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Abstract—In this paper we study techniques that should
reduce the destructive impact of crossover in genetic program-
ming. The quality of crossover offsprings is often lower than
ancestors due to the fact that a small change in individual’s
genotype tree structure has a great impact to its phenotype.
Therefore we propose and test several methods for matching
subtrees to find the best possible cutting point for crossover
of trees. Our approach utilizes the adaptive probability of
operators with the intent to reinforce the well-performing
operators. A relation to the semantic genetic programming
approach is also investigated. The experimental results show
that the average arity based technique performs best from the
proposed methods.

I. INTRODUCTION

The primary goal of the crossover operator in evolutionary
computing is to give individuals the ability to exchange parts
of their genotype. In accord with selection pressure this
should support the combination of high-quality sections of
genotypes. In nature the crossover also brings resistance to
errors caused by mutation of genotype. This is the reason
why many researchers believe that a well-defined crossover
is important, although approaches like evolutionary program-
ming dealing with more complex genotypes usually abandon
crossover in favor of sophisticated mutation operators.

The most common encoding of individuals in genetic
programming (GP) represents a genotype as a tree structure.
There are also other, mostly indirect, encoding approaches,
such as evolving a set of commands describing creation pro-
cess of the final tree, linear GP, or grammatical approaches.
In this work we focus on a direct tree encoding where an
individual is represented as a syntactic tree corresponding to
the program it realizes.

There are several problems with applying crossover op-
erator to tree structures describing the genotype. In many
cases the best of ancestors produced from mating of two
parent candidates is even worse than both of its parents.
This is the reason why standard simple crossover (swapping
randomly selected subtrees) [1] is often not the preferred
operator in GP. The impact of operator applying is too strong
in many cases, since a small change in individual’s genotype
tree structure can have a big and unpredictable impact to its
phenotype.

The structure of this work is as follows: In the follow-
ing section we briefly review relevant existing work on
alternative crossovers for GP. Section III introduces various
measures of subtree similarity. Next section introduces our
environment for performing the tests, namely by describing
details of a our genetic program. Results of experiments on
standard benchmark tasks are reported in section VI and
discussed in the Conclusion section.

II. RELATED WORK

There have been several works on alternative crossover
operators that improve the exchange of suitable subtrees. The
context preserving crossover by D’Haeseleer [2] attempts
to preserve the context in which subtrees appeared in the
parent trees. The author introduced a coordinate scheme for
nodes in a tree and allows crossover only between nodes with
matching coordinates. Uy et al. [3] introduced a semantic
distance of subtrees and defined a semantic similarity-based
crossover which controls the distance of subtrees chosen
for crossover. Their approach is tested on several symbolic
regression problems.

A modification of crossover and mutation which mea-
sures performance of subtrees as a guidance for subtree
selection has been proposed in [4]. Authors consider sev-
eral approaches from simple performance of a subtree, to
complexity and performance, to correlation of subtrees as
the guidance factor. The monograph [5] also introduces a
way how to measure structural similarity of subtrees utilized
by crossover.

Beadle and Johnson in [6] introduce a semantically driven
crossover which prevents offsprings to be semantically equiv-
alent to their parents. The authors use a cannonical repre-
sentation of trees in order to check the semantic equivalence
without accessing the fitness. Their approach is further ex-
tended by [7] where authors investigate the effect of semantic
guidance to the crossover. They define two operators, one
considering the semantics of the exchanged subtrees, and
one comparing the semantics of the offspring trees to their
parents. They show that these operators perform better on
a set of polynomial symbolic regression problems. A more
detailed survey od semantically based methods of crossover
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operator in genetic programming is given by Vanneschi at
al. [8].

The common element of all mentioned works is to prevent
a distortion of a well performing subtree, which can be seem
as a problem of breaking of a good building block. The idea
behind our approach is very similar — to introduce only
slight and reasonable changes in phenotype.

III. SUBTREE SIMILARITY

We present six methods to measure compatibility of
two subtrees. These methods are compared with traditional
crossover performing a random approach to find matching
trees as a baseline. All methods take two (sub)-trees and
compute a measure of similarity of them, based on various
criteria.

In the following we consider these two example trees to
clarify our methods (cf. Fig. 1):

𝑇𝑎 = add(𝑥, sqrt(𝑦))

𝑇𝑏 = sub(𝑥, 1)

The average arity method (AVA) computes average arity
of functions in inner nodes. AVA(𝑇𝑎) = (2 + 1)/2 =
1.5,AVA(𝑇𝑏) = 2.

