0 . 1
D1 0.8 0.8 1.0 0.6 0.0
D; 0.8 1.1 0.6 0.3 0.0

-
Table 2 i f , Vahies of GP

4.4 Perspectives of Predictive Scheduling
The discovered programs from GP in various
environments can further give us useful guides in design
predictive scheduling algorithms. Take the evolved PS
heuristic in BzMl with W5 for example, the simplified
subfunctions are expressed by (I 1) and (12) as follows.

p r i (i , f) = [1- 2(;Jp , -2d, (11)

itime(i,f) = min(d,,N~,MP-min(d,,N~)-l) (12)

According to (1 1). those jobs with smaller processing
time or duedate will he possible of higher priorities.
Hence it seems as the weighted combination of SPT and
EDD rules to deteimine job sequence. What’s more, as
time passes, the weight on SPT becomes stronger. Thus
(1 1) can he seen as one dynamic combinatorial rule.

In (12), the to-be-inserted idle time is determined by
job duedate, breakdown ’ duration and remained job

number together. If job duedate or breakdown duration is
small, the inserted idle time is also small. Obviously, this
conclusion is consistent with our intuition thinking. So
GP can learn and reformulate human knowledge in a
efficient way.

5 Conclusions and Future Work

In this paper, a GP-based learning system is investigated
on single machine predictive scheduling problems subject
to stochastic breakdowns. The hi-tree structured
chromosomes represent scheduling heuristics in a flexible
and nature way and the GP-evolved programs in various
environments perform much better than known heuristics.
The inserted idle time is proved to be the buffer against
uncertain disruptions. The obtained heuristics also supply
useful guide for further investigation.

Future work can be carried out on other PS model such
as parallel machine or flowshop scheduling problems.
The further control strategies are also needed on GP such
as parsimony control, multiagent or coevolution model,
etc.

Acknowledgments

This work is supported by National Science Foundation
of China(Grant No. 60004010) and High-Tech Program
of China(200 lAA4 1 1020).

Bibliography

W. Banzhaf, P. Nordin, R. E. Keller, and F.D. Francone,
(1998) ‘Genetic Programming: an introduction,” San
Francisco, CA: Morgan Kauffman.
R.W. Conway, W.L. Maxwell, and L.W. Miller, (1967)
‘Theory of scheduling,” Addison-Wesley, Reading, MA.
R. L. Daniels, and P. Kouvelis, (1995) “Robust
Scheduling to Hedge against Processing Time Uncertainty
in Single Machine Production,” Management Science, vol.
41, pp. 363-376.
C. Dimopoulos, and A. M. S., Zalzala., (2001)
“Investigating the Use of Genetic Programming for a
Classic One-machine Scheduling Problem,” Adv. Eng.
So$, vol32, pp. 489-498.
J.R. Koza, (1992) “Genetic Programming: on the
Programming of Computers by Means of Natural
Selection,” Cambridge, MA: MIT Press.
K. N. McKay, J. A. Buzacotl, and F. R. Safayeni, (1989)
“The Scheduler’s knowledge of uncertainty: The Missing
Link in Knowledge Based Production Management
Systems,” Elsevier Science Publishers.
R. O’Donovan, R. Uzsoy, and K. N., McKAY, (1999)
“Predictable Scheduling of a Single Machine with
Breakdowns and Sensitive Jobs,” h t . J. Prod, Res., vol
37, pp. 4217-4233.
F.A. Roadmmer, and K.P. White, (1988) “A recent survey
of production scheduling,” IEEE Transactions on Systems,
Man, and Cybernetics, vol 18, pp. 841-851.

1054

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:21:09 UTC from IEEE Xplore. Restrictions apply.

S. D. Wu, R. H. Sorer, and P. C. Chang, (1993) “One
Machine Rescheduling Heuristics with Efficiency and
Stability as Criteria,” Cornput. Ops. Res., vol.20, pp. 1-14.

1055

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:21:09 UTC from IEEE Xplore. Restrictions apply.

