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Abstract- Genetic Programming (GP) has been rarely 
applied to scheduling problems. In this paper the use 
of GP to learn single-machine predictive scheduling 
(PS) heuristics with stochastic breakdowns is 
investigated, where both tardiness and stability 
objectives in face of machine failures are considered. 
The proposed hi-tree structured representation 
scheme makes it possible to search sequcing and idle 
time inserting programs integratedly. Empirical 
results in different uncertain environments show that 
GP can evolve high quality PS heuristics effectively. 
The roles of inserted idle time are then analysed with 
respect to various weighting objectives. Finally some 
guides are supplied for PS design based on GP-evolved 
heuristics. 

1 Introduction 

Production scheduling problems have attracted many 
research efforts over the last several decades (Conway et 
a/ 1967, Roadmmer ef a/ 1988). However one important 
factor that prevents many algorithms from being 
practicable is that they have poor mechanisms to handle 
uncertainties in manufacturing systems such as machine 
breakdowns (McKay ef ol1989). 

In real world, there are often two key elements in the 
scheduling systems considering exceptions, i.e., schedule 
genereation and revisions. Schedule generation 
determines the beginning and completing times of all 
operations of jobs in a given time window and then 
releases the plan to shop floor. As time passes, the initial 
schedule might be revised (rescheduled) by the second 
element when unforseen disruptions such as breakdowns 
occur. From the viewpoints of planners, those simple and 
quick heuristics for scheduling and rescheduling will be 
preferable in practice. Dispatching rules such as SPT 
(shortest processing time first) and EDD (earliest duedate 
first) are typical examples. However, the quality of the 
obtained schedules using these rules is often difficult to 
be assured. especially in face of disturbances. 

On the other hand, the initial schedule is planned not 
only to make efficient use of shop resources for high 
performance but also to guide external activities such as 
material procurement or downstream processes. If the 
released schedule is modified due to disruptions, those 

external activities may he affected as well. Hence it is 
necessary to consider machine failures in the initial 
schedule so as to retain stability without loss of efficiency 
meanwhile (Wu et a/ 1993, O’Donovan et a/ 1999). The 
methodologies based on this idea are sometimes called 
Predictable Scheduling and the initial schedule is called 
predictive schedule because events that may or may not 
happen in the future will he perceived and considered in it. 
Apparently, this idea is different from common robust 
scheduling which often focuses on shop performance 
measures (Daniels and Kouvelis, 1995). In building a 
predictive schedule (PS), one promising way is to 
deliberately keep machine idle for appropriate time even 
when jobs become available. If one breakdown occures 
and is then repaired just during the idle period, the 
disruption will be absorbed by the inserted idle time and 
make little influence on shop performance or planned 
external activities. Although it seems not effective to 
insert idle times in predictive schedule from classical 
research viewpoints, predictive schedules with approriate 
idle times will in fact amve at global balances between 
producing efficiency and stability and be preferred by 
practitioners. However, to build predictive schedules 
with high quality, one needs to determine both job 
processing sequence and inserted idle time before each 
job in an integrated manner according to current job and 
machine status. There is not too many relevant reports on 
PS yet. 

In order to solve complex real-time scheduling 
problems especially under stochastic breakdowns, the 
heuristics such as dispatching rules well-customized for 
specific scenarios can be effective and practical methods. 
Unfortunately it is often too difficult to develop simple 
efficient heuristics even by domain experts. It may takes 
long time and huge efforts to achieve good heuristics. In 
this paper, we use genetic programming (GP) to discover 
good PS heuristics for single machine with breakdowns. 
As one member of the evolutionary computation family, 
GP (Koza 1992, Banzhaf et a! 1998) often follows the 
basic flow like genetic algorithms. But the main 
difference is that GP evolves computer programs of 
variable size. Thus if the solution of one problem can be 
represented by a computer program, GP will be able to 
search for it. In this sense, GP serves as one potential 
means for machine learning, rule discovery and data 
mining (Dimopoulos et a1 2001). Apparently, we can treat 
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PS heuristics as programs and then use GP to find good 
ones. 

