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Abstract—The analysis of tandem mass spectrometry (MS/MS)
proteomics data relies on automated methods that assign peptides
to observed MS/MS spectra. Typically these methods return
a list of candidate peptide-spectrum matches (PSMs), ranked
according to a scoring function. Normally the highest-scoring
candidate peptide is considered as the best match for each
spectrum. However, these best matches do not necessary always
indicate the true matches. Identifying a full-length correct peptide
by peptide identification tools is crucial, and we do not want to
assign a spectrum to the peptide which is not expressed in the
given biological sample. Therefore in this paper, we present a
new approach to improving the previous ordering/ranking of the
PSMs, aiming at bringing the correct PSM for spectrum ahead
of all the incorrect ones for the same spectrum. We develop
a new method called GP-PSM-rank, which employs genetic
programming (GP) to learn a ranking function by combining
different feature functions that measure the quality of PSMs
from different perspectives.

We compare GP-PSM-rank with SVM-rank. The results show
that GP-PSM-rank outperforms SVM-rank in terms of the
number of identified peptides which are true matches. On a
validation dataset with 120 spectra, the proposed method is used
as the post processing step on the results of peptide identifications
by two de novo sequencing algorithms. GP-PSM-rank improves
the results of both de novo methods in terms of identifying the
true matches.

Index Terms—Genetic Programming, ranking function,
peptide-spectrum match, tandem mass spectrometry.

I. INTRODUCTION

Proteins are principal parts of organisms and perform a vast
array of functions inside cells. Proteins as macro-molecules
can be digested by proteases into short peptide fragments.
Peptides are generally considered to be short chains of amino
acids (from 2 to 50 amino acids). There are 20 common amino
acids represented by the letters A, C, D, E, F, G, H, I, K, L,
M, N, P, Q, R, S, T, V, W, and Y. Proteins in their primary
structure are made up of a long chain of amino acids linked
together in a linear sequence and they can have 50 to 2000
amino acid residues.

The common method for identifying proteins and charac-
terising their amino acid sequences in proteomics is to digest
the proteins into peptides, analyse the peptides using mass
spectrometry, assign the resulting mass spectra to peptides,
and match the assigned peptides to proteins.

Mass spectrometry (MS) is currently the most commonly
used technology in proteomic analysis for identifying pro-

teins in complex biological samples. The mass spectrometer
measures the masses within a sample by ionising the sample
and sorting the ions based on their mass-to-charge ratio (m/z).
This results in producing thousands mass spectra, where each
mass spectrum is an intensity vs. m/z plot. These masses can
be used later for identifying the proteins or peptides in the
samples using peptide identification tools. Intensities indicate
the abundance of ions or m/z values. As mentioned above,
the spectra can be used for identification of the proteins or
peptides in the samples using peptide identification tools.

Peptide identification using MS/MS is traditionally accom-
plished by two major approaches namely database search
and de novo peptide sequencing [1]. Given a spectrum, a
database search algorithm tries to compare the experimental
spectrum with an in silico (computer simulated) digested
protein database and match the spectrum with highly similar
sequences in the database to produce a list of peptide spectrum
matches. The top-scored candidate is selected as the best
matched peptide being regarded as the identification result [2],
[3]. However, database search algorithms are highly dependent
on a reference protein database, therefore they cannot identify
peptides and proteins not present in the database, therefore
de novo sequencing algorithms are used to infer a spectrum’s
sequence without the assistance of a sequence database [4].
They select pairs of peaks and labels them if their mass
differences are within the tolerance ranges of the amino acid’s
masses. The labelled peak pairs are joined together to make
paths. The algorithms score the path and the high-scored path
is considered as the best candidate peptide sequence.

However, the highest-scoring candidates in the results of
peptide identification by de novo sequencing do not necessary
always indicate the true matches. Therefore, it still remains
challenging to control the false discovery rate (FDR) in de
novo peptide sequencing algorithms. The precision of iden-
tifying full-length peptides by existing de novo sequencing
algorithms cannot reach 70% even with identified high-scored
PSMs [5]. The lack of a reference protein database results in
such low accuracy in de novo sequencing methods. Therefore,
after performing de novo peptide identification, a discrim-
inating step (PSM validation algorithm) to distinguish true
matches from many close false ones (such as homeometric
peptides that are different peptides with similar theoretical
MS/MS spectra) is essential in proteomic data analysis [6].
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The existing PSM-scoring functions to rank the PSMs have
the following limitations:
• A number of scoring schemes (for example, TAN-

DEM [7], OMSSA [8]) are based on the shared peak
count (SPC), which is the number of peaks matched
between experimental and theoretical spectra. However,
in practice, SPC does not perform well since all shared
peaks have equal weights, although some are more infor-
mative than others.

