
Linear Genetic Programming-Based Controller for Space Debris Retrieval

E. Gregson
Mechanical Engineering Dept.

Dalhousie University
Halifax, Canada

e-mail: ed565337@dal.ca

M. L. Seto, Ph.D., P.Eng., SMIEEE
Mechanical Engineering Dept.

Dalhousie University
Halifax, Canada

e-mail: mae.seto@dal.ca

Abstract—In this paper, we investigate the use of linear genetic
programming to evolve a controller that can guide a debris
removal chaser spacecraft to match the motion of an
uncontrolled target debris object. The problem is treated in 2D,
and the controller is required to apply forces and torques to
the chaser such that it approaches the target and matches a
“hand” point in the chaser-fixed frame to a “handle” point in
the target-fixed frame. The training simulations are extensively
parameterized, and as the population of controllers evolves, the
population of training scenarios also changes through both
coevolution and scheduled changes. This allows the controller
population to be gradually taught the full task after starting
with a simpler version. The resulting evolved controllers show
promise but would benefit from a more sophisticated GP
implementation than monolithic linear GP.

Keywords-genetic programming; controller; autonomous
system; chaser spacecraft

I. INTRODUCTION

We report on a method to deorbit arbitrarily-sized and
shaped space debris to reduce the collision threat to orbiting
operational space systems. Space debris can be derelict
spacecraft, discarded rocket stages and fragments in Earth
orbit. Moving at orbital velocities, debris poses a substantial
risk. Impact with even very small debris is sufficient to
destroy an operational space system. An impact with a piece
of debris, or between two debris objects, can generate more
space debris. In the worst case, a chain reaction, the Kessler
Syndrome, occurs where the space debris population grows
exponentially through self-collisions creating a very large
debris population and rendering the orbit unusable [1].

A proposed solution is autonomous debris removal
(ADR), where a robotic spacecraft is deployed to secure
select debris and deorbit it. This slows the debris growth by
preventing the eventual target breakup in orbit. Strategies
have been proposed to secure and deorbit debris, including
capture with robotic arms, nets, or harpoons. This paper
reports on a robot arm capture development as it is a flexible
and re-usable solution. In concept, the ADR spacecraft
(hereafter, chaser) flies up to the debris and grabs it with its
robot arm end effector, then applies forces and torques from
its thrusters to detumble and deorbit the debris (hereafter,
target).

The automated debris removal task encompasses both
low-level control and higher-level guidance. Genetic
programming / genetic programs (GP) has been applied to

both tasks for several decades now. GP approaches used can
be based on evolving tree-structured programs, neural nets
[2], or sequential programs. A distinction can be made
between genetic algorithm (GA) approaches, where a
controller architecture is chosen beforehand and evolution is
used to optimize its numerical parameters, versus a more
undefined GP approach where the structure of the program
itself is evolved.

Lewis et al. [3] use genetic programming to construct a
neural net for control of a legged robot. They preset the
neural net architecture and use evolution to tune the weights,
using a two stage training process in which the first stage’s
fitness function prompts the evolution of a general
movement, and the second stage’s fitness function refines
that movement. Nordin and Banzhaf [4] explore the use of
linear GP in robot online learning; their robot has a
population of GP controllers, all of which are given a chance
to control the robot and be selected based on their outcomes,
allowing the robot to learn obstacle avoidance and object
following online. Kadlic et al. [5] looks at water turbine
control using a form of Cartesian genetic programming
(CGP) that evolves connections between functional blocks,
whereas Khan et al. [6] examines the use of CGP to evolve
weights and topology for neural network controllers, testing
them on the double pendulum problem. Luo et al. [7]
investigate benchmarking linear GP on prediction and
control tasks, including chaotic time series prediction and
pole balancing. Linear GP (used for this work) is further
described by Brameier and Banzhaf [8]. Hein et al. describe
a means to generate interpretable reinforcement learning
policies by training a GP population on a pre-existing neural-
net-based world model, applying this to the mountain car,
pole balancing and industrial benchmark tasks [9].

In the aerospace domain, Oh and Barlow applied GP to
the problem of guiding a UAV to find, approach and circle a
radar source [10]. GA and GP have been frequently applied
to the problem of attitude control for satellites and spacecraft.
Dracopoulos studies evolving satellite attitude controllers
with GP [11]. Silva et al. describe a more GA-based
approach of evolving rocket attitude controllers by evolving
the gains for linear quadratic controllers [12]. Recently,
Marchetti et al. demonstrate a controller for a launching
rocket that trains a population of genetic programs online to
adapt to hardware failures or unexpected events [13].

For the specific problem of controlling a spacecraft to
match the motion of an uncontrolled tumbling object,

112

2020 4th International Conference on Automation, Control and Robots

978-1-7281-9207-9/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:18:38 UTC from IEEE Xplore. Restrictions apply.

solutions have generally been based around less machine-
learning based methods. Aghili describes an optimal control-
based approach to docking to and securing space debris [14].
Li et al. present a solution to the same problem based on
model predictive control [15].

A GP solution poses challenges in autonomous planning
and control (the contribution here) of the ADR vehicle. The
target will be tumbling with arbitrary (approximately)
torque-free motion. For most targets, only certain sections
are suitable as grapple points. For example, a rocket engine
nozzle might be a good grapple point whereas the edge of a
solar panel would not be.