In Section 2, the scheduling problems of single 
machine to minimize the mean tardiness subject to 
breakdowns are formulated. The performance measures 
concerning both shop efficiency and stability are then 
defined. The GP learning system is then proposed 
thoroughly in Section 3 with the focuses on bi-tree 
structured representation, stochastic sampling and fitness 
evaluation. The test results are analyzed in detail in 
Section 4 and some further discussions about idle time 
and evolved rules are also made. Conclusions and future 
work are pointed out finally. 

2 Problem Formulation 

2.1 Predictive Scheduling and Rescheduling 
Given a problem instance q with N jobs to be 

processed on a single machine. The release time 5 , 
processing time pi  and duedate d, for each job 

i E N are deterministic and known apriori. What can be 
known about breakdowns are their probability 
distributions of occurring frequencies and durations 
which may be obtained from previous maintenance 
records and are assumed to be known a priori in the 
following. 

Let S,(q,h) = {K,K~...IT~} be the predictive 

schedule of problem q using some heuristic h , where 

permutation { I T , K ~ .  .nN} is the processing sequence of 

N jobs. For each job i in the sequence, denote bpi its 

beginning time, cpi its completing time and iti the 

inserted idle time before it. We have 
b,, = max{c,,-, > y,, } + it, 

(1) 
C,’”, = bpn, + P ,  (1 2 i 2 N )  

where b,, - - cpzu = 0 

The initial schedule S,(q,h) is then released to the 

shop floor and modified(reschedu1ed) if necessary. When 
all jobs are completed, we have a realized schedule 
S,.(q) where the real completing time of each job i is 

c,, , Since we focus on obtaining effective predictive 
scheduling heuristics, the rescheduling strategy adopted 
here is right-shift rescheduling and the preempt-resume 
case is assumed. That is, the job in process can be 
resumed without loss of prior work as soon as the 
machine is repaired and the sequence in the predictive 
schedule is still maintained. 

2.2 Performance Measures 
For problem instance q under stochastic breakdowns, the 
tardiness of a given job i using heuristic h is defined as 

7; (q,h) = max{rnax(cpj,c,,) -d ,  ,0} (2) 
where both the planned and realized completing time of 
job i are considerd because they serve as bases for 
calculating job tardiness at the beginning and end of 
planning horizon respectively in practice. 

The mean tardiness of the problem with h is then 
defined as 

To reduce the impact of breakdowns on external 
activities, the realized completing time of each job is 
hoped not too different from the orginal plan. Thus, we 
can measure the stability of heuristic h on problem q by 
the mean completing time .deviations between the intial 
and final schedules. That is 

For a given instance q , the effect of predictive 

scheduling with heuristic h on shop performance and 
stability could be measured by (3) and (4) respectively. 
These hicritena can he combined into a single objective 
weighted by wr E [0,1] , 

f(q,h)=w,T(q,h)+(l-w,)CD(q,h) ( 5 )  
- 

Furthermore, the performance of h on certain 
problem instance set Q = {q} can be calculated by 

where IQ1 is the size of set e. The less FQ(h) becomes, 

the better h acts on Q 

3 Genetic Programming for PS Heuristics 

In GP, each individual (program) takes a number of 
inputs that are relevant to the considered problem, 
manipulates them through a number of functions and then 
outputs the requried results. For PS heuristics, it is hoped 
to get both job sequence and inserted idle time before 
each job fiom available shop information, which will be 
achieved in the following through the chosen terminal 
and function sets and appropriate individual structures. 

3.1 Terminals and Functions 
The search space in GP is the space of all possible 
programs composed of terminals and functions. When 
applying GP to predictive scheduling problems of a single 
machine with breakdowns, we choose the following 
scheduling attributes as to form the terminal set. 

pi - processing time ofjob i 
di - duedate of job i 
5 - release time ofjob i 
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.M - total job number 
N,. - remained job  number 
RPSurn - sum of processing time of remained jobs 
R D S m  - sum of duedate of remained jobs 
BP - expected period of breakdown occurrence 
MP - expected duration of breakdown 
t - current time 
Const - constant integer in [-551. 

And the function set is comprised of the following 
operations 

( +,-,X,% )- addition, subtraction, multiplication and 
division where % refers to protected division which 
will return 1 if the value ofthe denominator equals 0 
(Inin, max)- minimum and maximum of two numbers 
8 - 6(x ,y )  = 1 if x > y and 0 otherwise. 

