
Multi-level selection genetic algorithm applied to

CEC ’09 test instances

Przemyslaw A. Grudniewski

Fluid Structure Interactions Group

University of Southampton

Southampton, United Kingdom

pag1c15@soton.ac.uk

Adam J. Sobey

Fluid Structure Interactions Group

University of Southampton

Southampton, United Kingdom

ajs502@soton.ac.uk

Abstract— Genetic algorithms (GAs) are population-based

optimisation tools inspired by evolution and natural selection.

They are applied in many areas of engineering and industry, on

increasingly complex problems. To improve the performance,

the new algorithms have a tendency to be derived from

sophisticated mathematical and computational mechanisms,

where many biological and evolutionary advances have been

neglected. One such mechanism is multi-level selection theory

which has been proposed as being necessary for evolution.

Previously, an algorithm developed using this theory as its

inspiration has shown promising performance on simple test

problems. It proposes the addition of a collective reproduction

mechanism alongside the standard individual one. Here the

algorithm, Multi-Level Selection Genetic Algorithm (MLSGA),

is benchmarked on more sophisticated test instances from CEC

’09 and compared to the final rankings. In this instance a simple

genetic algorithm is used at the individual level. The developed

algorithm cannot compete with top algorithms on complex

unconstrained problems, however it shows interesting results

and behaviour, and better performance on constrained test

functions. The approach provides promise for further

investigation, especially in integrating state-of-the-art

individual reproduction methods to improve the performance

and improving the novel collective mechanism.

Keywords— Evolutionary theory, evolutionary computation,

genetic algorithms, multi-level selection, multi-objective

optimization.

I. INTRODUCTION

A number of evolutionary algorithms have been

developed since the original work of Holland in the 1960’s

[1]-[19]. Each of them introduced novel mechanisms and

improvements, with many of the leading algorithms

benchmarked on complex multi-objective optimisation

problems as part of CEC’09 [20]. Current trends are towards

more complex algorithms based on mathematical and

computational concepts, and advanced evolutionary-based

concepts are often pushed aside. Evolutionary theory has

made much progress since the original GA was developed

and the authors feel that exploration of these modern

evolutionary concepts can lead to an increase in performance

of the modern genetic algorithms. One of them is multi-level

selection originally proposed by Sober and Wilson [21].

In nature individuals often group together, into packs or

tribes, in order to cooperate and increase their chances of

survival. During the life cycle, collectives are competing with

each other, and similar to individuals, fitter groups survive

and create offspring, while those with a lower fitness produce

fewer or no offspring. This process can be compared to insect

colonies, or human tribes, competing for food sources, where

fitter colonies are able to collect enough to sustain their

population and the less fit die from starvation [22]. According

to Sober and Wilson [21] and Okasha [22] development of

many skills of organisms such as, social skills and altruism

are difficult to explain if selection only occurs at one level, as

these traits are usually disadvantageous to the individual. A

good example is self-sacrifice of the individual for the

“greater good” of the group, reducing the chances of the

individual passing on its genetic material. Multi-level

selection (MLS) theory states that fitness can be defined, and

thus selection and competition can occur, separately on more

than one level. In multi-level selection theory two main

variants are proposed MLS1 and MLS2. In multilevel

selection 1, both collective and individual levels of selections

depend on a single evolutionary function and thus the fitness

of the collective is simply the aggregate of the fitness of

individuals inside of it. This means that both collective and

each individual contribute to the improvement of this single

function. In MLS2 the fitness function differs on each level

and therefore the selection is independent; which generates

an emergent selection property. Thus, it is possible that the

evolution of collectives will be dependent on different key

aspects than the evolution of individuals, leading to

competition between them [22].

There have already been attempts to incorporate the levels

of selection theory into evolutionary computation, however

in these attempts key aspects have been ignored. Lenaert et

al. [23] presented an algorithm with intradermic group

selection. However, no direct selection method, with separate

fitness, can be found at the higher level, which is required for

a true multi-level selection approach. Akbari et al. [24][25]

proposed an algorithm with three separate between-group

dynamics: colonization, regrouping and migration. The

colonization module partially reproduces MLS1, and after

each generation the worst collective is eliminated with one of

the remaining collectives reproducing and creating offspring.

