
ME-CGP: Multi Expression Cartesian Genetic Programming

Phil T. Cattani and Colin G. Johnson

Abstract— Cartesian Genetic Programming (CGP) is a form
of Genetic Programming that uses directed graphs to represent
programs. In this paper we propose a way of structuring a CGP
algorithm to make use of the multiple phenotypes which are
implicitly encoded in a genome string. We show that this leads
to a large increase in efficiency compared with standard CGP
where genomes are translated into only one phenotype. We call
this method Multi Expression CGP (ME-CGP), based on Mihai
Oltean’s work on Multi Expression Programming using linear
GP.

I. INTRODUCTION

Cartesian Genetic Programming (CGP) [13] is a form

of Genetic Programming (GP) that uses directed graphs to

represent programs. In a typical CGP program, the last node

in the graph returns the output value for the program. A fixed-

length genome of a certain length may not be appropriate

for the problem at hand. If the genome is too long, this

can lead to inefficiencies in the time it takes to evolve a

solution. If the genome is too short, it may not be able to

solve the problem at all. In this paper we propose a way

of structuring a CGP algorithm to implicitly use a genome

string as if it contained multiple lengths at once. We call this

method Multi Expression CGP (ME-CGP), as it is based on

the Multi Expression Programming concept of Oltean [15],

[16]. We implement an ME-CGP program and test it on two

types of problems: a set of symbolic regression problems and

a 6-bit Multiplexer. We show that using ME-CGP leads to a

large increase in efficiency compared with using CGP with

fixed single-length genomes.

II. RELATED WORK

Researchers in this field have tried to address the problem

of using the most efficient length genome string for a given

problem in various ways.

In work on genetic algorithms, the use of variable-length

genomes is not uncommon (see e.g. [7], [12] for some early

examples). In tree-based GP [11], the evolved structures

(program parse trees) are usually of variable size—both

because the initially generated trees are of variable size, and

because mutation and crossover operators can change the size

of a parse tree.

However, for some other GP representations, in particular

CGP, the genome is typically of fixed length. This has

the potential to lead to the problems mentioned in the

introduction concerning genomes that are too short or too

long. A number of approaches have been taken to address

this issue.

Phil T. Cattani and Colin G. Johnson are with the School of Computing,
University of Kent, Canterbury, England (email: C.G.Johnson@kent.ac.uk)

One approach is to evolve the choice of exit node(s)

from the CGP system [5]. That is, additional information is

included within the genome to specify whether a particular

node is to be used as an output node or not.

A more sophisticated approach to this issue is taken

by the algorithm called Self-Modifying Cartesian Genetic
Programming (SMCGP) [4], [5], [3]. In this method, the

genome does not specify a fixed program, but rather specifies

a phenotype that is able to modify itself using developmental

rules, based on the inputs to the program. This has been

tested on a range of problems and has proven particularly

useful in evolving programs that generalise to a wider variety

of input values than are used in training. For example [5],

evolving a program to carry out the square function using

just addition and subtraction operations.

In the work discussed above, the choice of which node to

use as an exit node is evolved. That is, each time a population

member is evaluated, only one exit node (or, for problems

requiring multiple values, one node for each value required)

is considered.

Similarly, other approaches have attempted to improve the

choice of exit node via an operator, for example in hoist
mutation [9], [8], which takes a tree-based genome and uses

a mutation operator which chooses a non-exit node in one

generation and re-roots the parse tree at that node, therefore

treating it as an exit node in the following generation.

Another analogy is with the idea of multiple reading
frames in genetics. This is the phenomenon whereby a single

genome string can be read from a number of different starting

and end positions, thus producing different proteins from a

single DNA strand. This analogy has been used by a number

of authors in producing genetic algorithm variants [20], [10],

[21]. In this paper we extend these ideas to GP.

Paladugu et al. [19] make use of a similar technique in

the evolution of modules in biochemical networks, where

the input and output nodes are chosen randomly from a set

of candidate nodes within each network in the population.