The chaser must track a candidate grapple point on the
tumbling target then after deliberation attempt to grasp that
point. If the target tumbles relatively quickly with a fair
amount of rotational inertia, the chaser may have to fly a
path that matches (station-keeps) to the candidate grapple
point, to decrease stress on the arm and/or give it time to
extend the arm. The attitude of the chaser during such
maneuvers must be controlled; the chaser side with the arm
must face towards the target grapple point. The paper reports
on a proposed controller methodology for a chaser that
station-keeps to an arbitrarily sized and shaped transiting and
tumbling target such that a chaser-based arm can grasp its
grapple point. Afterwards, the thrusters would provide
corrective forces and torques to detumble and deorbit the
target. The posed question is how to design adaptive control
laws for the chaser’s thrusters, given the target motion, to
allow capture. The controller would maintain the chaser-
debris formation and autonomously correct in real-time for
uncertainties in the debris or chaser dynamics. This is the
problem of the spacecraft rendezvous and docking to a
tumbling target.

When a problem is complex and its parameters only
partially observable or unknown because it changes rapidly
or is stochastic in nature, machine learning methods can be
considered. An apparently high-dimensional and complex
problem / data set has a lower-dimensional representation
which distills out the key features of interest. These features
could be learned through a machine learning approach.
However, machine learning implementations with neural
networks are computationally demanding on an embedded
platform that carries all its mission energy on-board.
Canonical linear genetic program (GP) solutions are a type
of machine learning which produces programs that are more
computationally light weight [4] but can still address the
stochastic nature of some of the parameters. This motivated
an interest to determine the extent of an adaptive control
solution from GP. At a high level, the intent is to take the
chaser and target state vectors, for particular chaser and
target initial conditions and performance goals (scenarios),
and apply a GP controller to determine the control forces and
torques to guide the chaser to a rendezvous and grapple with
the target.

The rest of this paper is as follows. Section II presents
background on GP and how it was implemented. Section III
covers the details of the task and simulator. Section IV
describes the training process and how the simulated
scenarios were used to teach the controllers. Section V is an

overview of the results, Section VI discusses them, and
Section VII discusses possible future work. Section VIII lists
the contributions, and Section IX concludes with a few
remarks.

II. BACKGROUND

A. Genetic Programs
Generally, a linear GP takes a set of registers and an

array of input values, and returns the register values altered,
based on the input values. One line in a linear GP program
is a list of numbers which identifies a chosen register, an
operation to apply to that register value, and a second
register value or input to be an additional operand to the
operation. It outputs the altered value of the chosen register.
A stack of lines (represented as a 2D array) forms a program.
A canonical linear genetic program (GP) was implemented
in MATLAB.

A population of programs (controllers) are represented
as a 3D array of 2D program arrays. To improve the
programs, a Breeder model (as described in [16] and similar
to the Breeder GA in [17]) is employed, where (in every
generation) each program is tested on its task and assigned a
fitness based on its performance. The number of worst
performing programs are discarded, and the remaining
programs (called parents) are used as input to variation
operators, which generate child programs with random
modifications and combinations of the parents. These
parents and children form the new population.

The Breeder model is elitist; the best performing
program is never discarded, so the best fitness demonstrated
by the program population only increases, if the test cases to
which they are applied remain the same [16]. The variation
operators used here to evolve the controllers were single-
point crossover and mutation.

Single-point crossover takes two randomly selected
parent programs, splits each at a randomly selected line
number and swaps the lower blocks of lines to create two
new child programs. It allows growth in program length.
Mutation used here takes a randomly selected parent
program and moves through the values in each line of the
program, altering the values with probability Pm to create a
child program. The values are altered by adding or
subtracting 1 with equal probability, with a value-wrapping
condition to keep the values within the allowed range. The
mutation probability Pm was set to 0.1 during training.
When applied to a program, it was scaled by

, where is the current line number, is the

number of lines in the program and is the maximum
number of lines allowed in a program. This means that for
short, early programs mutation is relatively uniform, but for
long programs the mutation probability is reduced for earlier
lines where changes could have a greater impact. About half
of the child programs were generated by crossover, and half
by mutation. Further details are omitted for brevity.

113

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:18:38 UTC from IEEE Xplore. Restrictions apply.

III. SIMULATOR IMPLEMENTATION

A. Simulation Models to Assess Controllers
The objects modelled are the chaser and the target,

simulated in 2D for simplicity and lower computational
demand. Both are assumed to be in a zero-gravity
environment. Each object has a mass, concentrated at its
centroid, and a moment of inertia about its centroid. The
chaser and target masses and moments of inertia have the
same values throughout. The specific chaser and target state
values supplied to the controller during a control step varied
across training runs as experiments were performed, but
every value supplied has additive zero-mean white Gaussian
noise scaled by 0.05, to represent sensor and state
uncertainty.

Standard 2D dynamics and kinematics give the chaser’s
response to applied forces and torques which come from the
controller. Gravity is zero, so the chaser responds only to the
forces and torques outputted by the controller. The target is
assumed to have a constant angular velocity and is not
transiting – the chaser transits towards it. This is true for the
entire duration of a simulation.

Both objects are represented as rectangles. The chaser is
a 1 m × 1 m square whereas the target can have more
arbitrary rectangular dimensions (could evolve up to a side
length of 6 m in either dimension). A fixed point in the
chaser’s reference frame, 2 m from its centroid in the x-
direction, is designated the robot end effector or “hand”.
Similarly, a fixed point in the target’s reference frame is
designated the grapple point, or “handle”. The handle
location can be varied but is constrained to be outside the
boundaries of the rectangle that represents the target (Fig. 1).
If the chaser controller can keep its hand point within a
specific minimum distance of the target’s handle point for a
set time duration, the chaser is considered to have captured
the target. Ideally, the controller avoids collisions and
minimizes fuel use while achieving a capture.

