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AbstreThis  paper describes a general theoretical model of size 
and shape evolution in genetic programming. The proposed model 
incorporates a mekhanism that is analogous to ballistic accretion in 
physics. The model indicates a four-region partition of GP search 
space. It further suggests that two of these regions are not 
searchable by GP. 

I. INTRODUCTION 

Are there taboos to what can be expressed in the solutions 
derived under genetic programming (GP)? 

While current theory has yet to offer a definitive answer, let 
alone proof of whether limits do or do not exist, there have been 
clues in the literature that point to the existence of taboos. Most 
notably, work in the evolution of size and shape has indicated 
that GP generates solutions that have an affinity towards 
particular sizes and shapes (e.g., [ 1-31). Moreover, these findings 
suggest that this affinity is significant, which greatly curtails 
what can be generated if a solution is not of these shapes and 
sizes. Still, the literature suggests that it should still be possible 
to do so, even though it becomes increasingly difficult to 
generate a solution the further away that solution is from these 
preferred sizes and shapes. 

My research group and I have been investigating the factors 
that contribute towards making a problem GP-hard. We have 
hypothesized that one of these factors is the structure that is 
implicit in a tree representation. In the process of doing so, we 
have discovered regions in the search space that are possibly 
taboo to GP. The purpose of this paper, then, is to describe a 
model of GP that isolates the consequences of structure, and to 
describe these possible regions of taboo. 

11. LAITICE-AGGREGATE MODEL 

This section describes the proposed model in the context of 
previous work upon which the model has been based, followed 
by mathematical outlines of how the model works. 

A. Background 

At its heart, the proposed lattice-aggregate model is a 
rewriting system that is applied to a set of positive integers that 
bijectively map to locations on a circularly symmetric lattice. 
While trees in general are recursively defined in terms of a finite 
set [4], trees in GP usually have nodes that are associated with 
some type of programmatic content and are typically 
implemented in a manner that facilitates computation. While 

such implementations of trees are essential towards making GP 
operational, we have hypothesized that such implementations 
could obscure the salient mechanisms that affect the dynamics 
of GP. For that reason then, the contents of the model’s trees 
are reduced to nil; only locations of the nodes remain. 

The proposed model is analogous to Witten and Sander’s 
model for diffusion-limited aggregation [5] .  Similarities to 
Witten and Sander’s model include the following: 

Initial conditions presuppose the existence of a nucleating center. 
In Witten and Sander’s model, there is a nucleating center 
upon which subsequent growth occurs. In the proposed 
model, there is a nucleating center that includes the root 
node, also upon which subsequent growth occurs. 
Growth occurs by randomly occurring collisions. In Witten and 
Sander’s model, growth occurs when a (random walk) 
particle collides and subsequently sticks to some random 
location on the perimeter of the nucleating center. In the 
proposed model, a particle sticks to what corresponds as a 
random leaf of a nucleating tree. 
Model presupposes a lattice. In Witten and Sander’s initial 
model, a four-connected square lattice was presupposed, 
upon which particles traveled. In the proposed model, it can 
be shown that a lattice is also presupposed, upon which 
growth also occurs. 
The proposed model differs from Witten and Sander’s 

diffusion-limited model in several ways: 
Ballistics of particles does not matter. What matters to the 
proposed model is that the sites for growth on a nucleating 
center are selected at random-how a particle gets there is 
not of concern. For Witten and Sander’s initial model, as 
well as many of Sander’s subsequent models, the path by 
which a particle takes to get to a nucleating center is 
paramount. ’ 
The particles used are not pixels. The primary unit of growth 
in the proposed model is a set. Trees are abstracted into sets 
of positive integers, whereupon the value of each integer is 
bijective to a location on a lattice. 
The type of lattice is non-rectangular. The lattice that underlies 
the proposed model is a three-connected, circularly 
symmetric grid, which is distinct from the four connected, 
square grid of Witten and Sander’s initial model. 

’ The type of growth that is characterized by Witten and Sander’s 
model is known as ballrjtc accretion. 
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The proposed lattice-aggregate model also shares several 
features with Lindenmeyer systems [6] .  In particular, the 
proposed model can be expressed in terms of a stochastic OL- 
system (see [7]). However, this alternative representation is 
reserved for a later work. 

B. Sketch of Model 

The following sketch outlines the model that has been used 
to describe the evolution of shape and size for a standard genetic 
programming system. The particular sketch that is given here is 
valid for binary trees for depths 0 - 26 (presuming that the root 
node of a tree is at depth 0). 