The common variable set method (CVS) counts the size of
a set of the identical variables in the leaves of both subtrees.
It takes the variables from leaves of 𝑇𝑎 and from leaves of
𝑇𝑏. These two sets are thereafter intersected. The number
of common variables then serves as a measure of semantic
similarity of the subtrees. The crossover tends to choose more
similar subtrees for exchange, i.e. those with more common
variables. CVS(𝑇𝑎) = CVS(𝑇𝑏)) = 1 because the only one
variable (𝑥) is common for both trees.

The common operator set method does the same as CVS
method, but instead of leaves’ variables, it takes into account
the functions (operators) from inner nodes. 𝐶𝑂𝑆(𝑇𝑎) =
𝐶𝑂𝑆(𝑇𝑏) = ∅

The recurrent evaluation method (REV) tries to represent
a value of a subtree. It pushes a value of 0 to all variables in
a tree, and retrieves a value from the root node. This value is
again substituted to all variables, and so on for 20 times. The
final root value is taken as a representative of given subtree.
REV(𝑇𝑎) = 0 +

√
0 = 0,REV(𝑇𝑏) = −20

The vector evaluation (VEV) method takes a randomly
generated set of 20 numerical vectors 𝑣0, . . . , 𝑣20. The length
of these vectors corresponds to the number of unique vari-
ables in compared trees – in our case of 𝑇𝑎 and 𝑇𝑏 it is 2
(for 𝑥 and 𝑦). The tree is evaluated for each vector 𝑣𝑖, thus
we obtain a vector 𝑟 of 20 results for each of given trees 𝑇𝑎,
𝑇𝑏. Next, the VEV method computes the distance 𝛿 of these
vectors by:

𝛿(𝑟𝑇𝑎 , 𝑟𝑇𝑏) =

𝑖<20∑

𝑖=0

(𝑟𝑇𝑎
𝑖 − 𝑟𝑇𝑏

𝑖 )2

The VEV method is similar to ideas introduced in se-
mantic genetic programming [9] or semantic similarity-based
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1

Fig. 1: Two simple example trees.

crossover proposed by [3]. It measures the performance of
the tree on given set of inputs.

The string (STR) method is based on a string serialization
of tree. The given trees 𝑇𝑎, 𝑇𝑏 are represented after serializa-
tion as S1 = ”add(𝑥, sqrt(𝑦))” and S2 = ”sub(𝑥, 1)”. Next, the
Levensthein distance[10] of these two strings is computed –
STR(𝑇𝑎, 𝑇𝑏) = 10. This method should mirror the semantic
equivalence of the trees.

For comparison, as a baseline solution, we also take
randomly selected subtrees for crossover operator.

IV. GENETIC PROGRAMMING TEST ENVIRONMENT

In the following we describe the problems to solve and
the GP techniques we utilize as an environment to test our
subtree similarity methods described above.

A. The problem definition

The problem at hand is the simple symbolic regression
described in Koza [1]. The goal is to fit a real valued
function by a tree evolved by the GP. The tree consists
of inner nodes containing simple mathematical functions
like addition, multiplication or abs(), and leaf nodes with
numerical constants from ℝ, or variables. This variables also
assume values from ℝ. The sample function is compared with
evolved function in defined amount of points from a given
interval. Some datasets use equidistant grid of inputs and
some use fixed number of uniform random samples drawn
from given interval, as we describe in detail further.

For practical reasons we redefined some mathematical
functions so they are defined in the whole interval [−∞,∞].
Also positive or negative∞ was replaced by MAX DOUBLE
constant with matching sign during evaluation of a tree.
Therefore:

∙ 𝑥
0 = 1 for 𝑥 ∈ ℝ

∙ 1
𝑥 = 1 for 𝑥 = 0

∙ log 𝑥 = log ∣𝑥∣ for 𝑥 ∈ ℝ ∖ 0, −20 for 𝑥 = 0
∙ ln𝑥 = ln ∣𝑥∣ for 𝑥 ∈ ℝ ∖ 0, −20 for 𝑥 = 0
∙
√
𝑥 =

√∣𝑥∣ for 𝑥 ∈ ℝ

The set of available simple function consists of:
−,+,×,%,

√
𝑥, ∣𝑥∣, 1/𝑥,−𝑥, 𝑥2, sin(𝑥), cos(𝑥). The first

four are binary functions (have an arity of 2) and the rest
are unary functions (arity = 1). The % symbol represents a
modulo operation.
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TABLE I: The configuration of GP in experiments.

population size 100
number of generations 200
selection method tournament
tournament size 15
elitism enabled
initialization see Sec. IV-D
max. initial tree depth 10
operators see Sec. IV-E

B. GP evolution configuration

Each of the experiments was performed with configura-
tion as shown in the table I. Some specific variations are
mentioned in particular experiments. The section IV-D is
dedicated to process of initialization of trees in individuals.

