
Many-objective Grammar-guided Genetic
Programming with Code Similarity Measurement

for Program Synthesis
Ning Tao∗, Anthony Ventresque†‡, and Takfarinas Saber†§

∗School of Computer Science, University College Dublin, Dublin, Ireland
Email: ning.tao@ucdconnect.ie

†Lero – the Irish Software Research Centre
‡School of Computer Science and Statistics, Trinity College Dublin, Dublin, Ireland

Email: anthony.ventresque@tcd.ie
§School of Computer Science, University of Galway, Galway, Ireland

Email: takfarinas.saber@universityofgalway.ie

Abstract—The approach known as Grammar-Guided Genetic
Programming (G3P) is widely acknowledged as a highly effective
method for program synthesis, which involves automatically
generating code based on high-level formal specifications. Given
the increasing quantity and scale of open software repositories
and generative artificial intelligence techniques, there exists a
significant range of methods for retrieving or generating source
code using textual problem descriptions. Therefore, in light of
the prevailing circumstances, it becomes imperative to introduce
G3P into alternative means of user intent, with a specific focus on
textual depictions. In our previous work, we assessed the potential
for G3P to evolve programs based on bi-objectives that combine
the similarity to the target program using four different similarity
measures and the traditional input/output error rate. The result
showed that such an approach improved the success rate for
generating correct solutions for some of the considered problems.
Nevertheless, it is noteworthy that despite the inclusion of various
similarity measures, there is no single measure that uniformly
improves the success rate of G3P across all problems. Instead,
certain similarity measures exhibit effectiveness in addressing
specific problems while demonstrating limited efficacy in others.
In this paper, we would like to expand the bi-objective framework
with different similarity measures to a many-objective framework
to enhance the general performance of the algorithm to more
range of problems. Our experiments show that compared to the
bi-objective G3P (BOG3P), the Many-objective G3P (MaOG3P)
approach could achieve the best result of all BOG3P algorithms
with different similarity measures.

Index Terms—Program Synthesis, Grammar-Guided Genetic
Programming, Code Similarity, Many-Objective Optimisation

I. INTRODUCTION

The field of artificial intelligence (AI) has witnessed remark-
able advancements, revolutionizing various domains ranging
from healthcare to finance. Among its transformative applica-
tions, automatic programming stands out as a promising area
that holds tremendous potential for revolutionizing software
development. This emerging field leverages AI techniques to
analyse problem domains, understand user intent, and produce

executable code. In recent years, the proliferation of open-
source software repositories and the advent of generative AI
approaches have spurred a surge in the development of meth-
ods for retrieving and generating source code based on textual
problem descriptions. These advancements have paved the
way for new possibilities in software development, enabling
developers to focus more on high-level problem-solving and
design rather than the intricacies of coding.

Program synthesis, one of the best ways of automatic
programming, aims to automatically generate executable pro-
grams from high-level specifications. Numerous algorithms
have been suggested for program synthesis utilising diverse
programming languages and forms of user intent: Beltramelli
introduced pix2code [1], a Convolutional Neural Network
(CNN) based system that utilises user-provided graphical user
interface screenshot images to generate web development
interface code, specifically HTML/CSS. Bassil and Alwani [2]
devised a method that employs a Context-Free Grammar
(CFG) parser and a finite-state machine-based lexical anal-
yser to generate HTML code. Niaz et al. [3] introduced an
algorithm that maps transitions and states, enabling the gener-
ation of Java code from Unified Modeling Language (UML)
diagrams and state patterns. In the study by Tao et al. [4]–[6],
a G3P system is presented that produces a Python program
by utilising textual task descriptions along with input/output
examples. Boutekkouk [7] introduced a system that utilises
Visual Basic and Action Language to generate C codes by
effectively leveraging UML diagrams. However, despite the
range of approaches available, Genetic Programming (GP) [8]
remains the leading contender in tackling program synthesis
problems [9].