However, these approaches miss an opportunity to exploit

information that has already been calculated as part of the

program evaluation process. In the remainder of this paper,

we explore the idea that, rather than throwing away the values

at all other nodes than the exit node, we compare these values

(a cheap operation) and choose the best.

This idea was first introduced by Oltean and Groşan in

2003 [17], who applied these methods to function optimiza-

tion problems. Further papers applied this to the creation

of executable structures: boolean logic programs [14] and

electronic circuits [18]. These ideas has subsequently been

applied to more complex problems still, for example the evo-

lution of classification rules in data mining [2] and evolving

978-1-4244-8126-2/10/$26.00 ©2010 IEEE
Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:00:10 UTC from IEEE Xplore. Restrictions apply.

intrusion detection systems for computer security [1]. These

applications have used variants on Linear GP; in the work

below we extend this to Cartesian GP.

III. A CGP PROGRAM WITH MULTIPLE EXIT NODES

A. A Simple CGP Program

We created a simple Cartesian Genetic Programming pro-

gram suitable for solving a variety of problems. Our program

uses a directed graph with one row and a number of columns

(s). This is the standard graph structure used in most CGP

experiments [22].

The genome string is a sequence of integer numbers, which

can be considered as a sequence of tuples of integers of

length n (each tuple is called a gene), each tuple describing

one node in the final program. The first n−1 values indicate

which nodes are the input nodes to that node, and the final

value indicates which function is used. The population size

used in all experiments was 100.

Every node refers to a number of input nodes within the

range of [0..s− 1], however, the input nodes must both also

have node locations which are less than the current node.

If the function requires just two inputs, and the number of

inputs into the node is three, then the last input is ignored.

For example, a node with graph location 10 must have input

nodes with locations between 0 and 9 inclusive. A node is

also permitted to have identical input nodes. Each node in

the graph contains one function from the problem-dependent

function set.

After the genome string is translated to the phenotype, the

CGP program is executed using forward propagation. That is

to say, firstly the node at position 1 collects values from its

list of input nodes. These values are then processed by the

function within that node, and the output from that function

is stored as the output from the node. This procedure is then

carried out for each consecutive node on the graph starting

with the first non-input node at position 1, and finishing at

position s− 1.

After a generation is run, b of the fittest genomes are se-

lected for reproduction. The remaining (PopulationSize−
b) genomes are all mutations of these b fittest genomes.

Typically, this value of b is very small compared with the

population size. This strong selection pressure is usual within

CGP [13]. The fitness function will depend on the problem

being tackled.

Our mutation algorithm mutates genome strings at a con-

stant rate m. per gene. If a gene is chosen for mutation, all

four integers within that gene are replaced by random valid

integer values (including the original value).

B. Multi Expression Genomes: Introducing ME-CGP

For CGP programs which are trying to solve for one

variable only, the last node is typically used as the exit node,

and this is where the output value for the program is obtained.

For programs which are trying to solve for v variables, either

the last v nodes in the graph are used, or there is a binary

variable encoded in the genome string for each node which

Fig. 1. A decoded genome string with one exit node representing one
program

determines whether it will be used as an output node [4];

Harding and Miller show that the latter approach scales better

when the graph changes size.

We propose to use multiple exit nodes for solving prob-

lems where we are only trying to solve for one variable. That

is, we calculate the values at all nodes as normal for each

fitness case, and then calculate an aggregate fitness value for

each of the e potential exit nodes by summing the fitness

values for all fitness cases (e is a parameter). This method

is illustrated in figures 1 and 2. We call this approach Multi
Expression CGP (ME-CGP), and is based on Oltean’s work

called Multi Expression Programming for linear GP [15],

[16].