• There are other match scoring schemes such as sim-
ple dot-product [1], cross correlation score [2], [3] or
more advanced statistical measures like the expectation
value [9]. However, these scores cannot serve as the
primary discriminating parameter for separating correct
from incorrect identifications.

• PeptideProphet [10] built linear scoring functions using
the combination of various weighted (sub)scores. The
weights/ coefficients have been learnt using a genetic
algorithm (GA) on a training set of already identified
MS/MS spectra [11]. However, all the scoring scheme
imposes a prior assumption (the linear combination of
(sub) scores) and only tries to optimise the parameters
(weights) for the pre-defined model structure.

However, none of the above scoring function on its own can
work well enough on indicating if a PSM is correct or not.
Therefore, we need a model to produce accurate prediction
rules by combining these weak rules into a powerful discrimi-
natory scoring function for PSMs. PSM scoring is quite similar
to scoring query-document pairs in information retrieval (IR)
where the degree of relevance of each document (the web
page) to a user query is defined by a score. Practically,
for effectively scoring the query-document pairs, a ranking
function which defines an order among documents according
to their degree of relevance to the user query, is generated.

GP has been successfully applied to automatically generate
an effective ranking function for IR [12]. In such frameworks,
during the training process, GP attempts to learn a ranking
function and aims at optimising a performance measure (for
example classification accuracy, error rate, etc.). As the po-
tential of GP to automatically produce an effective ranking
function for PSM ranking has not been investigated, it is worth
discovering how GP builds a ranking function that can be
used to improve the previous ordering of PSMs from de novo
results.

A. Research Goals

The main goal of this paper is to generate an effective
ranking function which will be used to re-rank a collection of
candidate PSMs which are the output of de novo sequencing
algorithms. GP is used to automatically produce a new rank-
ing function which aims at improving rate of true matches
from output of de novo sequencing methods. Specifically, the
following objectives are investigated:

1) Design appropriate terminal sets by using a set of
features to measure the quality of matches between the

Fig. 1. De novo sequencing on an ideally fragmented MS/MS Spectrum
‘SGFLEEDELK’ with two b-/y-ions.

experimental spectra and the candidate peptides.

2) Design a fitness function to guide GP towards increasing
the number of true matches during the learning process.

3) Evaluate the effectiveness of the new ranking function
based on the improvement in identification rate of de
novo sequencing algorithms.

II. BACKGROUND

A. Assigning MS/MS Spectra to Peptide Sequences

One of the suitable techniques for the identification of pep-
tide sequences is Collision-induced dissociation (CID) [13].
In this technique, fragmentation happens at the peptide bonds,
producing b-/y-ions. The amino acid sequence of an MS/MS
spectrum can be determined by the mass differences between
b-/y-ions. A de novo sequencing algorithm selects pairs of
peaks and labels them if their mass differences are within the
tolerant ranges of the amino acids masses. Fig. 1 shows the
result of de novo sequencing on an ideally fragmented MS/MS
spectrum, which indicates sequence ‘SGFLEEDELK’. The Y
axis indicates the relative abundance to the tallest peak in the
spectrum with the tallest peak set to 100% relative intensity.
The X axis shows m/z, which is mass divided by charge. As
an example, the difference in masses between two consecutive
ions y4 and y5 is 129 Da (unified atomic mass unit or dalton)
and this number indicates the mass of Glutamic (E) amino
acid. If the selected pairs of peaks are b-/y-ions, the correct
peptide sequence is obtained. To match a spectrum against
a peptide, a peptide is simulated to a theoretical spectrum
which only has b-/y-ions. These ions are matched with the
peaks in the experimental spectrum. The quality of the match
is defined based on the number of matched and un-matched
peaks between the two spectra.