GP evolves programs by starting with an unfit population
and gradually transforming them through operations inspired
by natural genetic processes [8]. Among the notable GP
systems, PushGP [10] stands out as one of the most effective.
It generates programs using the stack-based language called
Push, which is specifically designed for program synthesis979-8-3503-4807-1/23/$31.00 ©2023 European Union

20
23

 IE
EE

 L
at

in
 A

m
er

ic
an

 C
on

fe
re

nc
e

on
 C

om
pu

ta
tio

na
l I

nt
el

lig
en

ce
 (L

A
-C

C
I)

 |
97

9-
8-

35
03

-4
80

7-
1/

23
/$

31
.0

0
©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

LA
-C

C
I5

85
95

.2
02

3.
10

40
94

32

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:29:07 UTC from IEEE Xplore. Restrictions apply.

tasks. While PushGP has demonstrated its effectiveness, its
reliance on a specialised language poses challenges when
it comes to real-world scenarios where other programming
languages are more prevalent. To overcome this limitation,
G3P [11] integrates language grammar into GP, enabling con-
straints on the syntactic structure of programs. Nevertheless,
even though G3P and PushGP have achieved notable accom-
plishments, their scalability is constrained by the limitation
of solely relying on the input/output error rate for program
evaluation when addressing more substantial and intricate
program synthesis problems. Tao et al. [5] extended the G3P
system to a bi-objective framework by leveraging both a
similarity measure and input/output error rate as objectives
to guide the evolutionary search process. Combining both
objectives, BOG3P improved the success rate of program
synthesis problems. However, the performance of BOG3P
is intricately linked to the choice of similarity measure, as
certain measures may excel in addressing specific problems
but exhibit poor performance in others.

This paper aims to extend the BOG3P approach to incor-
porate a many-objective framework for program evolution,
considering various similarity measures and input/output ex-
amples. Through an extensive experimental evaluation on a
widely recognised program synthesis benchmark, we demon-
strate the efficacy of MaOG3P in achieving superior results
for each BOG3P variant across the considered problem set.

The remaining sections are organised as follows: Section II
provides an overview of the background. Section III elucidates
the specific metrics employed for evaluating code similarity.
Section IV delineates our many-objective approach in detail.
Section V expounds upon the experimental setup. Section VI
presents an in-depth analysis and discussion of the outcomes.
Finally, Section VII encapsulates the overall conclusions and
the future work.

II. BACKGROUND AND RELATED WORK

A. Genetic Programming

GP is an evolutionary methodology that allows for the gen-
eration of programs aimed at accomplishing specific tasks. GP
initiates with a population of randomly generated programs,
which may initially lack fitness for the intended purpose.
Through iterative processes utilising operators akin to natural
genetic mechanisms (such as crossover, mutation, and selec-
tion), GP progressively evolves these programs to discover
improved solutions. Throughout the years, diverse GP systems
have been proposed, each possessing its unique characteristics
(e.g., GP [8], Linear GP [12], Cartesian GP [13]).

B. Grammar-Guided Genetic Programming

While a variety of GP systems exist, G3P stands out as one
of the most successful. What distinguishes G3P is its utilisa-
tion of grammar as a guiding principle to ensure syntactically
correct program evolution. Grammars offer great flexibility as
they can be defined externally to the GP system, allowing rep-
resentation of a broad range of problems, including program

synthesis [14], traffic systems management [15], and wire-
less communications scheduling [16]–[20]. G3P encompasses
various GP variants, with notable examples being Context-
Free Grammar Genetic Programming (CFG-GP) introduced
by Whigham [21] and grammatical evolution [14].

The G3P system, as introduced by Forstenlechner [11],
introduces a composite and self-adaptive grammar that effec-
tively addresses various synthesis problems. This innovation
overcomes the limitation of having to tailor or adapt grammar
for each specific problem. By defining several small grammars,
each corresponding to a data type that defines the function
or program to be evolved, G3P enables the reuse of these
grammars across different problems. This approach ensures a
compact search space by excluding unnecessary data types.