Figure 1. Models used in the simulation. Chaser (blue square) with its
hand (green dot) and target (magenta rectangle) with its handle (red star).

The thin red lines visualize the chaser’s hypothetical jets.

To simplify the computational requirements for this
proof-of-principle, it was reduced to two-dimensions from
three. In two-dimensions, the dynamics are linear. Each
object has three degrees-of-freedom which define its state; its

position, (x,y), and angle relative to a reference. The
controller sets the value of force and torque on the chaser.
The set force and torque values could easily be translated
into thruster forces; with 6 jets (3 pairs of opposing jets) the
2D chaser would be fully actuated and holonomic.

The performance of a controller is assessed by simulating
the actions of the chaser under the control of that controller
for each of a population of chaser-target scenarios. A
scenario specifies the target initial conditions as well as
parameters for a successful capture (Table I). The time
history of the chaser forces and torques, as well as chaser and
target poses, in response to a chaser controller, are
simulation outputs. The simulations were designed to train
the GP controller to capture the target.

TABLE I. INPUT SCENARIO VECTOR

parameters description

maxcapdist
maximum distance between hand and handle
sustained for mincapture time steps; defines a
successful capture

mincapture
minimum consecutive time steps that hand and
handle points have to be within maxcapdist to
consider the target captured

maxang
cosine similarity between the hand and handle
vectors; successful capture � < maxang (Figure
1)

maxcollisio
n

count of chaser and target overlaps in time steps;
if exceeded, terminate simulation in a collision

u
n
sc

h
ed

u
le

d

target

handle position in target-fixed frame,

target dimensions in the target-fixed frame:

 for scenario,

se
m

i-
h

d
l

d

target
initial angle

angular velocity

B. Simulator Predicts Performance of GP Controller
The GP algorithm is shown in Fig. 2. A simulation

applies one controller to one scenario for 20 seconds, the
duration for the chaser to capture the target. The simulation
time step is 0.01 seconds. Simulations start with the target at
the inertial reference frame origin and the chaser, at rest, 10
m from the target in the x-direction. In some training runs,
the chaser started with its hand facing away from the target,
while in later ones the chaser hand and target handle face one
another.

Every 0.1 seconds within a simulation the controller
accesses the chaser state, target state and scenario vector,
applies the controller which outputs the chaser forces and
torque to update the relative chaser and target poses. The (x,y)
force components each have a maximum absolute value of
10, while the torque has a maximum absolute value of 5. At
each time step, these absolute values were multiplied by the
time step and summed to represent fuel use.

Each generation applies a population of 100 controllers
to the 100 scenarios which results in 10, 000 simulations.
Over 12, 000 generations (a training run) this results in 120
M simulations to yield an evolved controller.

chaser

hand
vector

target

handle
vector

114

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:18:38 UTC from IEEE Xplore. Restrictions apply.

In reality, the force translating the chaser and the torque
rotating it would be actuated by differential jet pairs on its
periphery. A more accurate fuel use model would simulate
these jets and track how long they fired and at what thrust,

which would be proportional to fuel use. For the simulations
however, the controller calculated a force and torque, and
tracking them was considered to be adequately analogous to
fuel use in a system with jets.

Figure. 2 General arrangement of the genetic program controller designed and implemented. Shown, is the process that occurs every 12, 000 generations.
This constitutes one training run which has 120 M simulations.

There are 2 conditions where a simulation terminates
early. The first, is a successful capture. If the hand and
handle points are within distance, maxcapdist, for
mincapture, consecutive time steps, then the chaser has
captured the target. In some simulations, there were further
constraints on a successful capture. For an actual capture
maneuver, the chaser arm should face the capture point, so a
condition was added to ensure this. For each time step, the
cosine similarity between the hand and handle vectors was
calculated, in the global inertial coordinate frame, and if this
is not < maxang, the capture was unsuccessful. This enforces
the chaser orientation to the target during capture.

The second condition where a simulation terminates early
is a collision. At every time step the simulator checks if the
chaser and target centres of mass are within a minimum
threshold distance, and if so, checks for overlap between the
chaser and target. As both are modelled as rectangles, this
was simple. The simulator tracks the number of time steps
with overlaps and if it exceeds maxcollision, the simulation
is terminated by a collision. Unlike for captures, the overlaps
did not have to be consecutive to count as a collision. Each
simulation returns the number of time steps that satisfied the

capture and overlap criteria, fuel use, simulation time at
termination and result which is 0 for a timed-out simulation,
-1 for a collision and 1 for a capture.

Although the canonical linear GP training set up was
implemented in MATLAB, the simulator itself was
subsequently realized as a C++ MEX file accessible by
MATLAB [18]. The simulator input takes a linear GP
controller as a 2D array, and a 2D array of scenarios and
performs a simulation with that controller for each scenario.

C. Introns
During training, each simulation runs the controller every

control step (0.1 s), for a maximum 200 (20 second / sim at
10 Hz) GP evaluations / simulation. This is a significant part
of the simulation’s running time. To lower the computational
cost, structural intron detection was implemented. Introns are
lines of the GP program that have no effect on the program
output, and thus do not need to be executed.