The fitness function 𝑓 is defined as in equation 1.

𝑓(𝑡) =

𝑁∑

𝑖=0

∣𝑥(𝑖)− 𝑡(𝑖)∣ (1)

Where 𝑁 is a number of sampling points of the fitted
function 𝑥, 𝑥(𝑖) is value of the function in given point 𝑖 and
𝑡(𝑖) is value returned by the evaluation of the tree which
represents evaluated function. In all experiments the fitness
function is maximized.

C. Simple benchmark – Sample function sets

This subsection describes how we prepared a simple
benchmark set called SimpleF in our experiments. The
benchmark is designed for two purposes. At first it is used to
tune parameters of evolution, its initialization and selecting
the best variant of adaptive operators approach. Secondary, it
is used as one of several benchmarks to measure performance
of proposed methods of subtree matching. The idea is to
generate several random trees representing target functions,
and to choose the medium complex ones as a set of fitness
functions.

In a more detail, the target function which we try to
fit, is a combination of simple functions mentioned above
represented as tree. We generated 45 samples of full trees
of depth 10 at random. These full trees are relaxed after
initialization. The relaxation means that all subtrees which
contain no variables are replaced by a constant leaf node.
The deeper insight to initialization will be given in section
IV-D.

For each from these trees we try to evolve a function which
fits them by a standard GP procedure. The trees are afterward
sorted by fitness function of the best evolved individual for
each of them. Finally, the best and the worst thirds are
removed, and the remaining 15 trees became a testing set. It
can be presumed that functions represented by these trees are
not so hard to fit for the GP. This dataset is named SimpleF.

D. Tree initialization

There are many initialization methods to construct a tree
in GP [11]. Our sample function trees are full trees of a
given depth. That means each leaf is in given depth and each

inner node has number of children which matches to arity of
function in that node. The function is selected from available
simple functions at random. In leafs, there are randomly
chosen constants from range [0, 1] with uniform distribution.
To ensure that the tree contains full set of variables we need
to replace randomly selected leaf constants with variables.
In the SimpleF dataset, there is only one variable 𝑥. In
experiments on this dataset we need to use internally more
labels for the same variable – eg. 𝑥0, 𝑥1, for the method
common variable set (see section III). Another benchmarks
(see section VI) use more dimensional function samples
which naturally imply labeling 𝑥0, . . . , 𝑥𝑛 for its variables
and need no artificial labeling.

To achieve sufficient diversity in initial population in
GP we combine several methods of tree initialization. The
first method creates a minimal tree which contains all used
variables. In the case of SimpleF dataset it means that tree
consists of one inner node with arity one or two and matching
number of child nodes. A such tree is a hopeful building
block for construction of complex trees. The second and third
methods are implementation of the grow, respectively the full
approach, as described in [11]. Koza calls the combination
of grow and full methods as ramped half-and-half. The last
initialization method creates random tree with constants in
leaves at given depth. In fact when this tree is relaxed
(evaluated) it can be replaced by only one constant node –
this may be a small disadvantage during the evolution when
we want to avoid bloating of trees by relaxing them.

E. Evolutionary operators

There are two approaches how to apply GP operators
to individuals. The operator can be applied to the selected
individual only once per generation, and the newly created
offsprings are preserved from other operators till the new
generation is created. On the other hand, more operators can
be applied in sequence to one individual. Usually the appli-
cation of operators is given by the design of particular GP.
The other possibility is to adaptively react to the performance
of operators and favor the more successfull operators. This
approach is known as self-adaptive evolution [12], [13].

In our approach, each operator 𝑂 has its own probability
0 ≤ 𝑃𝑂 ≤ 0.9 to be applied. This probability is adaptively
changed during evolution. When the ancestor has better
fitness than the parent, the 𝑃𝑂 of the applied operator is
increased by 1 × 10−5, if not, it is decreased by 1 × 10−6.
The sum of all 𝑃𝑂 can exceed 1.0 but probabilities of all
operators are then scaled to the range [0, 1].

The following several mutation operators, and a crossover,
guided by different similarity measured, were used in our
experiments:

∙ mutateLeafHillClimb
For a randomly selected leaf value the local space is
searched, and the best found value replaces the old one.