3.2 Bi-tree Structured Representation 
In GP, each possible PS heuristic is treated as a candidate 
computer program (individual) to be evolved. The 
program is represented with two subtrees, 

where each subtree serves as a function that collects the 
input information to calculates the output (See in Fig. 1). 
For one problem instance q , subtree ptree calculates 

the priority index pri(i,t) of each available job i on 
current time t and subtree itree then output the to-be- 

inserted idle time itime(i*,t) before processing i', the 
job of the highest priority index. Obviously, 

prog = {ptree,itree} (7) 

Update the simulating time as t = c and repeat 

selecting the remaining jobs according to the above 
procedure until1 all jobs have been planned. Then one 
predictive schedule s,, (q ,  prog) is obtained 

P'. 

ptr'% ilree 

pri(i,t)=(d,-p,l X( I+N)  irimefi.t)=p. Xlp,-tl 

Fig. I Demonstration of bi-tree structured representation 

What can be seen is that the bi-tree structured 
representation scheme integrates two subprocesses of PS 
by two subtrees in a more nature way. That is, each time 
one job is selected and the inserted idle time is then 
calculated. These two subtrees co-evolve in the space of 
all possible PS programs with their size and shape 

changed dynamically. With the help of GP searching 
mechanisms like genetic algorithms, optimal or near- 
optimal PS heuristics will be achieved. 

3.3 Stochastic Sampling and Fitness Evaluation 
The fitness of individual (program) is determined by its 
test quality on certain set of fitness cases Q = {q} 
according to Formula (6). 

is 
too large, extensive computational resources will be spent 
on calculting fitness. To save time-consumption, we 
modified the fitness evaluation procedure with stochastic 
sampling (SS) techniques. During the process of SS 
evaluation on a program, one random subset of e is 
firstly generated. The fitness value is then acquired from 
(6) based on this smaller subset. Another consideration of 
using SS here is to avoid over-fitting phenomena during 
learning. 

3.4 Configurations of CP 
The proposed GP for learning PS heuristics is configed as 
follows. 

Homologoiis Sibtree Crossover. Crossover is carried 
out between the subtrees of similar functions, i.e., one 
parent ptree recombines with the other ptree and so 
does itree. The crossover probability is set 0.9. 

Mutation. Both subtrees mute randomly and the 
mutaion probability is set 0.5. The chosen crossover and 
mutation parameters have shown effective in our 
experiments. 

However, when the size of learning problem set 

Selection. Tournament selection is applied with size 7. 
Others. The population size is set 50, the maximum 

generation 80, the maximum number of subtree nodes 80. 
When an individual is evaluated on training set with 
stochastic sampling, a subset containing 1/5 random 
problem cases of is sampled. 

4 Empirical Results and Analyses 

4.1 Training and Testing Problem Cases 
The proposed GP algorithms are  run in various 
environments with different characteristics such as 
breakdown distribution and duedate tightness. Each 
environment consists of two problem case sets of the 
same size, i.e., training .set e and testing set T . Each 

time the GP is trained on to learn high quality PS 

heuristics and then the evolved program is tested on T 
for comparisons. 

and Tare  generated randomly in 
the same way. 

N - five levels are considered (N=15, 25, 40, 60, 
80). 
pi - random number from the discrete uniform 
distribution U[l.ZO]. 

The problems of 
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U', W1 w; W4 Wr 
BNMI 2.0(-93.3) 31.01-49.8) 54.8(-41.8) 63.8(-49.5) 81.4(-48.7) 
BiMi 62-93.6) 27.1(-79.2) 46.31-71.9) 65.8-66.9) 84.8(-63.6) 
BIM; 12.6(-94.0) 38.6(-84.4) 56.41-80.3) 77.3(-76.1) 97.1(-73.2) 
B M  3.6(-59.5) 23.71-43.1) 42 .842 .3)  62.4(-41.6) 8W-41.6) 
B.Ml 9.2(-66.4) 38.0(-41.1) 58.5(-42.4) 78.1(-43.6) 98.9(-43.7) 
B.M, 25.31-53.8) 53.0(-46.0) 75.9(-46.4) 98.0(-47.0) I19.0(-47.9) 
BlMl 7.2(4.4) 31.3(-31.0) 52.5(-32.5) 70.7(-35.8) 90.5(-36.6) 
B I M ~  16.2(46.5) 47.1(-29.6) 68.7C33.7) 108.3(-22.8) I15.1(-34.9) 
B,Mi 32.6(-47.7) 87.5(-16.1) 120.6(-17.4) 139.3(-25.9) 158.4(-31.1) 
Db 16.4(-73.6) 43.4(-58.1) 69.6(-5?.01 97.6(-47.7) 121.2(-46.8) 
D-. 18.4(-68.2) 41.3k56.4) 62.3(-52.9) 83.3(-50.8) 104.4(-49.5) 
D; 19.5-67.9) 35.8-60.9) 54.01-55.9) 71.8(-53.1) 87.3(-5?.5) 