An extra value was added to every GP line: a ‘1’ if the
line should be executed and ‘0’ if it is an intron. Every
generation, after the creation of children, the intron detection
routine checks the GP controller population, and toggles this

115

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:18:38 UTC from IEEE Xplore. Restrictions apply.

bit as appropriate for each line of every GP. Structural intron
detection is performed as in [19]. The intron detection
routine monitors which registers were used as controller
outputs and puts them in a list of important registers. It
moves through the GP lines from the end to the beginning. If
the output of a line (the register that is changed) is a register
on the list, that line is marked as a non-intron. Any registers
that the line uses to generate that output are added to the list.

D. GP Operations and Limits
The basic operators available to the GP are {+, −, ÷2, ×2}.

To this was added the nonlinear conditional operator if <
then = − , and in later tests the cosine operator = ()
and the exponential and log operators = and = (),
where is the output register value and is another register
or an input value. The exponential and log operators have the
potential to cause errors or make values diverge, so
conditions were added to guard against this: if the input to
the exponential operator was greater than 22, the output was
capped at 3, 584,912,856, and if it was less than -22, output
was capped at 0.000000000279. If the input to the log
operator was less than 0.00000000206, the output was
capped at -20, and if it was greater than
1,586,013,452,000,000, output was capped at 35. Further
issues with divergence were noted, so a condition was added
so that if any GP line’s output was greater/less than a
threshold, it would be capped.

E. Registers and Memory
The number of registers the GP accesses is set to 12. The

first 3 register values are the controller force (x, y) and torque
output, subject to the force and torque limits. It was thought
the controllers might benefit from retaining inputs and
outputs, so the last 4 registers are set as memory; their values
were initialized to 0 at the start of the simulation like all the
other registers, but were not reset to 0 between control steps,
giving the controller an ability to record values it could use.

The GP training is discussed next.

IV. GENETIC PROGRAM TRAINING

This section describes the scenario vector (Table I) in
more detail and how its elements evolve. A scenario step is
when all members of the scenario population are changed.
Some scenario parameters change on a schedule and those
that do not are evolved (like the controllers). A scenario
generation, SG, spans multiple controller generations
(nominally, 60). The specific number of controller
generations per scenario generation varies, as a scenario step
can only occur when certain criteria are met.

A. Scheduled Parameters
The training evolves a GP controller to guide the chaser

to capture the target without colliding with it. Ideally, the
chaser keeps its hand co-located with the handle for at least a
second without overlapping the target. This is unachievable
as an initial training goal. Newly initialized GP controllers
produce random outputs, and thus when generating the
control force and torque would guide the chaser on a random
path through an unlimited physical space. It is impossible for

a randomly moving chaser to keep its hand coincident with
the moving target’s handle long enough to achieve a capture
by chance. If the initial GP controllers do not achieve a
capture, then there is no basis to rank and evolve them
towards the goal.

Instead, the GP controllers are progressively taught the
goal, by evaluating them initially on easier goals that can be
achieved by chance, and then incrementally changing the
evaluation criteria towards the ultimate (capture) goal. This
was the purpose of the scheduled scenario parameters
maxcollision, mincapture, maxcapdist, and maxang. If
initially maxcollision is set to 50 time steps, mincapture to 1
time step, and maxcapdist to 8 m, then the task is easier, and
most controllers in the population are likely to achieve it.
The hand only has to be within maxcapdist of the handle for
1 time step to achieve a capture, the chaser and target have to
overlap for 50 time steps before it is considered a collision,
and the hand only has to be within 8 m of the handle. The
chaser and target start 10 m apart, and the hand and handle
are often closer than that, so many controllers in the
population could randomly achieve this capture.

Once the controller population evolves through sufficient
generations so that most achieve target capture, the scenario
parameters are made more stringent – decrease maxcollision,
increase mincapture and decrease maxcapdist incrementally,
in a scenario step. The controllers that succeed under the less
stringent parameters become the seed to evolve controllers
that could succeed under the more stringent conditions. Over
a training run, these scheduled parameters change
incrementally until the goal is achieved, i.e.: maxcollision =
1 such that any overlap is a collision; mincapture of large
enough time steps to be at least 1 second, and maxcapdist
that is a small fraction of the chaser’s dimensions.

Parameter maxang limits the maximum cosine similarity
between the hand and handle vectors. It is initially 0,
meaning the hand and handle vectors could be perpendicular,
and then gradually decreases to narrow the range of
permissible chaser capture angles. maxang’s initial value
depends in part on the state of other starting variables. The
best solution was to hard-code the chaser to start with its
hand facing the target so it was relatively easy to achieve
initial successes with maxang set to 0, as little chaser rotation
was required.

The choice of the schedule to change these parameters,
i.e. how much change in each scenario step, whether one
parameter should approach its final value faster than others,
etc., had an impact on the quality of the solutions.
Investigating ways to schedule the parameter changes was
part of the training experimentation.

B. Unscheduled Parameters
The other parameters that define a scenario are the target

dimensions and the coordinates of its handle
point in the target frame and the target initial angle and
angular velocity. The scheduled parameters maxcollision,
mincapture, maxcapdist and maxang are fixed goals; the
chaser must get its hand close to the target’s handle for a
certain length of time without colliding with the target. For
the remaining parameters it is easy to evaluate a parameter

116

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:18:38 UTC from IEEE Xplore. Restrictions apply.

value’s quality, but uncertain what quality could be
reasonably achieved. For example, a controller that could
achieve capture with a faster rotating target would be better
than one that could not, but it was unknown what rotation
levels a controller could ultimately evolve to handle, and a
faster rotating target was secondary to achieving consistent,
precise captures. It was decided to adopt a coevolution
strategy for these parameters, similar to that described in [16]
and [20].