C. Many-Objective Optimisation

Many-objective optimisation (MaOO) pertains to the con-
current optimisation of more than three objective functions.
Given that the evaluation of evolved code in program synthe-
sis problems can be assessed from diverse perspectives, we
propose that it is more appropriate to conceptualise it as a
many-objective optimisation problem.

In the MaOO problem, the output is a set of non-dominated
solutions, which can be defined as follows: Let S be the set of
all evolved programs for a given program synthesis problem.
For all x ∈ S, O = [O1(x), ..., Ok(x)] is the vector containing
the k objective values for the solution x. It is said that a
program x1 dominates another program x2 (also written as
x1 ≻ x2), if and only if ∀i ∈ {1, ..., k}, Oi(x1) ⩽ Oi(x2) and
∃t ∈ {1, ..., k} such that Oi(x1) < Oi(x2). We also say that
xi is a non-dominated program if there is no other program
xj that dominates xi. The set of all non-dominated programs
form what is called a Pareto front: in this set, it is impossible
to find any program better in all objectives than any of the
other programs in the set.

III. PROGRAM SIMILARITY DETECTION APPROACHES

The measurement of similarity in source code holds various
applications, such as identifying duplicate code, detecting
plagiarism, enabling code search, facilitating the discovery
of similar bug fixes [22], and offering code recommenda-
tions [23]. In this study, we have chosen four highly ranked
similarity measures from [24] to assess their effectiveness in
code synthesis when employed within the G3P framework.

A. FuzzyWuzzy

FuzzyWuzzy, an open-source Python library [25], is de-
signed for string matching and is built upon the difflib Python
library. The library contains different similarity functions,
including TokenSortRatio and TokenSetRatio. In an un-
expected discovery, Ragkhitwetsagul et al. [24] found that the
string matching algorithm demonstrates remarkable efficacy
in measuring code similarity. TokenSortRatio function first
tokenises the string by removing punctuation, and changing
capitals to lowercase. After tokenisation, it sorts the tokens
alphabetically and then joins them together to calculate the

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:29:07 UTC from IEEE Xplore. Restrictions apply.

matching score. In comparison, TokenSetRatio takes out the
common tokens instead of sorting them.

B. Cosine

In conjunction with the conventional code similarity de-
tector, we also employed cosine similarity as a measure of
similarity between two source codes. The subsequent steps
outline our approach for measuring similarity using cosine
similarity.

1) Preprocessing: The source program undergoes tokeni-
sation, which involves the removal of indentation details,
including whitespace, brackets, newline characters, and other
formatting symbols.

2) Frequency Calculation: For every token sequence, we
calculate the frequency associated with each token.

3) Cosine Similarity Computation: The similarity score
between the two programs is determined by calculating the
cosine value between their term frequency vectors, denoted as
vectors A and B, as shown in Eq. 1.

cos(A,B) =
A ·B

∥A∥∥B∥
=

∑n
i=1 AiBi√∑n

i=1 (Ai)2
√∑n

i=1 (Bi)2
(1)

C. CCFinder

CCFinder, an advanced technique developed by Kamiya
et al. [26], focuses on detecting code clones in large-scale
source code using a token-based approach. The technique
employs a four-step process for identifying code clones: (I)
Lexical Analysis: Token sequences are generated from the
input source code files by implementing the lexical rules
specific to the programming language. (ii) Transformation:
The system utilises transformation rules on the token sequence
to standardise the program’s structure, enabling the identi-
fication of code clones, even in code written with diverse
expressions. (iii) Clone Matching: The computation of code
clone matches is performed using the suffix-tree matching
algorithm. (iv) Formatting: Every clone pair is reported along
with line information within the source file.