∙ mutateLeafByVal
A randomly selected leaf with constant value is changed
by its momentum. This momentum is updated by -5 %
to +5 %
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TABLE II: Probabilities of operators before and after evolution.
The values are averaged over 1000 runs with given setup.

operator pre 𝑃𝑂 post 𝑃𝑂

mutateLeafHillClimb 0.143 0.228
mutateLeafByVal 0.143 0.174
mutateLeafAddSubtree 0.143 0.144
mutateLeafSwitchVariableConst 0.143 0.269
mutateInnerNodeFunction 0.143 0.144
mutateInnerNodeToConstLeaf 0.143 0.145
cross 0.143 0.143

∙ mutateLeafAddSubtree
A randomly selected leaf is replaced by a newly gen-
erated tree of depth 3. The grow method for generating
is used.

∙ mutateLeafSwitchVariableConst
If selected leaf contains a constant, it is replaced by a
randomly selected variable, and vice versa.

∙ mutateInnerNodeFunction
In given inner node the function is changed to another
with the same arity. When no function of current arity
is available then a new function is chosen randomly and
a proper count of child nodes are either constructed or
destroyed as needed.

∙ mutateInnerNodeToConstLeaf
The selected inner node is replaced by a constant and
becomes a leaf.

∙ cross
The cross operator take the second individual by tourna-
ment selection and tries to find a best matching subtrees
of itself and the other tree. The measure of similarity
will be defined in next section. The best matching
subtrees are finally swapped.

V. EXPERIMENTAL RESULTS OF ADAPTIVE OPERATORS

This section describes the experiments perfomed with
different initialization of 𝑃𝑂’s. There are four experiments
as follows: Uniformly distributed probabilities, preferred
crossover, supressed crossover and only crossover. All these
experiments are performed on the SimpleF dataset.

A. Uniformly distributed probabilities

The first experiment put the same probability to all op-
erators as you can see in table II. The impact of adaptive
changes in probabilities is shown as the second column.
We can state that leafHillclimb and leafSwitchVariableConst
operators brought better descendants then others. The prob-
ability of crossover operator left unchanged.

B. Preferred crossover

The second experiment examined the situation when the
crossover has significantly higher 𝑃𝑂. The results are shown
in the table III. All mutation operators have increased their
𝑃𝑂. The crossover operator decreased its 𝑃𝑂 by 13.6 %.This
behavior brings idea of next experiment – the defended
crossover.

TABLE III: The crossover is strongly preferred operator but 𝑃𝑂s
of mutation operators were increased in contrast to decreased 𝑃𝑂

of crossover operator. The values are averaged over 1000 runs with
given setup.

operator pre 𝑃𝑂 post 𝑃𝑂

mutateLeafHillClimb 0.05 0.086
mutateLeafByVal 0.05 0.063
mutateLeafAddSubtree 0.05 0.051
mutateLeafSwitchVariableConst 0.05 0.104
mutateInnerNodeFunction 0.05 0.051
mutateInnerNodeToConstLeaf 0.05 0.052
cross 0.7 0.605
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Fig. 2: Averaged performance from 30 runs of each method on the
SimpleF dataset.

C. Suppressed crossover

In this experiment there is blocked a punishment for
crossover operator when it creates a worse ancestor then
itself. The final 𝑃𝑂s of all mutation operators are nearly the
same as in case of previous experiment – preferred crossover.

So we can state that using an evolution with more genera-
tions leads only to the primary reinforcement of two mutation
operators. An only artificial defended crossover preserves its
initial higher chance to be applied.

D. Crossover only

In the last experiment of adaptive operators we have
disabled all mutation operators. Therefore only the crossover
operator is considered. The final crossover’s 𝑃𝑂 was 0.621
from initial 0.7. It can be stated that nevertheless the worse
ancestors are still created by the crossover, the evolution is
capable to find optimal solutions on SimpleF dataset. The
figure 2 shows averaged performance from 30 runs of each
method on the SimpleF dataset. Horizontal axis represents
given samples which were fitted. On the vertical axis there
is an average fitness function value of the best individuals.

For illustration, the best evolved trees from experiments
on SimpleF dataset are presented on figures 3 and 4. Blue
nodes represent variables, constants are gray, and yellow
nodes represent atomic function.

For further experiments with subtree similarity methods
we used suppressed crossover setup. The crossover had much
higher probability (𝑃𝑂 = 0.7) then all other operators (𝑃𝑂 =
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Fig. 3: An example of the best evolved tree from experiments on
SimpleF dataset.

Fig. 4: An example of the best evolved tree from experiments on
SimpleF dataset. The tree is not relaxed during the evolution due to
preservation of diversity in population – see additon of 0.0 in the
left side of depicted tree.

0.05 each). All other parameters of GP were the same as
shown in the table I.

VI. EXPERIMENTAL RESULTS OF SUBTREE MATCHING

The overall performance of the subtree matching methods
are described in this section.