Every scenario vector in the same generation had the
same values for the scheduled parameters, but the
unscheduled parameters varied. When the scheduled
parameters were changed, each scenario was given a fitness
score based on how difficult it was for the GP controllers to
perform a capture. The scenarios were ranked, the lowest
ranking gap scenarios were discarded, and the highest
ranking ones retained as parents to generate child scenarios
with scenario variation operators. The fitness for a scenario
was based on the success rate of the GP tested on it and on a
distance heuristic that quantified how different it was from
other scenarios. As the goal was to evolve a general
controller, if the scenario population remained diverse, the
evolved controllers would be more general (desired). The
scenarios were subject to ranking and child generation only
occurred when the scheduled parameters were changed; this
was so the scenarios would not change at the same rate as the
controllers so the controllers would have time to adapt to a
new scenario population.

The shape and grapple point of space debris will vary
significantly, and some combinations may be more difficult
than others to achieve capture. A target that is a square and
has a handle far from its periphery would intuitively be
easier to capture than a target that is a long rectangle with a
handle aligned with its short dimension and close to the
periphery. This would pose greater timing challenges for the
chaser, as it would have to avoid colliding with protruding
parts as it approached the handle. All unscheduled
parameters had limits to prevent the training run from
evolving difficult but unrealistic scenarios.

C. Semi-scheduled Parameters
The target initial angle and angular velocity were

unscheduled parameters initially, but it was observed they
did not change much from 0, and it was desired that the
controller be applicable for different target orientations with
rotation. So, the initial target angle and angular velocity
became semi-scheduled parameters. When the scheduled
parameters changed and the scenarios were ranked and
evolved, a new value for initial angle and angular velocity
were drawn from either a scaled uniform or normal
distribution, but the scaling factors increased from 0 to a
maximum on a schedule. So, the initial scenarios all had the
same target angle with no rotation, but over training, as the
scheduled parameters changed, the range of angles and
angular velocities across scenarios grew larger.

D. GP Controller Fitness
The fitness for each GP controller is based on the result

array returned by the simulator. This array has a value, for

each scenario in the population, that is either 1, 0 or -1
depending on whether the GP resulted in a capture, timeout,
or collision, respectively. Summing the array gives a
representative GP fitness measure. The overarching intent is
that however fitness was assigned, captures are better than
timeouts and timeouts are clearly better than collisions, as a
failed removal is better than a chaser-target collision.
Minimizing fuel use also contributed to a GP’s fitness. The
fuel factor in (1) was subtracted from each result array value.

 (1)

Then, the result array was summed for the GP fitness.
GPs with similar numbers of captures, timeouts and
collisions are further ranked by fuel use, but the scaling
factor of 0.01 in the fuel factor prevents a GP with fewer
captures and more timeouts or collisions from beating one
with more captures and fewer collisions based on fuel
consumption.

E. Scenario Fitness
The fitness assigned to a scenario reflects the success rate

of all GPs for that scenario, and a heuristic quantifying its
difference from other scenarios. Given target
dimensions, and handle position,

for scenario , the distance, between
scenarios and becomes:

 (2)

In this way, a scenario was compared to other scenarios
and these distance measures were further summed for a
scalar representative of a scenario’s overall difference from
the population.

To generate the fitness for a scenario, the Breeder model
tracked the results of each GP controller for each scenario in
the population. It set the scenario fitness as the number of
simulations with that scenario where the chaser did not
capture the target. If the chaser did not capture the target in
any simulations, it sets the fitness to 0, as in the point fitness
in [16] (this ensures the model selects scenarios that are
difficult but not impossible for the GP population to solve).
Then, it scaled the fitness by the scenario’s scalar difference
measure (2). To reiterate, only unscheduled parameters are
evolved this way; the scheduled parameters are constant
across all the scenarios in a generation. Scenario fitness was
based only on the GP success rate for the GPs in the current
generation in which scenario selection was taking place, not
on the success rate of GPs in previous generations.

F. Scenario Variation Operators
The variation operators for the scenario evolution are

one-point crossover and mutation. In one-point cross-over,
two scenarios are randomly drawn from the population of
parent scenarios. An index between 1 and the scenario vector
length minus 1 is randomly drawn with uniform probability.
Two children are created from the parents by swapping the
scenario vector sections below the randomly selected index.

117

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:18:38 UTC from IEEE Xplore. Restrictions apply.

In mutation, a single parent scenario is selected. For each
non-scheduled parameter in the scenario vector, the
difference between the maximum and minimum allowed
values is divided by 20 to give an increment. If a number
drawn from a uniform random distribution is less than a
scenario mutation parameter, , that parameter is
selected for mutation. The increment is added to, or
subtracted from, the parameter with equal probability. If the
addition/subtraction puts the parameter outside its
maximum/minimum allowed value, the increment is instead
subtracted/added.