CCFinder was originally designed to cater to large-scale
programs. However, considering the simplicity of the codes
involved in our evaluation, we have made the following
modifications and simplifications to the original tool:

• Since our primary objective is to acquire a similarity
score between two code fragments, we calculate this score
by dividing the length of the code clone by the maximum
length among the source files:

Similarity(x, y) =
Len(Clone(x, y))

Max(Len(x), Len(y))
(2)

where Clone(x, y) denotes the longest code clone be-
tween the codes x and y and Len(x) denotes the length
(in terms of number of characters) of the code x.

• To simplify the process of matching code clones using
the suffix-tree matching algorithm, we utilise a 2D matrix
representation (with each dimension representing a token

sequence) to determine the length of the longest common
token sequence.

• In our study, the mapping information between the token
sequence and the source code is eliminated, as reporting
the line number is no longer necessary.

D. SIM

SIM [27] is a software tool designed for plagiarism de-
tection in lower-level computer science courses. It employs a
token-based approach, utilizing a string alignment technique,
to measure the structural similarity between two C programs
and identify instances of plagiarism.

The approach consists of two key functions: token gen-
eration with formatting and similarity score calculation us-
ing alignment. To begin, each source file undergoes lexical
analysis to produce a token sequence. Following tokenisation,
the token sequence of the second program is segmented into
multiple sections, each corresponding to a portion of the
original program. These sections are individually aligned with
the token sequence of the first source code, enabling the tool to
identify similarities even if the program has been plagiarised
by altering the function order.

IV. PROPOSED APPROACH

Our goal is to exploit textual (natural language) descriptions
of user intent in the program synthesis process in combination
with current advances in code retrieval/generation (even if
such techniques potentially generate multiple incomplete or
not fully fit-for-purpose programs) alongside input/output tests
to guide the search process of G3P.

In our work, we assume that we avail of an automated tech-
nique that is able to take a textual description of a problem in
natural language and output a source code (potentially multiple
incomplete or not fully fit-for-purpose programs). Such tech-
nique could either be based on (i) Program Sketching, which
attempts to lay/generate the general code structure and let
either engineers or automated program generative approaches
fill the gaps (e.g., [28]), (ii) Code Retrieval which seeks to
find code snippets that highly match the textual description
of the problem from a large source code repositories, or
(iii) Generative Pre-trained Transformer (GPT) with Large
Language Models (LLMs), which generate code based on the
textual description (e.g., ChatGPT or Github Copilot). We
make such an assumption to reduce the varying elements in
our study (i.e., the quality of the obtained code could vary)
and focus purely on the exploitation of the obtained source
code in the evolutionary process.

The source code obtained from the above text-to-code
process can be considered as a target code against which
we could assess the similarity of each program. As described
in III, there exists various code similarity algorithms/measures.
Assuming that the target code is of decent quality, we have
previously shown that the “similar” the evolved program is to
the target code, the better the evolved code–and thus leveraging
a similarity measure as a fitness function (i.e., an additional
objective) to guide the search process would help evolve the

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:29:07 UTC from IEEE Xplore. Restrictions apply.

correct code [4]. However, it was not clear what similarity
measure would be the most suitable [5].

Therefore, in this work, we propose a novel many-objective
G3P that combines input/output error rate and multiple similar-
ity measures as objectives to assess the fitness of each evolved
program.

Figure 1 shows an overview of our proposed approach. It is a
many-objective extension to our previously proposed BOG3P
system [5] by leveraging multiple code similarity measures
at the same time. The idea is to generate or retrieve a code
(or multiple target codes) using a text-to-code technique. The
obtained code could then be used as a target code against
which we assess the various similarity measures for each
evolved program.

Fig. 1. Overview of our Many-Objective G3P system

Building on the BOG3P system, we propose a MaOG3P
system that uses (i) standard input/output error rate (from [11])
and (ii) four code similarity measures (i.e., Cosine, Fuzzy-
Wuzzy, SIM, and CCFinder) as independent objectives to
evaluate the fitness of each evolved program and guide the
evolutionary search process.