ME-CGP is illustrated in the diagrams in Figures 1 and 2;

for clarity, not all node connections in the above diagrams

were shown; only those connections which determine the

last three output values are shown. Figure 1 represents a

traditional CGP program where the value of the last node in

the graph is used as the output value of the program. Figure 2

represents a CGP program where multiple exit nodes are

used. In Figure 2, the last three nodes of the graph are used,

but this could be any arbitrary number, appropriate to the size

of the graph. Using exit nodes before the last node on the

graph will obviously reduce the potential size of the program,

thus implicitly exploring programs of different sizes within

a fixed-length genome. However, the law of diminishing

returns applies, and at a certain point, the genome string will

become too short, so that its expressive power is too limited

to solve a problem of a sufficient complexity with its given

functions. Therefore, the number of potential exit nodes is a

parameter of the ME-CGP process.

We believe this redundancy leads to algorithmic efficiency

by implicitly implementing multiple program phenotypes

from the same genome string. The question we want to

answer is this: does the additional computational cost of

doing these calculations outweigh the potential gain in fitness

per generation?

C. Evolution Using Multiple Fitness Values

In our experiments we use two complementary processes

that involve multiple exit nodes. In the first, the aggregate

fitness values are used to determine whether any program has

been reached that satisfies the problem-dependent stopping

condition. The fitness values are evaluated starting from the

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:00:10 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. A decoded genome string with three exit nodes, implicitly
representing three programs

lowest exit node location s − e − 1 and finishing at node

location s− 1.

If any of the potential exit nodes satisfy the stopping

condition, then the program terminates and the current exit

node location and phenotype is returned. If this condition

is not satisfied, a fitness value is assigned to the genome,

consisting of the best fitness value from the set of exit nodes

considered.

For example, if we examine the decoded genome string

shown in Figure 2, we see that it has 10 nodes. The ME-CGP

program is using this string in such a way that it uses the

last three nodes as potential exit nodes. The string therefore

codes for three programs, each of which will have its own

fitness value.

In the remainder of this paper we contrast this process

(ME-CGP) with a standard single-exit CGP algorithm, which

we refer to as the Baseline CGP.

IV. THEORY

One question to address is whether the cost of processing

the multiple exits costs more than processing a population

of separate individuals.

We can estimate this cost in the following way. Consider a

CGP expression that is made up of f functions. Furthermore,

call the average cost evaluating each function c elementary

arithmetic or logic operations. In calculating the fitness term,

the cost of processing the error for one fitness case is 3

elementary arithmetic operations (EAOs): one to subtract the

error from the target value, one to form the absolute value

or square of that error, and one to add this to an aggregate

error score.

If we consider a standard one exit processing, then the

cost per fitness case is fc + 3, i.e. the cost of calculating

each of the functions in the expression plus 3 for adding the

error value to the aggregate error score for that set of fitness

cases.

If we consider a multi-expression CGP with e exits, then

the cost per fitness case is (((f − e)c) + e(3 + c))/e, i.e. the

cost of evaluating the first f−e exits and not adding them to

the error measure, plus the cost of evaluating the remaining

exits and adding them to the error measure, divided by the

number of different exits that are evaluated.

Consider the parameters used in many of the experiments

below, i.e. s = 30 and e = 5. The graph in figure 3 shows

 0

 100

 200

 300

 400

 500

 600

 700

 2 4 6 8 10 12 14 16 18 20

C
os

t o
f E

va
lu

at
in

g
O

ne
 F

itn
es

s
C

as
e

(n
um

be
r

of
 E

A
O

s)

Average Cost of Function Evaluation (number of EAOs)

multi-expression (5 exits)

one-expression

Fig. 3. Comparing a model of the computational cost of one-expression
and multi-expression CGP for various function-evaluation costs (c).

the estimated cost of processing one fitness case for various

function costs. It is notable that even for the case where

the average function cost is 1 (as in the examples below),

the multi-expression model is better; for applications where

the cost of evaluating a function is very high, the benefit

is very large. This latter case could apply, for example, to

applications such as image processing.

Furthermore, there is an additional benefit to the multi-

expression variant, in that the number of CGP expressions

created per genome is higher, and therefore there is poten-

tially a substantial saving of computational effort from having

a smaller population size yet having the same number of

expressions evaluated.

V. EXPERIMENTAL METHODS AND TEST PROBLEMS

In this section we define the parameters used in our

experiments and define the various test problems and CGP

functions and terminal sets.