B. Genetic Programming and MS/MS Data Analysis

Genetic Programming (GP) is an evolutionary algorithm that
has been successfully applied to different kinds of real-world
problems with complex search spaces [14], [15]. GP uses a
variable-length individual representation to evolve a popula-
tion of computer programs to automatically build or evolve a
model to tackle the problem. GP randomly generates an initial
population of individuals to search for the solution. During
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Fig. 2. The workflow of the proposed GP-PSM-rank method consisting of learning and evaluating phases.

the evolutionary search process, individuals are modified by
the set of genetic operators [16] where the fitter solutions are
more likely to be chosen to generate offsprings for the next
generation of population. GP has shown a great potential to
deal effectively with the challenges in MS and MS/MS data
[17], [18]. It is worth investigating how GP can be used to
build PSM-ranking functions.

III. THE PROPOSED RANKING GP METHOD

Fig. 2 shows the proposed GP-PSM-rank workflow designed
for re-ranking the PSMs. The workflow consists of two major
parts: learning to rank PSMs by GP followed by an evaluating
step to post-process the results of de novo sequencing using
the new ranking function. Normally in the output of de novo
sequencing algorithms true matches and other close false ones
can be found among the top 5 candidate peptides for each
spectrum. Therefore here for each spectrum, we consider five
candidate peptides to cover the potential possibilities of finding
the correct matches.

In our ground truth, which is a set of high confident PSMs
from the results of peptide identification by Mascot database
search tool, for each spectrum its corresponding peptide is
provided. These sets of correct peptide-spectrum matches are
called target PSMs. For each spectrum, we also need four
incorrect peptides which are very close to the correct peptides
and typically are responsible for most of the ranking errors in
de novo sequencing algorithms. These incorrect peptides are
produced by the decoy method where the correct peptides are
randomly shuffled and creates a decoy sequence database. The
existing database search tool, Mascot [3], is searched against
the decoy sequences from the combined protein database.
For each spectrum, we store four top-scoring decoy PSMs.
Therefore, for each spectrum in the training set we have a
group of five candidate peptides containing one target PSM
and four decoy PSMs. The GP method needs to discriminate

between the target and decoy PSMs in each group. GP is
supposed to learn a ranking function that gives the highest
score (the largest value, a real number) to the target PSM
other than decoy PSMs in each group.

In summary, given a set of MS/MS spectra, S = {s1, ..., sn},
and a set of peptides, P = {p1, ..., pn×5}, the training set is
created as a set of peptide-spectrum matches, each (si, pj) ∈
S × P , upon which a confidence score is assigned by the
Mascot database search tool indicating the degree of reliability
of match between the spectrum and the peptide to each PSM.
For each instance, a set of features that describe the match
between si and pj , summarised in Table I, is extracted. A set
of five PSMs (instances) belonging to the same spectrum is
considered as one group where the instances in each group
are sorted based on their Mascot score. Before applying GP
to the training set, a group-based normalisation is applied on
feature values and confidence scores of each group in order
to normalise all values into a range of [0,1]. The inputs to
the learning algorithm comprise training instances, i.e. the
normalised feature vectors, and the corresponding Mascot
confidence scores. The output is a ranking function, R, where
R(si, pj) is supposed to associate a real number with (si, pj)
as its match score. For testing, the learned ranking function,
the model is applied on new peptide pi and a new spectrum
s from the test set to determine their corresponding ranking
score.

A. Feature Extraction

A set of 22 features shown in Table I are extracted from
each PSM. The first feature, Sim(s, p) which previously
used in [19] as the fitness function of the GA algorithm,
calculates the quality of match between the experimental
spectrum s and theoretical (simulated) spectrum of peptide p
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TABLE I
FEATURES USED TO REPRESENT PSMS.