In our previous work, we have defined four different sim-
ilarity measures, corresponding to four different bi-objective
G3P algorithms: (i) BOG3PCosine - Cosine and input/output
error rate, (ii) BOG3PFuzzy - FuzzyWuzzy and input/output
error rate, (iii) BOG3PCCFinder - CCFinder and input/output
error rate, (iv) BOG3PSIM - SIM and input/output error rate.

It is important to highlight that although BOG3P and
MaOG3P utilise different objectives to evaluate the fitness
of evolved programs and guide the evolutionary process, we
solely deem a program as correct when its input/output error
rate reaches zero (i.e., correctly solves all the input/output
cases in the Testing set). This approach is driven by the fact
that we typically lack assurance regarding the quality of the
target code employed for similarity measurement. Our reliance
lies in the hope that the target code is either close to the
correct program or shares certain code segments. In essence,
if we already possessed the correct code, the problem would
be solved without the need for an evolutionary search.

The process of the MaOG3P system commences by gen-
erating the initial population, which adheres to the chosen
context-free grammar for the specific data type relevant to the

given problem, as outlined in [11]. Subsequently, the system
undergoes iterations involving many-objective tournament se-
lection, crossover, mutation, evaluation of fitness values, and
population update. This iterative process continues until the
termination condition is met, which in our case is determined
by the number of generations.

In this study, the tournament selector was adapted for many-
objective purposes, allowing the selection of parents based on
different objectives. Specifically, for half of the individuals,
both parents were selected based only on the input/output error
rate, which serves as the main objective in our evolutionary
process. For the remaining individuals, the first parent was
selected based on the main objective (input/output error rate),
whereas the other parent was selected based on the different
similarity measures–each similarity measure being employed
one-fourth of the time.

The selection of individuals that can proceed to the next
generation is a crucial operation in the GP system. Similar to
the concept of parent selection, all objectives are considered
for the next-generation selection process. However, in this
case, half of the population is chosen based on the main
objective, while the remaining half is determined by the four
similarity objectives.

V. EXPERIMENT SETUP

A. Problem Description

The program synthesis problems presented by Helmuth
and Spector [29], [30] encompass a collection of coding
problems commonly encountered in introductory computer
science courses. These problems are accompanied by textual
descriptions and two sets of input/output pairs, serving as
training and testing data throughout the program synthesis
procedure. A comprehensive overview of the characteristics
associated with each program synthesis problem considered
in our evaluation can be found in Table I.

TABLE I
DESCRIPTION OF THE SELECTED PROGRAM SYNTHESIS PROBLEMS

Problem Textual Description # Input/output Pairs
Training Testing

Number IO Given an integer and a float, print their sum. 25 1000
Smallest Given 4 integers, print the smallest of them. 100 1000
Median Given 3 integers, print their median. 100 1000
String
Lengths
Backwards

Given a vector of strings, print the length of each
string in the vector starting with the last and
ending with the first.

100 1000

Negative
To Zero

Given a vector of integers, return the vector where
all negative integers have been replaced by 0.

200 1000

B. Target Program

In our G3P-based program evolution process, we incorpo-
rate an oracle that calculates the similarity measure between
each evolved program and a target program code derived
through a text-to-code transformation. In this study, we aim to
primarily investigate the effectiveness of different similarity
measures while minimizing the experimental variables, par-
ticularly in terms of obtaining a high-quality target program.
Consequently, we consider a theoretical scenario where the

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:29:07 UTC from IEEE Xplore. Restrictions apply.

oracle is cognizant of a code that effectively solves the prob-
lem, but solely provides the similarity rating for the evolved
code. Although this assumption does not align with real-world
scenarios (since possessing the correct code would render the
evolutionary process unnecessary), we anticipate that it will
yield valuable insights into the ability of G3P to generate a
program solely based on a similarity measure.

The target programs used for evaluating program similarity
in the oracle assessment of Number IO, Smallest, Median,
String Lengths Backwards, and Negative To Zero are illus-
trated in Listings 1, 2, 3, 4, and 5 correspondingly.