A. Parameters and Setup

Using a script, we ran all experiments two hundred times

in order to generate statistically meaningful results. We

measured the average number of generations as well as the

time it took (in milliseconds) to solve each of the symbolic

regression problems and the 6-bit Multiplexer problem. In-

cluded with each average value is the standard deviation.

We used a population size of 100, and the size of the set

of fittest genomes selected in each generation b is 5. We use

a mutation rate m of 0.2, and the number of columns s is 30.

For the symbolic regression problems the number of inputs

to each node is 2 and for the multiplexer problem the number

is 3.

Our ME-CGP program uses 5 exit nodes. This value

of 5 was chosen as a sensible compromise value between

comparing all 30 possible values and having too few. In this

study, we did not thoroughly test different values for the

number of exit nodes. However, we did a non-exhaustive

test of changing the number of exit nodes to ten just for the

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:00:10 UTC from IEEE Xplore. Restrictions apply.

test problem of Euler’s formula. We discuss these results in

the next section. Clearly, a detailed study of this parameter

would be a useful piece of future work.

B. Symbolic Regression

We applied ME-CGP program to four symbolic regression

problems. The first three were the following expressions: (i)

3x + 2 (ii) x2 + 3x + 2 (iii) 4x2 + 3x + 2. In addition, we

included a special case problem of symbolic regression in

using a variant on Euler’s formula for generating primes [6]:

(iv) x2 − x + 41 This formula will generate prime numbers

when 0 ≤ x < 41.

The input values for x when testing each evolved program

the first two expressions was the integer set: {-100, -50, -10,

-5, -4, -3, -2, -1, 0, 1, 2, 3, 5, 10, 50, 100}. While Euler’s

formula was tested using the first 16 integers starting from

zero: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}.
The function set for this problems contains the following

functions: {StarterModule, Constant0, Constant1, Constant2,

Constant3, Constant4, Constant10, Add, Subtract, Multiply,

Divide}. StarterModule is only ever found once in the graph

and at position 0. It returns the inputted value for x. The

six ConstantX functions simply return constants with their

respective nominal values. The values obtained from the

input nodes for the constant functions are ignored by the

function. The divide function is protected so that a divide by

zero operation returns 0 instead of an error.

Our fitness function is a function which computes the

sum of the differences between each output value, with a

given a set of input values, of the phenotype program, and

the mathematical expression we are trying to evolve. For

example, for the expression 2x + 1, the correct output value

for the input value of 5 would be 11 and for 10 it would

be 21. If the program produces the output values 15 and

25 respectively, then the fitness value for that genome string

would be |15−11|+|25−21| = 4+4 = 8. In this case, lower

fitness values are better, and a fitness value of 0 implies the

problem has been solved. Note that for each input value, the

fitness function takes the absolute difference between the two

values.

C. 6-bit Multiplexer

The second type of problem we applied our program to

was a 6-bit Multiplexer (6 MUX). The 6-bit Multiplexer has

a 2 bit address space and a 4 bit data space. The task of

the multiplexer is to return the bit held in the 4 bit data

space designated by the value in address space. For example,

starting from the left, the address bit 01 would return the bit

held in the second data space.

For this problem the function set is the set of boolean

operators: {AND, IF, OR, NOT}, where the IF operator has

an input arity of three. The IF function is defined by the

following behaviour: if the first input is 1, then the value of

the second input is passed to the output; if the value of the

first input is 0, then the value of the third input is passed to

the output.