G. Scenario Step Condition
In one step of scenario evolution, the scheduled

parameters change according to the preset schedule and the
unscheduled parameters are evolved. The controller
population is ranked and evolves every generation, but
scenario evolution steps occur much less frequently –
whenever a specific condition is met. The choice of
condition was a subject of experimentation during the
training runs. Initially, a scenario step was taken if the
current scenario population was at least generations old
and the current best GP controller fitness (~ number of
successes) was > . However, the GP tends to improve in
sudden jumps, with the best fitness improving due to a
sudden chance improvement, and then the mean GP
performance gradually catching up as improvements from
the best GP propagate through the population with the usual
crossover and selection. Ideally, the best GP evolves to
perform as well as it can on the current scenarios, and the
other GP controllers acquire its successful traits, which
allows the population to have a good starting point for new
scenarios. Instead, the best fitness would make a sudden
jump above the limit , and the scenarios would change,
even though the full extent of the improvement may not have
been realized and the improvement was likely not well
established in the population. Therefore, a further condition
was added. The best fitness a number of generations,
before the current generation had to be worse than the
current best fitness by at most 10 for the scenario change to
occur. This condition requires that the performance plateau
before a scenario step, ensuring that chance improvements
which allow the population to attain a new best fitness > ,
have been fully explored and established in the population.

H. Training Termination Criteria
Each training run has a maximum number of generations

(in later runs, 12,000) with which to evolve the controller
population. Usually this was sufficiently large, and
sufficiently small, that if the scenario steps were taken every

generations and not delayed, the scheduled parameters
would reach their final values before reaching the maximum
generations. Then, scenario steps would continue to be
taken, but the scheduled parameters would no longer change.
The unscheduled parameters continue to evolve, and the
semi-scheduled parameters would continue to be redrawn
from distributions with scheduled change in the scaling
factors. It was of benefit to continue training after the final

scheduled values were reached, as it exposes the controller
population to more diversity from the unscheduled
parameters. The schedules were such that all scheduled
parameters reach their final values after 50 scenario steps; if
the training reached 70 scenario steps, this caused an early
training stop.Controller Inputs and Coordinate Systems

One of the main experimentation topics during training
runs was the input state vectors to the GP controller during a
control step. This was expressed in a polar coordinate frame
centered on the chaser with the 0-radians direction aligned
with the chaser hand. Coordinates are a distance and an angle,
with the hand coordinates constant since it is fixed relative to
the chaser. Target velocity values were also expressed in this
chaser-centric polar coordinate system (3), where

and are the position and velocity
components, respectively. and are the polar
coordinates and their first derivatives.

 atan2 (3a)

 (3b)

It is easier to evolve a controller that navigates to the
handle when its directions are from the state vector. The
controllers were given a state vector of length 14 consisting
of the target position and velocity, the target angle minus the
chaser angle, the target angular velocity minus the chaser
angular velocity, the global angle and angular velocity of the
chaser, the polar position of the hand and handle and the
target dimensions. All values had additive zero-mean white
Gaussian noise. The first 3 register values at the end of the
GP controller execution were the applied force (in polar
coordinates) and torque. The force was transformed to global
inertial Cartesian coordinates, and both force and torque
were capped by their respective limits.

V. TESTING AND RESULTS

The initial target angle and angular velocity were semi-
scheduled. At each scenario step they were sampled
uniformly from a range that increased according to a
schedule. This was so the GP controller population would
learn to work with higher target angles and rotation rates.

A series of training runs were conducted to experiment
with parameter settings and strategies. There are many
possible parameter combinations and strategies to explore, so
these experiments to date are not exhaustive. Achieving the
best performance from the GP controllers is on-going, and
the results reported are general observed patterns.

In the first experiments, the decision to take a scenario
step was solely based on , which was set to 30. In those
experiments, the best fitness stayed near 100 for 20-30
scenario steps, then started to fall and went to 0 before the
end of the training run. A condition was added so that the
scenario could only change if the current best fitness was
over 20 (~ 20% capture rate). This prevented the best fitness

118

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:18:38 UTC from IEEE Xplore. Restrictions apply.

from going to zero, but also prevented the training run from
reaching the limit of the scenario steps. The best fitness
declined with the scenario steps until it hit a point where it
was < 20 from which it could not improve, preventing the
training run from taking further scenario steps. The best
fitness would spike and then immediately trigger a scenario
change, so the condition was added to ensure the best fitness
plateaued before the scenario changed. was changed to 60,

was set to 40, and fitness limit was changed to 30 from
20.

The first training runs evaluated the controller fitness
simply by summing the result output. The controllers did
make progress learning the task, but the chaser moved in an
erratic manner, and when it missed a capture, it would
accelerate and rotate to high speeds, and move away from
the target. Adding fuel use to the GP fitness metric trained
the chaser controllers to move in a much less abrupt manner;
they tended to perform a gentle arc when they missed their
capture, rather than accelerating away. None evolved a try-
again behaviour. This is the subject of future work.

In general, the performance of the controllers was
promising, but simple. They did not tend to exhibit much
adaptability, but instead learned relatively simple,
stereotyped movements that would allow them to perform a
capture the minimum allowed number of times. They usually
had the chaser approach the target in a gentle arc, always
from the same side and performing a slow rotation to match
the hand to the handle at roughly the same position in space.
These programs were not simply memorizing movements, as
they managed to match under different initial conditions, but
they seemed to tune the same basic movement rather than
planning an approach more deliberatively. The controllers
had clearly adapted their behaviour based on whether the
training simulations were hard-coded to start with the chaser
facing away from the target or towards it.