The survey [14] presented several GP benchmarks and
discuss its suitability for GP experiments. Beside our own
artificial dataset SimpleF for benchmarking (see Sec. IV-C)
we adapted the following benchmark functions from the
survey: kaijzer, nguyen7, pagie1, vladislavleva4. The last two
show itself as too difficult – no one of proposed methods was
capable to perform significantly better than random baseline.

The table IV shows benchmarks configuration. Each com-
bination of matching method and dataset is computed 30
times to avoid an influence of a random essence of GP. Over
all datasets totaly 61 unique function samples were fitted by
each method.

TABLE IV: The used benchmarks configuration. U[a,b,c] is c
uniform random samples drawn from a to b, inclusive, for the
variable. E[a,b,c] is a grid of points evenly spaced (for this variable)
with an interval of c, from a to b inclusive.

benchmark # vars. data points simple functions

keijzer 1 E(1, 50, 1) +,×, 1/𝑛,−𝑛,
√
𝑛

nguyen7 1 U(0, 2, 20) +,−,×, /, ˆ, ln(𝑛),
sin(𝑛), cos𝑛

pagie1 2 E(-5, 5, 0.4) +,×, 1/𝑛, ˆ
vlad4 5 U(0.05, 6.05, 1024) +,−,×,%, 𝑛2

SimpleF 1 E(-5, 5, 20) +,×, 1/𝑛,−𝑛,
√
𝑛

The results are summarized in the table V. The bold text
represents the best method in current experiment.

Each of methods was as good as the random baseline
(RND) at least in one of benchmarks. We tested a null
hypothesis as folows 𝐻0: The means of samples of RND and
another method on given dataset are the same. The results
of T-test of 𝐻0 are shown in table VI – the table contains
probabilities that the means of RND and given method are
the same. In the table there is missing row for pagie1 dataset.
It is caused by the fact that this dataset has only one function
for fitting and therefore there are insufficient amount of data
fot T-test. For keijzer dataset the average arity (AVA) method
is significantly (at level 0.01) better than RND. On the same
level of significance there is no another method better than
RND baseline. On nguyen7 dataset there is vector evaluation
(VEV) which is better than RND starting from significance
level 0.1. The remaining two datasets vladislavleva4 and
simpleF seems to be too difficult for all proposed methods
and used configuration of GP.

VII. CONCLUSION

The experiments with function fitting show that only
average arity and vector evaluation crossovers outperformed
the random matching of subtrees on specific dataset. The
AVA method is about 15 % better on keijzer dataset than the
RND baseline. The VEV outperformed RND on nguyen7.
The remaining methods recurrent evaluation, string, common
operator ser and common variable set are not significantly
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TABLE V: The subtree similarity methods comparison on symbolic
regression problems. The columns represent each of methods and
their performance on given datasets. The results for each tuple
method-dataset are averaged for all function samples in given
dataset and 30 times repetition on each sample. The values are
scaled by value or RND method.

method
dataset AVA RND CVS STR REV COS VEV
keijzer 1.150 1.000 1.040 0.946 0.979 0.957 1.009
nguyen7 1.024 1.000 0.981 0.970 1.003 0.985 1.041
pagie1 0.997 1.000 0.976 1.013 0.980 0.991 0.998
vlad4 1.000 1.000 1.000 1.000 1.000 1.000 1.000
simpleF 1.059 1.000 0.971 1.034 0.995 1.007 0.867
avg 1.046 1.000 0.994 0.993 0.992 0.988 0.983
rank 1. 2. 3. 4. 5. 6. 7.

TABLE VI: The probabilities obtained from T-test for null hypoth-
esis that means of RND and the another method are the same. The
pagie1 dataset is missing because it has too small amount of data
for statistical testing.

method AVA CVS STR REV COS VEV
keijzer 3,28E-06 0,18 0,06 0,01 0,06 0,38
nguyen7 0,24 0,47 0,26 0,18 0,31 0,09
vlad4 0,49 0,49 0,50 0,49 0,50 0,49
simpleF 0,46 0,50 0,48 0,48 0,50 0,41

better than random approach to the crossover of trees on
any dataset. It may be caused by the problem domain or
the current setup – e.g. the initial constant supplied to REV
method, or the selected text representation in STR method.

A REV method can be further modified – one can change
a fixed number of iterations, make number of iterations
variable, or stop when value converges to some stable value.
An interesting idea is also to use another initial value for the
first substitution – it may be made dependent on interval of
desired function sample.

For the future work we will focus on the comparison of
presented methods on another problem like the Lawnmower
problem or Artificial Ant (both described in Koza [1]).
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