Feature name Description

f1 Sim score Linear combination of different match scores

f2 Int Matched
sum of intensities of those peaks in the
spectrum s which are matched with
theoretical spectrum of peptide p

f3 deltaMass The mass difference between the spectrum s
and peptide p

f4 #NotMatched # of not matched peaks in theoretical
spectrum of peptide p

f5 #Matched # of matched peaks in theoretical spectrum
of peptide p

f6 Nterm # of matched b-/y-ions from N-terminus
(left to right) of peptide p

f7 Cterm # of matched b-/y-ions from C-terminus
(right to left)

f8 Cos Fixed length Normalised Dot product

f9 Euc Fixed length normalised Euclidean distance

f10 Hamming Hamming distance between two vectorised

f11 SeqVar Variable length SEQUEST-like scoring function

f12 SeqFix Fixed length SEQUEST-like scoring function

f13-f22 ∆scores

For each feature Cos, Euc, Hamming,
SeqVar, and SeqFix two more features are computed.
Each feature is calculated based on the
fractional difference between the current PSM and
the 2nd best and the 5th best PSM from
the same group

using Equation (1).

Sim(s, p) =

∑
Imatched

n∑
i=1

Ii

− |∆mass|
M(s)

+

Nterm + Cterm−∑
Nnot−matched

length(p)

(1)

where Imatched is the sum of intensities of those peaks in
the experimental spectrum s, which are matched against the
peaks in theoretical spectrum t corresponding to the peptide
p. Imatched is normalised by dividing it by the total intensities
of spectrum s. ∆mass is the mass difference between the
spectrum s and peptide p, and is normalised by dividing it by
the mass of spectrum s. The two terms Nterm and Cterm are
the number of sequential b-ion matches from N-terminus (left
to right) and from C-terminus of the theoretical spectrum t,
respectively. Nnot−matched equals to the number of b-/y-ions
in the theoretical spectrum t, which are not a match against the
spectrum s. All the last three terms are normalised by dividing
to the length of peptide p.

As each term in Equation (1) is normalised and all terms
are linearly combined with equal weights of 1, it is worth
considering each term as a seperate feature and let GP to find
the non-linear relationship between them. Therefore, features
{f2, f3, f4, f6, f7} are the non-normalised forms of each term
in Equation (1). f5 counts the number of matched peaks
between two spectra.

Features {f8, f9, f10, f11, f12} each convert the experimen-
tal spectrum s and the theoretical spectrum t of peptide p into
two binned vectors. SeqFix and SeqVar, (f11, f12), apply a pre-
processing step which is inspired of SEQUEST, a benchmark
database search engine [2]. Both features remove all the peaks
in the 10-u window around the m/z-value of the precursor
ion and then keep only the most intense 200 peaks on the
spectrum. The intensities of peaks are normalised as follows.
The whole spectrum is divided into ten intervals. For each
interval, the most intense peak is set to an intensity of 50 and
the intensity of the other peaks are divided by the maximum
intensity in the interval and multiplied by 50. To vectorise
the spectra, both the processed spectrum and the theoretical
spectrum are split into n 1u-bins with n either a fix value or
based on fragment ion tolerance. SeqVar, f11 , has a variable
length which is determined based on dividing the precursor
mass into fragment ion tolerance. Features {f8, f9, f10, f12}
have fix length of 4,000. Each bin in a vector of experimental
spectrum is weighted as the sum of the intensities of the
peaks within a corresponding bin. All bins for the vectorised
theoretical spectrum have weights of one. The four features
{f8, f11, f12} after converting the experimental and theoretical
spectra into two vectors, use Equation (2) to calculate the
normalised dot product between two vectors x, y.

cos θ =
x.y

||x|| × ||y|| (2)

where x and y are the vectorised experimental and theoretical
spectra, respectively.

The normalised dot product varies in a range of [0,1]. The
output of Equation (2), indicates the matching between the
two vectors/spectra. While cos θ = 0 presents two orthogonal
vectors, it indicates that two spectra have no peak matched
between each other. On the other hand, cos θ = 1 presents
two identical vectors and indicates that every peak is matched
between the experimental and the theoretical spectra. f9 and
f10 calculate the normalised Euclidean (based on Equation (3))
and hamming distance between the two binned spectra, respec-
tively.

euc (x, y) =

√
Σ(xi − yi)2
||x|| × ||y|| (3)

For each feature value of {f8, f9, f10, f11, f12}, the set of fea-
tures {f13, ..., f22} calculate the fractional difference between
the current PSM and 2nd best and fifth best PSMs belonging
to the same spectrum group.