In initial runs, maxcollision had an initial value of 50 and
a final value of 1, mincapture was initially 1 and went to 50,
and maxcapdist started at 8 m and had to work down to 0.05
m. The increments were chosen so all reached their final
values within 50 scenario steps. maxang had an initial value
of 0 and a final value of -0.96, meaning an allowed relative
angle range for the chaser during capture of 180° initially
and ~30° at the end. After experimentation, it was decided
that the training runs should reach the final maxcapdist value
relatively early in training, so that the controllers would learn
the basic desired behaviour, and then be able to adapt to
higher target angles, angular rates and dimensional aspect
ratios. So, the scheduled changes in maxcapdist were
increased so that it reached its final value in 10 scenario
steps rather than 50.

There were minor changes evolved during training runs
in the handle location, and the target dimensions, initialized
as a square of side length 1. Variation of between 1 and 1.5
were observed. The maximum allowed side length was 6, so
the targets could have evolved to be more rectangular than
they were but did not. There was also not much change
noticed in the target angle and angular velocity, which stayed
close to their initial 0 values when treated as evolved

unscheduled parameters rather than sampled semi-scheduled
parameters.

It was important that the controllers develop the ability to
adapt to varying target motion, which was why initial target
angle and angular velocity were changed to semi-scheduled
parameters. The scaling factor on the sampled angle and
angular velocity distributions always started as 0 but
increased up to radians for the angle and 1 radian/s for the
angular velocity. The scheduled incremental changes in these
scaling factors were usually set so that they approached their
final values slower than the other scheduled parameters.

To prevent training runs from stalling before a scenario
step, a condition was added. If the training run has been on
the same scenario population for > 200 time steps, 0.1 is
added to the mutation probability in the mutation
operator during controller child generation. This repeats
every 200 time steps, up to a maximum . When
the training run takes another scenario step this probability
resets to 0.1.

TABLE II. SUMMARY OF GP WITH BEST TRAINING PARAMETERS

parameters values

GP

12 registers last 4 are memory
8 operators
400 lines 343-389 non-intron lines

100 controllers 14-component noisy input
state vector

chaser initially, 10 m from target
hand 2m from centroid hand faces the target

target

evolved target
dimension
initial angle drawn
from uniform random
dist’n

scaled to at 1st scenario step
and afterwards;
1 scenario step to final value

1 component of handle
location from target periphery

ang velocity drawn
from uniform random
dist’n

Scaled ;
50 scenario steps to final value

scenario

100 scenarios

maxcollision ;
50 scenario steps to final value

mincapture
50 scenario steps to final value

maxcapdist ;
scenario steps to final value

maxang ;
25 scenario steps to final

training

length of scenario gens controller gens
fitness limit
best fitness, gens
prior to current one, be
less by at most 10 to
trigger a scenario
change

The best training conditions are summarized in Table II.
Fig. 3 shows the results of one such training run. The best
fitness starts close to 100 (i.e. nearly all simulations end in
captures) and quickly decreases. Eventually the training run
hits a point where even the best controllers can not get a
fitness better than about 20, so no further scenario steps can
be taken, and the training run makes no further progress.

119

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:18:38 UTC from IEEE Xplore. Restrictions apply.

Figure 3. Best, mean and worse fitness for a sample training run.

The controllers show qualitatively similar stereotypical
behaviours for these training conditions as described
previously, but they made more scenario steps in training and
thus can handle a greater range of target motions, so these
training conditions and choice of controller input format
were beneficial.

VI. DISCUSSION

This method would benefit from further development but
there are some promising results. The evolved controllers
achieve capture about 20% of the time on scenarios of
middling difficulty. It is likely that since was set to 30 it
explains why the controllers approach from the same side,
because if they fail at all scenarios that require the opposite
approach direction, they can still get up to half correct. This
is not a real issue as the symmetry in the problem means a
simple condition could be added to mirror the response.

While the controller calculates output forces in polar
coordinates, due to the lack of a coordinate change it must
learn to calculate them in a polar frame aligned with the
global coordinates, which likely negates some of the value of
the chaser-centric inputs.

The maxcapdist parameter appears to set the maximum
performance of the controllers. When maxcapdist is small
enough that the controllers must track the moving handle,
not just get nearer to the target, difficulty increased markedly.
This could be improved with maxcapdist decaying
exponentially rather than linearly. Chaser-centric coordinates
help the controllers achieve more difficult captures. It was
expected that the scenario step at which maxcollision and
mincapture crossed might be associated with a significant
delay, as cases that were previously captures may become
collisions. Fortunately, this was not observed. The best
controllers in training, rarely, if ever show collisions.

Program length impacts computational cost, but it may be
unavoidable that the controllers require more lines. The GPs
used most of their allocated 400 lines, with only a small
fraction being structural introns.

VII. FUTURE WORK

The simulator should be converted to simulate the
chaser’s 3 pairs of opposed jets required to control the
motion from the forces and torques calculated. The register

values returned by the controllers could be calibrated as jet
thrust values. Alternatively, the jets could be given a fixed,
on-off thrust, and the register values’ softmax values used to
decide which of the 27 possible permutations of jet firings
should be chosen. Additionally, the simulator could be
extended to 3 dimensions. One interesting change would be
to change the controllers from the basic canonical GP, to
more flexible one. like symbiotic bid-based GP (SBB GP)
[16], possibly training the SBB controllers on a variety of
simpler tasks to build a library of call-able actions to
assemble into a more complex behaviour [21].

The problem could be extended into 3 dimensions to see
if the training methodology can handle more complex and
realistic dynamics. On-Earth testing can use 2D tests as
proofs-of-concept for space systems; Dalhousie University is
currently constructing an air-bearing based testbed that will
allow testing of space systems in a effectively frictionless 2D
environment, and the results of the GP work to-date could be
immediately applied and tested with this set-up.