Table 1 Values of FTcp and Ar(%) 

ri - random number from the discrete uniform 
distributions u[o, pNE(p i ) ] ,  where E ( p i )  is the 
expected processing time and two levels of p are 
included ( p  = 0.25,0.50 ). 
d, - di = rj +pi  where y follows the continuous 
uniform distributions U[u.b] and three values of (a,b) 
are considered, i.e., (0,1.2), (1,3) and ( 3 3  which we 
refer to as DI through D,. Here, D ,  has the tightest 
duedates while D, the loosest. 
BP - the time between breakdowns is generated 
from the exponential distributions with mean 
BE(p,) and three values of 0 are considered, i.e., 
10, 5, and 2 which we refer to as BI-B,. In B, 
situation, breakdowns occur more frequently than in 
B ,  and B?. 
MP - the breakdown durations follow some uniform 
distributions U [ p , E ( p j ) , P z E ( p i ) ]  and three pair 
values of (p,,pz) are considered, i.e., (0.1,0.5), 
(0.5,1.5) and (1.3) which we refer to as M1-M3. In the 
case of (1,3), mean repair time will he higher than in 
the other two cases. Both BP and M P  are 
anticipated in advance and then keep fixed during the 
problem instance is solved. 

To consider diffemet breakdown characteristics, we 
have nine parameter combinations of B,M,  
(1 I i, j < 3). For each combination, there are total 5 X 2 
X 3 = 30 subcombinations of the other parameters 
( N,p ,y  ) and we generate 12 instances for each 

subcombination. Thus, for each environment BiMj , 
there are 360 problem instances for training and 360 ones 
for testing. 

The second class of environments focuses on duedate 
tightness D, ( 15 d < 3 ). There are total 5 X 2 X 3 X 

3=90 subcombinations for the remained parameters and 
we generate 4 instances for each subcombination. Thus 
the training and testing sets are composed of 360 problem 
instances respectively in each environment D, 

Altogether, there are nine environments fociising on 
brrnkdown types and three environments on duedate 
restrictions. For each environments, five values of weight 
M ' ~  is considered, i.e., 0, 0.15, 0.50, 0.75.and 1.0 which 

we refer to as W,-W5. GP algorithms are trained to 
produce high quality PS heuristics in each environment 
with each weight. 

4.2 Comparisons with Other Heuristics 
In order to test the performance of GP-evolved heuristics, 
we choose ATC(Z)+OSMH heuristics for comparison 
which have performed well as reported (O'Donovan 
1999). For each environment, the objectives of GP- 
evolved program and ATC(Z)+OSMH on testing set T 
are denoted FTcp and IT,?, respectively. Define the 
improvement ratio of GP relative to ATC(Z)+OSMH as 

where Ar < 0 means performance improvement of GP 
over ATC(2)cOSMH. The lesi I F  is. the better GP 
shows. The values of FT,, and Ar in all scenarios are 
illustrated in Table 1 where the numbers outside brackets 
are FTGp and those inside brackets are Ai'. 

It can be seen from Table 1 that GP achieves 
significant improvement over ATC(Z)+OSMH in all 
scenarios ( A r  5 -16.1% ). And it might be interpreted 
as the flexible integration of sequencing and idle time- 
inserting mechanisms with bi-tree structures and GP's 
powerful ability to search in heuristic space. Additionally, 
this result indicates that man-made or knowledge-based 
heuristics like ATC(2)+OSMH are not suitable for 
general scenarios although huge efforts might have been 
spent on developing them. Thus it is better to find specific 
heuristics for specific scheduling environments. Machine 
learning like proposed GP will possibly supply promising 
ways. 