Let A be a set of positive integers that correspond to the 
numbered nodes of a binary tree T. The numbering scheme for 
this tree is such that the parent of node k is node LkDJ, and that 
the children of node k are nodes 2k and 2k + 1. A binary tree 
may subsequently be represented in terms of its nodes' 
locations, with its structure being implicit in those locations? 
For example, it is fairly straightforward to show that the 
following tree is equivalent to the set A = 11, 2 ,  3 ,  6 ,  7, 12, 13, 
14, 153: 

R ;h, 
12 13 14 15 

A particular consequence of numbering nodes in this manner 
is that the locations of both internal nodes and leaves are 
absolute. It is therefore possible to construct a lattice in which 
each number corresponds to a position on this lattice. For 
example, the following lattice shows the locations of the first 
fifteen positive integers: 

The lattice for 2047 nodes looks like the following: 

* Note that this numbering scheme is similar to that of a complete 
binary tree, as defined by Knuth in [4] .  However, unlike a complete 
binary tree, the locations given by this numbering scheme are not 
assumed to be sequential. 

(3) 

Let the root node be defined at depth d = 0. Assuming that T 
has d > 0,  it can be shown that a set A can be decomposed into 
two mutually exclusive, non-empty setsland Ksuch that 

Setlcorresponds to the internal nodes of T 
Set Kcorresponds to the leafs of T 
We define a set B to correspond to a subtree of T. Note that 

set B is a hnction of k, whereupon k E A. The smallest possible 
subtree, a leaf, can be described as 

B'= {k}. (4) 

The next smallest subtree, a parent and two nodes, can be 
described as 

@= (k, 2R, 2k + 1). (5) 

For the purposes of modeling GP behaviors for depths 0 - 
26, we arbitrarily define B ', B ', B ', and B" to correspond to 
5-,7-, 9-, and 1 1-node subtrees, respectively. 

B = {k, 2k, 2k + 1,4k + 2 ,4k  + 3}.  (6) 

B7 = B 5  u {8k+ 4 , 8 k +  5 } .  (7) 

B 9 = B 7 u { 1 6 k +  10 ,16k+11} .  (8 )  

B" = B u {32k + 20,32k + 21}. (9) 

Note that the particular selection of elements for B5, B', B9, 
and B" is arbitrary. What each of these sets has in common, 
however, are that each corresponds to a minimal binary tree. 

Now let k E KO We can then represent the growth of a tree 
by B5 as 

A ' = A u B5 (k) = A u {2k, 2k + 1,4k + 2 ,4k  + 3}. (1 0)  

Likewise, we can do the same for B7, B9, and B". 
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Consequently, we can represent a stochastic model of tree 
growth for depths 0 - 26 as a recursive operation upon integer 
sets, namely 

A ' =  A U B i(k), (1 1) 

where i is a discrete random variable with sample space S E  = 15, 
7, 9 ,  11) and k is a discrete, uniformly distributed random 
variable with sample space S E  = K. It can be demonstrated that 
an appropriate probability distribution function corresponding 
to i entails the following relationship3 

P( i  = 5) = 2 P( i  = 7) = 4 P(i  = 9) = 8 P( i  = 11). (12) 

Example. Given A = 11, 2, 3, 6, 7, 12, 13, 14, 15}. Set A 
decomposes into]= {l, 3, 6, 7} and K =  12, 12, 13, 14, 15). 
Assuming that the second element of Kand that B have been 
chosen,A'= 11, 2,#3, 6, 7, 12, 13, 14, 15, 24, 25, 50, 51}. See 
Figure 1 for an example of both A and A ' being mapped onto 
the lattice shown in (3). 

Figure 1 .  Sets A and A ' are mapped onto the lattice of the proposed model. Left 
is set A; right, set A ', The gray circle corresponds to a tree depth of five. 

C. Variatiom 

There are several additional variations that need to be 
considered in the modeling of tree growth in GP. The first set 
of variations assists in identifying the upper and lower density 
bounds of tree growth, while the second set of variations address 
methods of population initialization. 

The density of a set A can be defined as follows: 

where N(A) is the number of elements in A and max(A) 
identifies the maximum value in A. This definition corresponds 
to a ratio that is the number of nodes of a tree that is 
normalized by the number of nodes in a full tree of identical 
depth. 