TABLE I

AVERAGE NUMBER (AND STANDARD DEVIATION) OF GENERATIONS

REQUIRED TO SOLVE EACH PROBLEM

Experiment Baseline CGP ME-CGP
3x + 2 59.54±104.78 8.83±9.54

x2 + 3x + 2 139.04±286.31 23.73±25.44

4x2 + 3x + 2 2795.46±6182.99 121.34±256.25

x2 − x + 41 3892.34±6486.79 582.59±1011.83

6 MUX 6708.53±13133.04 1350.36±2694.77

TABLE II

AVERAGE TIME (AND STANDARD DEVIATION) IN MS REQUIRED TO

SOLVE EACH PROBLEM

Experiment Baseline CGP ME-CGP
3x + 2 851.71±1061.47 241.02±173.67

x2 + 3x + 2 1525.89±2401.29 529.09±374.39

4x2 + 3x + 2 22963.32±49071.94 1539.93±2263.57

x2 − x + 41 32306.19±52424.23 5670.83±8485.80

6 MUX 94478.78±182722.59 20498.11±39113.35

Our input test set was the set of four possible combinations

of address space: {00, 01, 10, 11}, with each value tested

against the sixteen possible combinations of data space:

{0000, 0001,... 1111}. The fitness was calculated by testing

each pair from the address space against every possible

4-tuple in the data space, and counting the number of

output values where the wrong output was generated by the

phenotype program.

VI. RESULTS

Table I, Table II and Table III show our results. Table I

indicates the average number of generations it took to solve

each expression or problem, Table II indicates the average

time (in milliseconds) it took. Table III compares the average

time (in milliseconds) it took to solve the expression x2−x+
41 for five exit nodes and ten exit nodes. With the exception

of Table III, all tables in this paper show results obtained

using five exit nodes.

Each value is the average (mean) over two hundred trials.

Outliers have been removed by taking away the ten trials with

the largest generation count for each experiment. This has

been done because there were a small number of trials which

took an uncharacteristically large number of generations,

which distorted the averages. This can, furthermore, be

justified in terms of algorithm development, as a practical

algorithm could readily include a cap on the maximum

number of generations allowed.

The second column in each table represents the Baseline

CGP case, whilst the third column represents the ME-CGP

case.

VII. DISCUSSION

A. Polynomial Expressions

As we can see in Table I and Table II, using ME-CGP

both decreased the number of generations required and the

time it took to solve each of our problems.

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:00:10 UTC from IEEE Xplore. Restrictions apply.

TABLE III

AVERAGE TIME (AND STANDARD DEVIATION) IN MS REQUIRED TO

SOLVE THE EXPRESSION x2 − x + 41 WHEN USING ten EXIT NODES.

No. of Exit Nodes BaselineCGP ME-CGP
5 32306.19±52424.23 5670.83±8485.80
10 46834.67±87867.58 2808.09±3306.18

TABLE IV

EFFICIENCY GAINS FOR ALL THE EXPERIMENTS WHEN USING ME-CGP

COMPARED WITH THE RESPECTIVE BASELINES.

Experiment Generation Eff. Gain Time Eff. Gain
3x + 2 6.74 3.53

x2 + 3x + 2 5.86 2.88

4x2 + 3x + 2 23.04 14.91

x2 − x + 41 6.68 5.70

6 MUX 4.97 4.61

It is clear that, although these techniques may add some

computational overhead with each generation, the increase in

overall efficiency greatly overrides any cost associated with

this overhead.

Table IV shows the efficiency gain (i.e. the ratio of ME-

CGP value to Baseline CGP value) for both the generation

and time values. This demonstrates the effectiveness of the

ME-CGP algorithm.

B. Euler’s Prime-generating Formula

Similarly, for the Euler formula, the data in Tables I and II

both show a substantial improvement for the ME-CGP over

the Baseline CGP. This is summarised in the efficiency gains

shown in Table IV.

As seen in Table III, there was a good increase in per-

formance when using ten exit nodes while using ME-CGP,

solving the problem in roughly half the time on average

compared with ME-CGP with five exits.

C. 6-Bit Multiplexer

Finally, for the 6-bit Multiplexer the data in tables I and II

both show a substantial improvement for the ME-CGP over

the Baseline CGP. This is also summarised in the efficiency

gains shown in Table IV. It is interesting to note that this

method also works well for an example in a different domain,

i.e. evolving boolean logic functions.