B. Normalisation

Our learning set, L, is a group of PSMs, each with a
vector of features describing the quality of match between
the spectrum and peptide followed by a Mascot match score.
For a set of MS/MS spectra, S = {s1, ..., sn}, and a set of
peptides, P = {p1, ..., pn×5}, a feature set, F = {f1, ..., f|F |},
and a set of Mascot scores corresponding to each (si, pj),
Y = {y1, ..., yn×5}, the learning set L is formulated by
Equation (4). The Mascot scores are used to sort the instances
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in each group. So the top rank PSM (the first PSM in the
group with the highest Mascot score) is the target PSM and
the other ranks belong to the decoy sequences from the same
group.

L = {((si, pj), (f1(si, pj), ..., f|F |(si, pj)), yij)} (4)

After feature extraction and before applying the ranking
function (here are GP and SVM), the learning set L is
divided into two training and test sets. On each set a group-
normalisation is applied to the feature values belonging to each
group of PSMs in order to normalise all the values into a
range of [0,1]. For a spectrum, and a peptide in (si, pj), their
corresponding feature value fk(si, pj) is calculated based on
Equation (5):

fk(si, pj) =
fk(si, pj)−min{fk(si, pl)}

max{fk(si, pl)} −min{fk(si, pl)}
(5)

where max{fk(si, pl)} and min{fk(si, pl)} are the maximum
and minimum value of fk(si, pl) respectively for all pl ∈ P .
It is worth mentioning that calculating the max/min fk of
instances in the test set is completely separate from training
set. As already the PSMs in the learning set are categorised
into groups of five PSMs, the group normalisation calculates
the min/max fk based on the feature values of the PSMs
belonging to the same group.

C. GP Program Representation

In GP-PSM-rank, an individual is a potential ranking func-
tion that assigns a real number to a spectrum and a peptide
as their match score. A tree based GP structure is considered
to represent each GP individual. The terminal set of the GP
method includes the extracted features (Sf ) and a set of
predefined real numbers, Sc, ranging from 0 to 1 which are
known as constants. The function set consists of at set of
arithmetic operators (Sarith), where:

Sf = {fk|fk ∈ F, 1 ≤ k ≤ 22}
Sc = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}
Sarith = {+,−,×, /(protected division)}

where F is the set of features in Table I. The protected
division indicates usual division except that a division by zero
gives a result of zero). Each arithmetic operator gets two
arguments and returns one argument. For each instance, the
output of the GP program is a single floating point number
indicating the match score for PSM of (si, pj). The following
section, fitness function, explains the ranking strategy. Table II
displays the GP parameters used in this work. GP-PSM-rank
is implemented in Python 3.6 and uses DEAP (Distributed
Evolutionary Algorithms in Python) package [20].

D. An Effective Fitness Function for PSMs scoring

The purpose of the GP method is to find a ranking function
that gives real value scores to a collection of candidate
PSMs and tries to maximise the number of target PSMs
(true matches) which have the highest scores compared to the
other decoy (incorrect) peptides corresponding to the same
spectrum.

TABLE II
GENETIC PROGRAMMING PARAMETERS

Parameter Value

Function Set {+,−,×, /(protected)}
Terminal Set {Features from dataset, random Constants}
Initial Population Ramped Half-and Half

Population Size 600

Generations 100

Mutation Rate 0.1

Elitism The most fit ind. in each gen.

Crossover Rate 0.9

Selection Tournament, Size = 5

For calculating the fitness score in the training set, the
problem converts from a ranking task to a binary classification
task, where in each group the target PSM is the positive
instance and all the decoy PSMs are negative instances. After
applying the GP ranking function, for each group of PSMs,
if the target PSM gets the highest score, it is considered as a
true positive (TP) or a hit and other PSMs are true negatives
(TN). On the other hand, if the target PSM does not get the
highest score among the other candidates in the same group,
then it is considered as a false negative (FN) and the decoy
PSM which gets the highest score is a false positive (FP) and
other decoys are TNs.