This assumes that the comparison is with standard GP, in which the 
probability of selecting an internal node for crossover is uniform. 
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To identify the upper density bound, equation (1 1) can be 
restated as 

Equation 13 corresponds to 'the case whereby tree growth is 
entirely determined by three-node subtrees. Note that if k were 
instead deterministic such that all k E K is selected for 
replacement by @, the resulting tree would approach being full. 

T o  identify a lower density bound, equation (1 1) can be 
restated as 

A ' = A U B " ( k ) ,  (15) 

where B " is the least dense set of those sets B that are used in 
modeling growth. It is assumed that density for sets B are 
determined at k = 1. For the proposed model for depths 0 - 26, 
the set that is least dense is B". 

It is possible to modify equation (1 1) to account for varying 
methods for population initialization. While such modifications 
have been done , t o  model Koza's ramped half-and-half for 
depths 2 - 6, the exposition of these modifications have been 
left to a future paper. 

111. DETERMINATlON OF SEARCH SPACE BOUNDARIES 

The specified model was subsequently used to derive 
boundaries in the size-shape search space of trees from depths 0 
- 26. This derivation consisted of four steps, namely: 

Used Monte Carlo methods to sample the proposed lattice- 
aggregate model corresponding to equation (1 1). 
Extracted depth and number of nodes from each sample. 
Computed the cumulative distribution of the numbers of 
nodes per tree for trees that correspond to a depth d for d = 
{0, 1, 2, ... 261. 
Determined isopleths in size-shape space that correspond to 
contours of constant distribution. 

This process is shown in Figure 2 for 50,000 sets. Isopleths were 
generated for 99%, 75%, median, 25%, and 1% distributions. 
Note that given the relatively steep fall-offs in the distribution 
of sets in size-shape space, the 99% and the 1% isopleths do 
approximate boundaries that specify where trees do or do not 
occur in this search space. 

A similar procedure was applied to determine isopleths for 
equations (14) and (15). Again, given relatively steep fall-offs in, 
distribution, the 99% isopleth for equation (14) approximated 
the uppermost bound of search, while the 1% isopleth for 
equation (1 5) approximated the lowermost bound of search. 

Iv. MODEL mSULTS AND PREDICTIONS 

Figure 3 summarizes the isopleths for equations (1 l), (14), and 
(1 5). The isopleths suggest the existence of at least four distinct 
regions for depths 0 - 26. These regions are as follows: 
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Figure 2. Derivation of isopleths of constant distribution for equation (1 1). Top 
plot shows the Monte Carlo results. Middle shows the numerical values of 
constant distribution, plus curve fits. Bottom shows just the curve fits. 

'"a 

Depth (linear scale) 

Figure 3. Predicted regions of search. There are at least four regions that the 
model predicts that ultimately limit where GP can search in size-shape space. 

Region I. This is the region where most solutions in standard 
GP occur (for binary trees). Full mixing of various size /shape 
subtrees in the derivation of solutions occurs here. The width 
of Region I is driven largely by population initialization. 
Regions ZZ. These are the regions where increasingly fewer 
individuals appear the further away from Region I. Only 
partial mixing of sizelshape subtrees occurs here, with mixing 
becoming non-existent towards the boundaries furthest away 
from Region I. Region 11, is delineated by the boundaries 
that are approximately located by the 99% isopleth for 
equation (14) and the 99% isopleth for equation (11). 
Region 11, is delineated by the boundaries that are 
approximately located by the 1 % isopleth for equation (14) 
and the 1% isopleth for equation (11). The transition 
between Regions I1 and I11 is pronounced. 
Regions ZZI. These are the regions where practically no 
individuals appear. Region 111, is delineated by the 
boundaries that are approximately located by the 99% 
isopleth for equation (14) and bound for full trees. Region 
111, is delineated by the boundaries that are approximately 
located by the 1% isopleth for equation (14) and bound for 
minimal trees. 

0-7803-7282-4/02/$10.00 02002 IEEE 276 

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:20:16 UTC from IEEE Xplore.  Restrictions apply. 



Regions ZV. These are the regions that are precluded from 
binary trees. 

v. COMPARISON TO EXPERIMENTAL DATA 

In earlier papers [8, 91, we published work on a tunably 
difficult problem in genetic programming that we have since 
named the binomial-3. We can use those empirical results as an 
instance to test against this paper’s theoretical results. (Other 
empirical results could have also been used, but because of 
limited space, only the binomial-3 results were given.) 