1def numberIO(int1, float1):
2 result = float(int1 + float1)
3 return result

Listing 1. Target program for Number IO

1def smallest(int1, int2, int2, int3):
2 result = min(int1,min(int2,min(int3,int4)))
3 return result

Listing 2. Target program for Smallest

1def median(int1, int2,int3):
2 if int1 > int2:
3 if int1 < int3:
4 median = int1
5 elif int2 > int3:
6 median = int2
7 else:
8 median = int3
9 else:

10 if int1 > int3:
11 median = int1
12 elif int2 < int3:
13 median = int2
14 else:
15 median = int3
16 return median

Listing 3. Target program for Median

1def StringLengthsBackwards(in0):
2 temp = []
3 for string in in0:
4 temp.append(len(string))
5 result = []
6 i = len(temp) - 1
7 while (i != -1):
8 result.append(temp[i])
9 i = i - 1

10 return result

Listing 4. Target program for String Lengths Backwards

1def negativeToZero(input_list):
2 result=[]
3 for number in input_list:
4 if number < 0:
5 result.append(0)
6 else:
7 result.append(number)
8 return result

Listing 5. Target program for Negative To Zero

C. Parameter Setting

The general settings for the GP system are 30 Runs; 300
Generations (200 generations for Median, Number IO, and

Smallest as in [29]); Population size of 1000; Tournament se-
lection with a tournament size of 7; 0.9 Crossover probability
and 0.05 mutation probability (We used the general crossover
and mutation operators provided by the HeuristicLab tool); 3
variable for per type; and 1 second max execution time.

VI. RESULTS

In this section, we assess the ability and performance of our
proposed approach (i.e., MaOG3P) to evolve correct codes.

Table II shows the number of times (over 30 distinct runs)
MaOG3P, G3P and the various BOG3P systems successfully
evolved a correct code to each of the considered problems.

For more straightforward problems (i.e., Number IO and
Smallest), MaOG3P gets similar results as the best BOG3P
system (i.e., with CCFinder or SIM). MaOG3P successfully
finds the correct solution in each of the 30 runs. This shows
that combining multiple similarity measures in MaOG3P re-
tains the performance of the best BOG3P (i.e., with a single
similarity measure).

On the relatively more challenging problem (i.e., “Median”),
MaOG3P finds a correct code in more than double the number
of runs than G3P. Moreover, MaOG3P also outperforms all
the BOG3P systems. This is a indication that combining
multiple similarity measures might enable better performance
than using the same similarity measures separately (i.e., in
BOG3P).

In “Negative To Zero”, MaOG3P evolved a correct code
in 12 runs out of 30 and ranked 2nd best performance after
BOG3P with FuzzyWuzzy (13 runs out of 30). However,
MaG3P is noticeably better than BOG3P with the rest of the
similarity measures, and MaOG3P almost doubled the number
of successful runs compared to G3P. This is a indication that
even when MaOG3P is not achieving the best performance, it
still achieves close to the best one.

In the problem String Lengths Backwards, MaOG3P suc-
cessfully evolved a correct program as many times as the best
BOG3P (i.e., with SIM). However, MaOG3P achieved its re-
sults while combining similarity measures which achieved (in
BOG3P) worse results than G3P. This strengths the reliability
of MaOG3P and reduces the need for a combinatorial ‘tuning’
of the best combination of similarity measures.

Overall, the MaOG3P system leverages the advantages
offered by each variant of the BOG3P system, which utilises
different similarity measures. This integration leads to the
attainment of optimal or near-optimal results across all the
considered problems. By incorporating many objectives into
the evolutionary process, MaOG3P effectively explores the
search space, capitalizing on the strengths of each similarity
measure employed by the BOG3P system.