In our GP method, we do not care about correctly ranking
the decoys. Therefore, our fitness function only considers
correctly ranking target PSMs. If the target PSM in each
group gets a score higher than other PSMs in the same group,
then the fitness function increases the number of TPs by one.
Equation (6) shows the fitness function used for GP to measure
the performance of the ranking function, i.e. GP individuals.

true matchrate =

∑N
i=1 hit(i)

N
(6)

hit =





1,
if score (target PSM) > score (decoy PSMs)

0, otherwise

where N is the total number of MS/MS spectra, and sigma
hit counts the number of TPs. The score function is the
output of GP (a real number) for the given PSM. Therefore,
true matchrate is the rate of the total number of first-ranked
target PSMs divided by total number of MS/MS spectra.

IV. EXPERIMENT DESIGN

A. MS/MS Datasets

The MS/MS used in this work are selected from the
comprehensive full factorial LC-MS/MS benchmark dataset.
This dataset is particularly designed for evaluating MS/MS
analysis tools and contains 50 protein samples extracted from
Escherichia coli K12 [21]. The MS/MS spectra in this dataset
were acquired from the linear ion trap Fourier-transform (LTQ-
FT, Thermo Fisher Scientific) with the collision-induced disso-
ciation (CID) technique and they have been already searched
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TABLE III
THE MS/MS SPECTRA USED IN THIS STUDY.

dataset # of Spectra # of Target
PSMs

# of Decoy
PSMs

Total # of
PSMs

Learning
set 1,000 1,000 4,000 5,000

Validation
set 120 120 480 600

against a curated Refseq [22] release 33 Escherichia coli
(strain K12) database by using Mascot v2.2 [3]. As reported in
[21], the dataset has the following parameters: the minimum
precursor mass used in this dataset is 350 Dalton (Da) with
maximum tryptic cleavage of one. The MS tolerance and
MS/MS tolerance are 10 ppm and 0.8 Da, respectively. The
cutoff q-value of 0.01 was considered to validate the results of
database search. Since a peptide’s charge and precursor mass
can greatly influence the nature of its observed spectrum, from
the peptide identification results provided by this dataset, a
set of 1,000 doubly charged unique peptide-spectrum matches
(PSMs) with maximum precursor mass of 1150 Da, peptide
length between 7 and 12, and minimum Mascot peptide
identification scores of 45 to ensure a high confident peptide
identification were selected.

The learning set is composed of 1,000 spectra with known
correct identifications of 1,000 target PSMs and known incor-
rect matches of 4,000 decoy PSMs. The total number of 5,000
PSMs in the learning set are divided into 1,000 groups, where
for each group the target PSM has the highest Mascot score
compared to other four decoy PSMs in the same group.

Also from full factorial dataset, a set of 120 MS/MS spectra
which previously were used to evaluate GA-Novo [19], a de
novo sequencing method by genetic algorithm, and PEAKS
[4], the most common de novo sequencing software, is used
to evaluate the effectiveness of GP-PSM-rank in terms of
improving the peptide identification rates of these two de novo
sequencing algorithms.

The set of 120 spectra in the validation set is given to these
de novo sequencing tools. From the de novo results, for each
spectrum, the top 5 candidate PSMs is taken as the results
of de novo sequencing. As the de novo sequencing algorithm
reports a confidence score for each PSM, the PSMs belonging
to the same group are ordered based on their scores. Then,
all PSMs (here for 120 MS/MS spectra, there are 120 × 5 =
600 PSMs) are given to GP-PSM-rank and SVM-rank models.
They re-rank the PSMs, aiming at putting the correct peptide
(target PSM) at first rank for each group of PSMs belonging
to the same spectrum. Table III provides more details about
the datasets.

B. Benchmark Algorithm

As GP is used to learn a ranking function, the proposed
method is compared with SVMrank, which is a benchmark
algorithm in ranking tasks [23]. SVM-rank employs a support
vector machine (SVM) to classify object pairs in consideration
of large margin rank boundaries.

SVMrank is free and consisting of a learning module and
a module for making predictions. The training and test files
should be prepared in a specific order where feature/value pairs
must be ordered by increasing feature number. More details
about SVMrank can be found in [23].

To evaluate the effectiveness of the proposed GP method
and comparing it with SVM-rank, the output of two de
novo sequencing algorithms, PEAKS [4] and GA-Novo [19]
are used to be re-ranked by GP-PSM-rank and SVM-rank,
separately. Given an MS/MS spectrum to any of these de
novo sequencing algorithms, the output is a set of peptide
sequences each having a confidence score between 0 and 100
[4]. The scores indicate the reliability of identifications. For
each spectrum, the top five score sequences are taken as the
output of the de novo sequencing. Both GP-PSM-rank and
SVM-rank get the list of candidate peptides, re-rank and return
new confidence scores for each PSM.