Figure 4 portrays several of the previously published data sets 
for tuning values of 1, 3, IO, 100, and 1000 (in order of 
increasing difficulty). Each dot represents a best-of-trial 
individual out of a population of 500; each graph represents the 
ensemble performance of 600 trials (Le., a sampling of 30,000 
individuals total per graph). In the lefi column of Figure 4 are 
the results of adjusted fitness versus the number of nodes; in the 
right, the results of number of nodes versus depth. The 99% 
and the 1 % isopleths for equation (1 1) are superimposed on the 
graphs on the right. 

In spite of significantly varying degrees of problem difficulty 
and wide variation in shapes and sizes across 3,000 statistically 
independent trials, better than 99% of all of the best-of-trial 
individuals fall in the area described as Region I and less than 
1% in Regions 11. No trials were found to be in Region 111. 

VI. DISCUSSION AND SUMMARY 

This paper has described a lattice-aggregate model for the 
purpose of describing the evolution of shape and size in genetic 
programming. It presumes nothing about the programmatic 
content associated with each node. It could also be argued that 
the described method of growth also presumes little, if anything 
about tree generation, manipulation, crossover, or mutation. 
The  region boundaries that are indicated by the proposed 
model should apply to a broad range of problems with arity-2 
functions at depths that have been examined by the model (i.e., 
depths 0 - 26). These results should also hold across various 
implementations and flavors of tree-manipulating systems, 
including those that are not of GP. 

It would be appropriate to say that the proposed approach is 
a structuralist one, which is distinct from those taken in 
previous work. There are three major departures: 

Structure produces its own behavior. The notion is not new 
and has occurred in other fields (e.g., see [12]). However, the 

‘ The proviso, of course, being that the programmatic representation of 
an individual is not articulated (terminology mine). In an unarriculated 
representation, a tree directly represents a coding solution, as opposed 
to an articulated representation, in which a tree represents an 
intermediary. For example, Koza et al. [lo] makes frequent use of 
articulated representations by employing Gruau’s method of cellular 
encoding [ll].  In this case, GP provides an intermediary program, 
which is then executed to manipulate graph structures that ultimately 
generate a final solution. In this case, the results of the lattice-aggregate 
model would likely apply to the intermediate, but not the final 
solution. 

notion is, perhaps, not as intuitive in an analysis of GP 
dynamics because programmatic content seems inextricably 
linked with the structure of that content. The proposed 
model offers sufficient explanatory power to account for a 
broad range of observed phenomena that has been obtained 
under a wide variety of domain-specific problems. 
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Figure 4. Comparison of proposed model with an instance of empirical data. 
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Structure is a predominant factor in determining where search 
occurs. The use of a log scale in Figure 3 obscures, somewhat, 
just how small is the allowable search space in size and 
number of nodes, if only because of the use of a log scale. For 
example, there are 268,434,725 allowable combinations of 
size and number of nodes from depths 0 - 26. In this same 

taboo. These regions are a direct consequence of structure 
and their presence does imply that there might not exist any 
fitness hnction in standard GP that will allow for search in 
Regions 111. We leave to future work for empirical evidence 
of such regions. 

depth range, Region I (where most search occurs) VII. CONCLUSIONS - - 
encompasses only 12,573 combinations. In other words, 
Region I represents only 0.005% of the entire allowable 
search space in size and number of nodes. 
Content and manipulation of that content are secondaty factors 
in the evolution of shape and size of individuak True, most of 
what occurs in this narrow "bottle" of size and shape has been 
of intense interest in the GP community. However, given the 

This paper described a general theoretical model of size and 
shape evolution in genetic programming. The proposed model 
incorporated a mechanism that was analogous to ballistic 
accretion in physics. The model has indicated a four-region 
partition of GP search space. It further indicated that two of 
these regions are not searchable by GP. 

ACKNOWLEDGMENTS fairly significant effect of structure on the evolution of size 
and shape, one should (perhaps) scrutinize theories of code 
growth that presuppose fitness as a primary driver. 
Not all work in GP presupposes that fitness causes code 

growth and that fitness is the primary driver in the evolution of 
size and shape. Langdon et al. [2],  drew on early comparisons 

I thank the following individuals and organizations for their help: I. Kristo, S .  
Daida, L.M. Sander, CSCS U-M I Santa Fe Institute Fall Workshops, S. 
Stanhope, P. Litvak, S. Yalcin. D. Madean, W. Woml,  and UM-ACE= teams 
Meta-Edgep Rod, Barges, and Binomial-3. 

with Flajolet and Odlyzko's work on random trees [13]. REFERENCES 
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