The successful outcomes achieved by MaOG3P highlight
its ability to handle the complexity and variability inherent in
program synthesis problems. By exploiting the strengths of dif-
ferent similarity measures, the system mitigates the limitations
associated with relying solely on a single similarity metric.
This flexibility allows MaOG3P to adapt to various problem

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:29:07 UTC from IEEE Xplore. Restrictions apply.

characteristics, leading to improved performance across a
range of program synthesis tasks.

The superior performance of MaOG3P in comparison to
the individual BOG3P systems underscores the significance of
considering many objectives in program synthesis. By leverag-
ing a diverse set of similarity measures, MaOG3P showcases
its robustness and effectiveness in capturing both functional
and structural aspects of program code. This comprehensive
approach contributes to the overall success and reliability of
MaOG3P in generating accurate and high-quality programs.

In summary, MaOG3P stands out as a powerful framework
for program synthesis, combining the strengths of various
similarity measures employed by the BOG3P system. The
system’s ability to achieve optimal results across a wide range
of problems underscores its effectiveness and versatility in
addressing the challenges of program synthesis in a compre-
hensive and adaptive manner.

TABLE II
NUMBER OF TIMES OUT OF 30 RUNS A CORRECT PROGRAM IS EVOLVED.

Problem G3P BOG3P BOG3P BOG3P BOG3P MaOG3P
Cosine Fuzzy CCFinder SIM

Number IO 29 29 29 30 30 30
Smallest 29 28 28 30 30 30
Median 4 9 2 5 3 10
String Lengths
Backwards

2 1 2 0 3 3

Negative to Zero 7 7 13 9 8 12

VII. CONCLUSION AND FUTURE WORK

The objective of this paper is to enhance the G3P approach
by introducing a many-objective framework for program evo-
lution. By incorporating different similarity measures and in-
corporating input/output examples, we aim to demonstrate the
effectiveness of the many-objective G3P through an extensive
experimental evaluation on a well-established program synthe-
sis benchmark. Our results showcase the superior performance
of the many-objective G3P over each variant of the BOG3P
across the range of problems examined.

In our future research endeavours, we are committed to
overcoming the limitations inherent in our proposed approach
by incorporating advanced code generation techniques in
conjunction with the MaOG3P framework. By integrating
code generation methods into the evolutionary process, we
anticipate significant improvements in the performance and
effectiveness of the program synthesis process. Furthermore,
we recognise the importance of exploring alternative code
similarity detection algorithms to complement the existing
approaches used in our study. To fully harness the knowledge
acquired from the selected similarity algorithms, we also plan
to adapt the evolutionary operators employed in our approach.
By leveraging advanced code generation techniques, exploring
alternative code similarity detection algorithms, and refining
the evolutionary operators, we aim to unlock new possibilities
and achieve superior results in program synthesis tasks.

Acknowledgment: partially supported by Science Founda-
tion Ireland grant 13/RC/2094 P2 to Lero.

REFERENCES

[1] T. Beltramelli, “pix2code: Generating code from a graphical user inter-
face screenshot,” in ACM SIGCHI, 2018.

[2] Y. Bassil and M. Alwani, “Autonomic html interface generator for web
applications,” arXiv, 2012.

[3] I. A. Niaz, J. Tanaka et al., “Mapping uml statecharts to java code.” in
IASTED Conf. on Software Engineering, 2004.

[4] N. Tao, A. Ventresque, and T. Saber, “Assessing similarity-based
grammar-guided genetic programming approaches for program synthe-
sis,” in OLA. Springer, 2022.

[5] N. Tao, A. Ventresque, and T. Saber, “Multi-objective grammar-guided
genetic programming with code similarity measurement for program
synthesis,” in IEEE CEC, 2022.

[6] N. Tao, A. Ventresque, and T. Saber, “Program synthesis with genera-
tive pre-trained transformers and grammar-guided genetic programming
grammar,” in IEEE LACCI, 2023.

[7] F. Boutekkouk, “Automatic systemc code generation from uml models
at early stages of systems on chip design,” IJCA, 2010.