C. Experiments

1) Experiment I: Learning the Rank Function: This experi-
ment lets GP and SVM-rank to build and evaluate the ranking
functions using the learning set in Table III. The 1,000 groups
of PSMs in the data set are split into two sets of training and
test each having 70% and 30% of PSMs, respectively. Based
on the flowchart in Figure 2, the group-based normalisation
is applied separately on both training and test sets. GP and
SVM-rank use the training set to learn the ranking function
and apply the models on the test set to evaluate the models
based on Equation (6).

2) Experiment II: Evaluating the Effectiveness of GP-PSM-
rank and SVM-rank: This experiment investigates the ef-
fectiveness of both ranking functions in terms of increasing
the identification rate of target PSMs and minimising the
missed identified target PSMs rate of the results of peptide
identifications by two de novo sequencing methods using the
validation set from Table III. The results of identifications are
measured based on Equation 6 and Equation 7 before and after
the post-processing.

missed target PSMsrate =
FN

total number of MS/MS spectra
(7)

where missed target PSMsrate is the rate of total number of
those target PSMs that are not first-ranked divided by total
number of MS/MS spectra.

V. RESULTS AND DISCUSSIONS

A. Results of Experiment I:

Table IV presents the results of the proposed GP method
and SVM-rank in terms of true match rate (i.e. Equation (6)).
For GP, the experiments are repeated for 30 individual runs
using 30 different random seeds.

To compare the results of GP in 30 independent runs with
SVM-rank, one sample statistical t-test with 95% confidence
interval is used. (+) in the Table IV indicates the difference
between the results of GP and SVM-rank is considered to
be statistically significant. The results show that in average,
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TABLE IV
THE RESULTS OF 30 INDEPENDENT RUNS OF GP METHOD AND

SVM-RANK ON TRAINING AND TEST SET OF LEARNING SET CONTAINING
1,000 MS/MS SPECTRA IN TERMS OF IDENTIFIED TARGET PSMS RATE.

Algorithm train test

GP-PSM-rank 0.83 ± 0.01 (+) 0.76 ± 0.02 (+)
SVM-rank 0.74 0.70

GP outperformed SVM-rank by almost 9% on the training set
and 6% on the test set of the learning set. One possible reason
of successful performance of GP is its ability to learn from
a relatively small training set. While success of most of the
other ranking algorithms could possibly rely on learning from
a large dataset.

B. Results of Experiment II:

To investigate the effectiveness of the ranking functions
generated by GP and SVM, the best GP program among
the 30 independent runs is selected as the post-processing
method. The best GP ranking function is selected based on
the best performance of GP on training set of the learning
set. Both GP and SVM-rank models separately are applied on
the results of PEAKS and GA-Novo using the validation set.
As already the ground truth of the validation set is available,
the target PSM identification rates before and after re-ranking
the PSMs by both methods are calculated and presented in
Table V. From this table it can be seen that both methods
improve the identification rate of both de novo sequencing
methods in terms of increasing the identification of target
PSMs. However, GP outperformed SVM-rank by 5% and 3%
increase in true match rate on the results of GA-Novo and
PEAKS, respectively. Therefore, on the results of GA-Novo,
the GP ranking function increased the true matchrate by 10%
and decreased the missed target PSMsrate by 10%. Also the
best GP ranking function, improved the results of PEAKS
by 15% and 15% in terms of increasing true match rate and
decreasing the rate of those target PSMs not locating as first-
ranked, respectively.

As the ground truth for the set of spectra in validation set
is available, we further analysed the candidate peptide lists
generated by the de novo sequencing algorithms to discover
why after post processing a high target PSMs identification
of 99% was not achieved. The analysis shows that for almost
10-15% of spectra, none of the 5 peptide sequences produced
by the de novo sequencing method was correct. Basically in
the dataset 3 situations may happen to each group of peptides
belonging to the same spectrum: (1) the target PSM is the
1st-ranked, (2) the target PSM is not 1st-ranked, (3) the target
PSM is not included in the peptide candidate list. Therefore,
99% of target PSMs identification was not achieved on the
evaluating dataset, because the target PSMs of 10% to 15% of
MS/MS spectra did not exist in the list of de novo candidate
peptides. So this makes sense if the GP ranking function could
not find them.