It can also be concluded that in most cases, FTGp 
degrades as breakdowns occur more frequently (e.g., 
BIM?-BJM2 with W]), repair' durations become longer 
(e.g., BIMI-BIMI with W,) or duedate restricts get tighter 
(e.g., D r D I  with W?). Therefore breakdown or duedate 
characteristics will mainly influence PS performance. 

4.3 Roles of Idle time 
Just as mentioned nhovc. the inserted idle time serves as 
Ihr buffer to absorb unpredictable disruptions with shop 
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performance maintained well. To get further perceive 
about how idle time performs in predictive scheduling, we 
define the averaged idle time (AIT) of heuristic h on 
testing set T as 

Table 2 shows the AIT values of GP-evolved programs 
in 12 environments. It can he seen that in a certain 
environment (e.g., B2MI), the AIT becomes smaller as 
weight on tardiness gets larger (W,-W5). In the extreme 
cases where wT = 1 .o (Wj), AIT often approaches zero. 

The reason is that as  wr gets larger, requriements on 
high shop performance gets stronger and in the case of 
Wj, the problem becomes robust scheduling and less 
inserted idle time is preferred. On the other hand, when 
wr gets smaller, the planner focuses more on preserving 
stability and larger AIT is therefore expected to weaken 
the impact of unavoided failures or contingencies on 
manufacturing systems. 

W I  w. w, w, wi 
BIM,  0.2 1.0. 1.6 0.7 0.2 
B,MI 0.7 0.4 0.5 0.3 0.0 
BIM, 1.0 0.0 0.6 0.6 0.0 
B2MI 0.6 0.3 0.2 0.2 0.0 
B?MI 1.5 0.1 0.0 0.0 0.0 
B?MI , 1.8 1.0 1.0 0.8 0.3 
B;M, 0.8 1.0 0.9 0.2 0.0 
B3M: 3.1 1.0 2.0 6.2 0.0 
BIM, 8.9 0.0 0.1 0.2 0.0 

D, 1.8 1.3 1.5 0.5 ‘ 0 . 1  
D1 0.8 0.8 1.0 0.6 0.0 
D; 0.8 1.1 0.6 0.3 0.0 

- 
Table 2 i f ,  Vahies of GP 

4.4 Perspectives of Predictive Scheduling 
The discovered programs from GP in various 
environments can further give us useful guides in design 
predictive scheduling algorithms. Take the evolved PS 
heuristic in BzMl with W5 for example, the simplified 
subfunctions are expressed by ( I  1) and (12) as follows. 

p r i ( i , f ) =  [ 1- 2(;Jp ,  -2d, (11) 

itime(i,f) = min(d,,N~,MP-min(d,,N~)-l) (12) 

According to (1 1). those jobs with smaller processing 
time or duedate will he possible of higher priorities. 
Hence it seems as the weighted combination of SPT and 
EDD rules to deteimine job sequence. What’s more, as 
time passes, the weight on SPT becomes stronger. Thus 
(1 1) can he seen as one dynamic combinatorial rule. 

In (12), the to-be-inserted idle time is determined by 
job duedate, breakdown ’ duration and remained job 

number together. If job duedate or breakdown duration is 
small, the inserted idle time is also small. Obviously, this 
conclusion is consistent with our intuition thinking. So 
GP can learn and reformulate human knowledge in a 
efficient way. 

5 Conclusions and Future Work 

In this paper, a GP-based learning system is investigated 
on single machine predictive scheduling problems subject 
to stochastic breakdowns. The hi-tree structured 
chromosomes represent scheduling heuristics in a flexible 
and nature way and the GP-evolved programs in various 
environments perform much better than known heuristics. 
The inserted idle time is proved to be the buffer against 
uncertain disruptions. The obtained heuristics also supply 
useful guide for further investigation. 

Future work can be carried out on other PS model such 
as parallel machine or flowshop scheduling problems. 
The further control strategies are also needed on GP such 
as parsimony control, multiagent or coevolution model, 
etc. 
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