D. Statistical Analysis

The statistical significance of the results has been tested

using the Mann-Whitney U test, i.e. testing the hypothesis

that the two results are drawn from populations with the

same medians. The nonparametric test has been chosen as

we cannot readily show that the underlying distributions are

normal—indeed, the high values of the standard deviations,

alongside informal observations of visualisations of the data,

suggest a long-tailed distribution. For each set of experi-

ments, the results for the data sets (with outliers removed)

TABLE V

p-VALUES FROM MANN-WHITNEY U TESTS

Fitness Function Measurement Baseline CGP vs ME-CGP
3x + 2 generations < 0.0001

time < 0.0001
x2 + 3x + 2 generations < 0.0001

time < 0.0001
4x2 + 3x + 2 generations < 0.0001

time < 0.0001
x2 − x + 41 generations < 0.0001

time < 0.0001
6 MUX generations < 0.0001

time < 0.0001

TABLE VI

RATIO OF AVERAGE TO STANDARD DEVIATION (AVG/STDEV) WITH

RESPECT TO TIME IN MILLISECONDS, WHEN COMPARING ME-CGP TO

THE BASELINE.

Expression Baseline CGP ME-CGP
3x + 2 0.54 1.39

x2 + 3x + 2 0.64 1.41

4x2 + 3x + 2 0.47 0.68

x2 − x + 41 0.61 0.66

6 MUX 0.52 0.52

have been analysed to compare the results from the baseline

CGP algorithm with those of the ME-CGP algorithm.

The results are presented in table V. In all cases the p-

value is less than 0.0001. The p-value for the time difference

between 10 exits and 5 exits is also < 0.0001; the p-value

between the two sets of Baseline CGP runs in the 5 vs. 10

exit experiments (which should be equivalent) is 0.8654.

E. The ratio of the mean to the standard deviation

An additional unexpected benefit which we discovered

after compiling our experimental results was that when

using ME-CGP, the ratio of the mean value to the standard

deviation increased on all the experiments except the 6-bit

Multiplexer, where it stayed the same. Thus, using ME-

CGP appears to provide more consistent results for symbolic

regression problems. The results are shown in Table VI.

VIII. CONCLUSIONS AND FUTURE WORK

We believe the results in this paper represent significant

efficiency gains to CGP programs when the techniques of

ME-CGP are applied. In a simple CGP program which uses

forward propagation, the value of every node is executed

starting from the beginning node to the last node. By using

the values of the last e nodes as output values we can achieve

significant gains in efficiency despite the small overhead cost.

Similarly, ME-CGP can be applied to CGP programs which

use backwards propagation by only computing the values of a

subset of the nodes described by the phenotype. The values

of each of the nodes in the subset can be used instead of

the last e nodes as in the case with feed forward programs.

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:00:10 UTC from IEEE Xplore. Restrictions apply.

We have not yet tested this technique with feed backward

networks.

Finally, the more consistent results shown by the increase

in ratio of mean to standard deviation in test times is an

added not insignificant benefit to using the two techniques

outlined in this paper.

REFERENCES

[1] A. Abraham and C. Groşan. Evolving intrusion detection systems. In
Nadia Nedjah et al., editor, Genetic Systems Programming, pages 57–
80. Springer Verlag, 2006. Studies in Fuzziness and Soft Computing.

[2] Adil Baykasoglu and Lale Özbakir. MEPAR-miner : Multi-expression
programming for classification rule mining. European Journal of
Operational Research, 183(2):767–784, 2007.

[3] S. Harding, J.F. Miller, and W. Banzhaf. Self modifying Cartesian
genetic programming: Parity. In Proceedings of the 2009 Congress
on Evolutionary Computation (CEC’09), pages 285–292. IEEE Press,
2009.

[4] Simon Harding, Julian F. Miller, and Wolfgang Banzhaf. Self-
modifying Cartesian genetic programming. In Proceedings of the 2007
Genetic and Evolutionary Computation Conference (GECCO 2007),
pages 1021–1028, 2007.