TABLE V
THE RESULTS OF PEPTIDE IDENTIFICATION RATES BEFORE AND AFTER

POST-PROCESSING BY SVM-RANK AND THE BEST GP-PSM-RANK MODEL
ON VALIDATION SET.

true match
rate

missed target
PSMs rate

De novo
Method

Post-processing
Model before after before after

GA-Novo GP-PSM-rank 0.7 0.8 0.2 0.1
SVM-rank 0.75 0.15

PEAKS GP-PSM-rank 0.56 0.71 0.26 0.11
SVM-rank 0.68 0.14

TABLE VI
THE AVERAGE RESULTS OF PEPTIDE IDENTIFICATION RATES BEFORE AND

AFTER POST-PROCESSING BY GP-PSM-RANK FROM 30 INDEPENDENT
RUNS ON VALIDATION SET CONTAINING 120 DOUBLY CHARGED MS/MS

SPECTRA.

true matchrate missed target PSMsrate
Algorithm before after before after

GA-Novo 0.7 0.75 ± 0.03 0.2 0.15 ± 0.03
PEAKS 0.56 0.66 ± 0.04 0.26 0.16 ± 0.04

Table VI presents the average results of peptide identifica-
tions before and after refining the PSM ranks by the 30 GP
ranking functions from 30 independent runs of GP. It can be
seen that on average GP improve the target PSMs and missed
target PSMs identification rates of de novo outputs.

C. Analysis on the best GP evolved program

Fig. 3 shows the best GP-evolved program among the
30 independent runs. The Tree includes 59 nodes. As GP
performing implicit feature selection, out of the 22 given
features, GP selected 12 informative features. The features
{f3, f8, f10, f14, f15, f16, f18, f19, f20, f21} are not used by
the best evolved GP program. In this GP program, GP did
not select the redundant features. For example the feature
Hamming distance f10 is discarded and instead Euclidean
distance f9 is selected but f8, cosine similarity, is not selected,
∆Cos, f13, seems to be more informative to GP and is
selected.

GP has found a non-linear relationship between the features
{f1, f2, f5, f7} at its the most left sub-tree. It is worth investi-
gating how this combination can improve the results of peptide
identifications by GA-Novo if it is used as the fitness function
of GA.

VI. CONCLUSIONS AND FUTURE WORK

This paper developed a method using GP to automatically
produce an effective ranking function for PSM ranking, which
combines different types of match scores that each measures
the quality of match from different perspective. An effective
fitness function was proposed to help GP to rank a collection
of candidate PSMs, aiming at maximising the number of
target PSMs identified at the top rank in each group of
candidates for each spectrum. The results show that GP-PSM-
rank outperformed SVM-rank by 9% and 6% in terms of
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Fig. 3. The best GP evolved program (the PSM ranking function).

correctly identifying target PSMs on a training set and a test
set containing 700 and 300 spectra, respectively.

On a test set of 120 spectra, our method was effective
for two de novo sequencing algorithms including GA-Novo
and PEAKS. When it was used to re-rank PSMs, the results
of both methods significantly were improved in terms of
true matchrate and missed target PSMsrate. The best evolved
GP ranking function improved the results of peptide identifi-
cation by GA-Novo and PEAKS in terms of true match rate by
10% and 15%, respectively. The best GP ranking function also
decreased the rate of target PSMs that were ranked wrongly
the de novo sequencing tools by 10% and 15% for GA-Novo
and PEAKS, respectively.

The analysis of the best GP ranking functions revealed the
important features for the task of ranking PSMs. The best
evolved GP program only used 12 features out of the 22
available features in the datasets.

As for future work, we will investigate generating a generic
model or a set of individual models that can handle different
spectra with different charge numbers and precursor masses.
We will also investigate more effective function sets for the
GP method. The error of mis-ordering decoy PSMs will be
also taken into consideration to come up with more accurate
PSM ranking models.
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