VIII. CONTRIBUTIONS

We apply linear GP to the complex task of controlling a
2D spacecraft to perform a rendezvous with an uncontrolled
spinning debris object and precisely match its own
manipulator point with a moving grapple point fixed to the
debris object. Our training methodology of parameterizing
the task with scheduled values allows us to vary the
complexity level of the task continuously and holistically
train an open-ended program on the entire task, rather than
splitting it into human-chosen subcomponents. Pairing this
with a coevolution framework allows less important task
goals to be pursued to an extent subject to the more
important goals reflected in the scheduled parameters.

IX. CONCLUSIONS

The canonical linear GP was applied to a simplified
version of the spacecraft guidance and control problem for
debris removal. The evolved controllers showed promise but
would require further experimentation to achieve the full
project goals. It is likely that a more modular form of GP
than the canonical linear GP would be required to achieve
better results.

REFERENCES

[1] D. Kessler, N. L. Johnson, J. C. Liou and M. Matney, "The Kessler
Syndrome: implications to future space operations," Advances in the
Astronautical Sciences, vol. 137, 2010.

[2] K. Stanley, B. D. Bryant and R. Miikkulainen, "Real-time
neuroevolution in the NERO video game.," IEEE Transactions on
Evolutionary Computation, vol. 9, no. 6, pp. 653-668, 2005.

[3] M. Lewis, A. Fagg and A. Solidum, "Genetic programming approach
to the construction of a neural network for control of a walking
robot," in Proceedings of the IEEE International Conference on
Robotics and Automation, 1992.

[4] P. Nordin and W. Banzhaf, "An on-line method to evolve behavior
and to control a miniature robot in real time with genetic
programming," Adaptive Behavior, vol. 5, pp. 107-140, 1996.

[5] B. Kadlic, I. Sekaj and D. Pernecký, "Design of continuous-time
controllers using Cartesian genetic programming," IFAC Proceedings
Volumes, vol. 47, pp. 6982-6987, 2014.

120

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:18:38 UTC from IEEE Xplore. Restrictions apply.

[6] M. M. Khan, G. M. Khan and J. F. Miller, "Evolution of optimal
ANNs for non-linear control problems using Cartesian genetic
programming," in In Proceedings of IEEE International Conference in
Artificial Intelligence, 2010.

[7] X. Luo, M. Heywood and A. Zincir-Heywood, "Benchmarking a
recurrent linear GP model on prediction and control problems," in
Intelligent Control and Automation. Lecture Notes in Control and
Information Sciences, D. Huang, K. Li and G. W. Irwin, Eds., Berlin,
Springer , 2006, pp. 845-850.

[8] M. F. Brameier and W. Banzhaf, Linear Genetic Programming, 1st
ed., Springer Publishing Company, Incorporated, 2010.

[9] D. Hein, S. Udluft and T. A. Runkler, "Interpretable policies for
reinforcement learning by genetic programming," Engineering
Applications of Artificial Intelligence, vol. 76, pp. 158-169, 2018.

[10] C. K. Oh and G. J. Barlow, "Autonomous controller design for
unmanned aerial vehicles using multi-objective genetic
programming," in Proceedings of the 2004 Congress on Evolutionary
Computation (IEEE Cat. No.04TH8753), 2004.

[11] D. C. Dracopoulos, "Evolutionary control of a satellite," in Second
International Conference on Genetic Programming, 1997.

[12] P. Silva, I. Abreu, P. Forte and H. M. Amaral, "Genetic algorithms
for satellite launcher attitude controller design," Inteligencia Artificial,
vol. 22, pp. 150-161, 5 2019.

[13] F. Marchetti, E. Minisci and A. Riccardi, "Towards intelligent control
via genetic programming," in IEEE World Congress on
Computational Intelligence, Glasgow, 2020.

[14] F. Aghili, "Pre- and post-grasping robot motion planning to capture
and stabilize a tumbling/drifting free-floater with uncertain
dynamics," in 2013 IEEE International Conference on Robotics and
Automation, 2013.

[15] Q. Li, J. Yuan, B. Zhang and C. Gao, "Model predictive control for
autonomous rendezvous and docking with a tumbling target,"
Aerospace Science and Technology, vol. 69, pp. 700-711, 2017.

[16] P. Lichodzijewski and M. Heywood, "Symbiosis, complexification
and simplicity under GP," in Genetic and Evolutionary Computation
Conference, Portland, 2010.

[17] H. Mühlenbein and D. Schlierkamp-voosen, "Predictive models for
the Breeder Genetic Algorithm," Evolutionary Computation, vol. 1,
no. 1, pp. 25-49, 2 1993.

[18] MathWorks, "MATLAB Documentation: MEX File Functions>,"
[Online]. Available: https://www.mathworks.com/help/matlab/call-
mex-file-functions.html.

[19] M. Brameier and W. Banzhaf, "A comparison of linear genetic
programming and neural networks in medical data mining.," IEEE
Transactions on Evolutionary Computation, 2001.

[20] W. D. Hillis, "Co-evolving parasites improve simulated evolution as
an optimization procedure," Physica D: Nonlinear Phenomena, vol.
42, pp. 228-234, 1990.

[21] S. Kelly and M. I. Heywood, "Knowledge transfer from keepaway
soccer to half-field offense through program symbiosis: building
simple programs for a complex task.," in Genetic and Evolutionary
Computation Conference, 2015.

121

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:18:38 UTC from IEEE Xplore. Restrictions apply.