[8] J. R. Koza et al., Genetic programming II, 1994, vol. 17.
[9] D. Sobania, M. Briesch, and F. Rothlauf, “Choose your programming

copilot: a comparison of the program synthesis performance of github
copilot and genetic programming,” in GECCO, 2022.

[10] E. Pantridge and L. Spector, “Pyshgp: Pushgp in python,” in GECCO,
2017.

[11] S. Forstenlechner, D. Fagan, M. Nicolau, and M. O’Neill, “A grammar
design pattern for arbitrary program synthesis problems in genetic
programming,” in EuroGP, 2017.

[12] M. Brameier, W. Banzhaf, and W. Banzhaf, Linear genetic programming,
2007.

[13] J. F. Miller and S. L. Harding, “Cartesian genetic programming,” in
GECCO, 2008.

[14] M. O’Neill and C. Ryan, “Grammatical evolution: Evolutionary au-
tomatic programming in a arbitrary language, volume 4 of genetic
programming,” 2003.

[15] T. Saber and S. Wang, “Evolving better rerouting surrogate travel costs
with grammar-guided genetic programming,” in CEC, 2020.

[16] D. Lynch, T. Saber, S. Kucera, H. Claussen, and M. O’Neill, “Evolution-
ary learning of link allocation algorithms for 5g heterogeneous wireless
communications networks,” in GECCO, 2019.

[17] T. Saber, D. Fagan, D. Lynch, S. Kucera, H. Claussen, and M. O’Neill,
“A multi-level grammar approach to grammar-guided genetic program-
ming: the case of scheduling in heterogeneous networks,” GPEM, 2019.

[18] T. Saber, D. Fagan, D. Lynch, S. Kucera, H. Claussen, and M. O’Neill,
“Multi-level grammar genetic programming for scheduling in heteroge-
neous networks,” in EuroGP, 2018, pp. 118–134.

[19] T. Saber, D. Fagan, D. Lynch, S. Kucera, H. Claussen, and M. O’Neill,
“A hierarchical approach to grammar-guided genetic programming the
case of scheduling in heterogeneous networks,” in TPNC, 2018.

[20] T. Saber, D. Fagan, D. Lynch, S. Kucera, H. Claussen, and M. O’Neill,
“Hierarchical grammar-guided genetic programming techniques for
scheduling in heterogeneous networks,” in CEC, 2020.

[21] P. A. Whigham, “Grammatical bias for evolutionary learning.” 1997.
[22] B. Hartmann, D. MacDougall, J. Brandt, and S. R. Klemmer, “What

would other programmers do: suggesting solutions to error messages,”
in SIGCHI Conference on Human Factors in Computing Systems, 2010.

[23] R. Holmes and G. C. Murphy, “Using structural context to recommend
source code examples,” in ICSE, 2005.

[24] C. Ragkhitwetsagul, J. Krinke, and D. Clark, “A comparison of code
similarity analysers,” ESE, 2018.

[25] A. Cohen, “Fuzzywuzzy: Fuzzy string matching in python,” 2011.
[26] T. Kamiya, S. Kusumoto, and K. Inoue, “Ccfinder: A multilinguistic

token-based code clone detection system for large scale source code,”
TSE, 2002.

[27] D. Gitchell and N. Tran, “Sim: a utility for detecting similarity in
computer programs,” ACM Sigcse Bulletin, 1999.

[28] J. Jeon, X. Qiu, J. S. Foster, and A. Solar-Lezama, “Jsketch: sketching
for java,” in ESEC/FSE, 2015.

[29] T. Helmuth and L. Spector, “General program synthesis benchmark
suite,” in GECCO, 2015.

[30] T. Helmuth and L. Spector, “Detailed problem descriptions for gen-
eral program synthesis benchmark suite,” University of Massachusetts
Amherst, 2015.

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:29:07 UTC from IEEE Xplore. Restrictions apply.