[5] Simon Harding, Julian F. Miller, and Wolfgang Banzhaf. Self-
modifying cartesian genetic programming: Fibonacci, squares, regres-
sion, and summing. In Genetic Programming: Proceedings of the 2009
European Conference, pages 133–144. Springer, 2009.

[6] G.H. Hardy and E.M. Wright. An Introduction to the Theory of
Numbers. Oxford University Press, 1979.

[7] I. Harvey. The SAGA cross: The mechanics of crossover for variable-
length genetic algorithms. In Parallel Problem Solving from Nature 2,
pages 269–278. Elsevier, 1992.

[8] K.E. Kinnear, Jr. Fitness landscapes and difficulty in genetic pro-
gramming. In Proceedings of the 1994 IEEE World Conference on
Computational Intelligence, volume 1, pages 142–147. IEEE Press,
1994.

[9] Kenneth E. Kinnear, Jr. Alternatives in automatic function definition:
A comparison of performance. In Advances in Genetic Programming,
pages 119–141, 1994.

[10] Satoshi Kobayashi and Yasubumi Sakakibara. Multiple splicing sys-
tems and the universal computability. Theor. Comput. Sci., 264(1):3–
23, 2001.

[11] John R. Koza. Genetic Programming : On the Programming of
Computers by means of Natural Selection. Series in Complex Adaptive
Systems. MIT Press, 1992.

[12] C.-Y. Lee and E.K. Antonsson. Variable length genomes for evolution-
ary algorithms. In Proceedings of the 2000 Genetic and Evolutionary
Computation Conference (GECCO 2000), pages 806–812, 2000.

[13] Julian F. Miller and Peter Thomson. Cartesian genetic programming.
In Riccardo Poli, Wolfgang Banzhaf, William B. Langdon, Julian
Miller, Peter Nordin, and Terence C. Fogarty, editors, Proceedings
of the 2000 European Conference on Genetic Programming, pages
121–132. Springer, 2000. LNCS 1802.

[14] Mihai Oltean. Solving even-parity problems using multi expression
programming. In Ken Chen et al., editor, Proceedings of the 5th In-
ternational Workshop on Frontiers in Evolutionary Algorithms, pages
315–318, 2003. Part of the 7th Joint Conference on Information
Sciences.

[15] Mihai Oltean. Improving the search by encoding multiple solutions in
a chromosome. In N. Nedjah and L. de Mourrelo, editors, Evolutionary
Machine Design, New York, 2004. Nova Science Publishers. Chapter
15.

[16] Mihai Oltean. Multi expression programming. Technical report, Babes-
Bolyai Univ, Romania, 2006.

[17] Mihai Oltean and Crina Groşan. Evolving evolutionary algorithms
using multi expression programming. In Proceedings of the Seventh
European Conference on Artificial Life, pages 651–658. Springer-
Verlag, 2003. LNAI Vol. 2801.

[18] Mihai Oltean and Crina Groşan. Evolving digital circuits using multi
expression programming. In R. Zebulum et al., editor, NASA/DoD
Conference on Evolvable Hardware. IEEE Press, 2004.

[19] S. Paladugu, V. Chickarmane, A. Deckard, J. Frumkin, M. McCor-
mack, and H.M. Sauro. In-silico evolution of functional modules in
biochemical networks. IEE Proceedings Systems Biology, 153(4):223–
235, 2006.

[20] Michael Schmidt and Hod Lipson. Comparison of tree and graph
encodings as function of problem complexity. In GECCO ’07:
Proceedings of the 9th annual conference on Genetic and evolutionary
computation, pages 1674–1679, New York, NY, USA, 2007. ACM.

[21] T. Soule and A.E. Ball. A genetic algorithm with multiple reading
frames. In Proc. Genetic and Evolutionary Computation Conf. Cite-
seer, 2001.

[22] T. Yu and J.F. Miller. Neutrality and the evolvability of boolean
function landscape. In Proceedings of the 4th European Conference
on Genetic Programming (EuroGP 2001),, pages 204–217. Springer-
Verlag, 2001. Vol. 2038 on Lecture Notes in Computer Science.

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:00:10 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