However, in this algorithm, only the best individual in the

collective is considered to represent the fitness for the whole

This work has been sponsored by Lloyd Register Foundation

978-1-5090-4601-0/17/$31.00 ©c 2017 IEEE
1613

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:58:11 UTC from IEEE Xplore. Restrictions apply.

collective, and the collective with one strong individual can

survive, when other stronger in average, but with weaker the

best solution will extinct, which results in the loss of many

good solutions. In addition, only one collective takes part in

the reproduction step, which decreases the possible gene

pool. Wu and Banzhaf [26] introduced a genetic algorithm

using a many level hierarchical model. In this algorithm

reproduction occurs separately on group level and on the

individual level. However, in this approach, groups from

different levels can interact with each other during the

reproduction step and basic concepts of MLS, such as

separate selection mechanisms on each level, are not

obviously introduced.

In this paper both MLS1 and MLS2 variants of MLSGA

are benchmarked on a number of complex two-objectives

constrained and unconstrained test instances, taken from

CEC’09, in order to evaluate their performance on more

demanding functions.

II. METHODOLOGY

MLSGA splits the whole population into subgroups,

collectives, which operate on the same search space, and

introduces the additional level of selection. After each

generation, the worst collectives, defined by low fitness, are

eliminated and replaced by an equal number of new groups,

generated from the remaining population. The size of the new

collectives is equal to the size of the old ones in order to

maintain a constant size for the whole population. Two

variants of multi-level selection (MLS) are defined in

MLSGA. In MLS1 the fitness function is defined as the same

at both levels, collective and individual, and is the average of

the f1 and f2 objective functions (1). In MLS2 both levels

have separate fitness definitions; the f1 objective function is

assigned to individual level (2) and f2 is assigned to collective

level (3). The assignment of the fitness function at each level,

individual or collective, has a large impact on the results as

the both selection levels have a different selection pressure;

where previous research implies that the individual level is

stronger. In order to continue to investigate the sensitivity of

the results to the way in which the objective is defined,

MLS2R is defined here as the opposite of MLS2. Table I

demonstrates the specific mechanisms used in this paper.

 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =
𝑓1(𝑥)+𝑓2(𝑥)

2
 (1)

 𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑓1(𝑥) (2)

 𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑓2(𝑥) (3)

TABLE I. MLSGA PARAMETERS

Step Parameter Value

1. Initialisation

Type Random

Encoding
Real values

16 decimals

Pop. Size 600

2.

Classification

Method SVM

N. Collectives 6

3. Individual Reproduction

Step Parameter Value

3.1 Fitness

Evaluation
Type MLS1 or MLS2

3.2 Selection Type Roulette wheel

3.3 Mating

Crossover type Real variable SBX

Crossover rate 0.7

Mutation type Polynomial

Mutation rate 0.08

3.4 Elitism Rate 0.1

4. Collective Reproduction

4.1 Fitness
Evaluation

Type
MLS1 or MLS2 or

MLS2R

4.2 Elimination
Number of eliminated

collectives
2

4.3

Replacement

Number of new

collectives
2

5.Termination Criterion
Reaching 500

generation

TABLE II. UNCONSTRAINED TEST CASES

Test

case
Objective functions

UF1

[28]

𝑓1 = 𝑥1 +
2

|𝐽1|
∑ 𝑦𝑗

2

𝑗∈𝐽1

𝑓2 = 1 − √𝑥1 +
2

|𝐽2|
∑ 𝑦𝑗

2

𝑗∈𝐽2

𝑦𝑗 = 𝑥𝑗 − 𝑠𝑖𝑛 (6𝜋𝑥1 +
𝑗𝜋

𝑛
) , 𝑗 = 2, … , 𝑛

For all UF functions:

𝐽1 = {𝑗|𝑗 𝑖𝑠 𝑜𝑑𝑑 𝑎𝑛𝑑 2 ≤ 𝑗 ≤ 𝑛}

𝐽2 = {𝑗|𝑗 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑎𝑛𝑑 2 ≤ 𝑗 ≤ 𝑛}

𝑆𝑒𝑎𝑟𝑐ℎ 𝑠𝑝𝑎𝑐𝑒 𝑖𝑠 [0, 1] × [−1, 1]𝑛−1

UF2

[28]

𝑓1 = 𝑥1 +
2

|𝐽1|
∑ 𝑦𝑗

2

𝑗∈𝐽1

𝑓2 = 1 − √𝑥1 +
2

|𝐽2|
∑ 𝑦𝑗

2

𝑗∈𝐽2

𝑦𝑗 = {
𝑥𝑗 − ℎ(𝑡)𝑐𝑜𝑠 (6𝜋𝑥1 +

𝑗𝜋

𝑛
) 𝑗 ∈ 𝐽1

𝑥𝑗 − ℎ(𝑡)𝑠𝑖𝑛 (6𝜋𝑥1 +
𝑗𝜋

𝑛
) 𝑗 ∈ 𝐽1

ℎ(𝑡) = 0.3𝑥1
2𝑐𝑜𝑠 (24𝜋𝑥1 +

4𝑡𝜋

𝑛
) + 0.6𝑥1

𝑆𝑒𝑎𝑟𝑐ℎ 𝑠𝑝𝑎𝑐𝑒 𝑖𝑠 [0, 1] × [−1, 1]𝑛−1

UF3

[28]

𝑓1 = 𝑥1 +
2

|𝐽1|
(4 ∑ 𝑦𝑗

2

𝑗∈𝐽1

− 2 ∏ 𝑐𝑜𝑠 (
20𝑦𝑗𝜋

√𝑗
)

𝑗∈𝐽1

+ 2)

𝑓2 = 1 − √𝑥1 +
2

|𝐽2|
(4 ∑ 𝑦𝑗

2

𝑗∈𝐽2

− 2 ∏ 𝑐𝑜𝑠 (
20𝑦𝑗𝜋

√𝑗
)

𝑗∈𝐽2

+ 2)

𝑦𝑗 = 𝑥𝑗 − 𝑥1

0.5(1+
3(𝑗−2)

𝑛−2)
, 𝑗 = 2, … , 𝑛

𝑆𝑒𝑎𝑟𝑐ℎ 𝑠𝑝𝑎𝑐𝑒 𝑖𝑠 [0, 1]𝑛

UF4

[28]
𝑓1 = 𝑥1 +

2

|𝐽1|
∑ ℎ(𝑦𝑗)

𝑗∈𝐽1

1614
Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:58:11 UTC from IEEE Xplore. Restrictions apply.

Test

case
Objective functions

𝑓2 = 1 − 𝑥1
2 +

2

|𝐽2|
∑ ℎ(𝑦𝑗)

𝑗∈𝐽2

𝑦𝑗 = 𝑥𝑗 − 𝑠𝑖𝑛 (6𝜋𝑥1 +
𝑗𝜋

𝑛
) , 𝑗 = 2, … , 𝑛

ℎ(𝑡) =
|𝑡|

1 + 𝑒2|𝑡|

𝑆𝑒𝑎𝑟𝑐ℎ 𝑠𝑝𝑎𝑐𝑒 𝑖𝑠 [0, 1] × [−2, 2]𝑛−1

UF5

[28]

𝑓1 = 𝑥1 + (
1

2𝑁
+ 𝜀) |𝑠𝑖𝑛(2𝑁𝜋𝑥1)| +

2

|𝐽1|
∑ ℎ(𝑦𝑗)

𝑗∈𝐽1

𝑓2 = 1 − 𝑥1 + (
1

2𝑁
+ 𝜀) |𝑠𝑖𝑛(2𝑁𝜋𝑥1)| +

2

|𝐽2|
∑ ℎ(𝑦𝑗)

𝑗∈𝐽2

𝑦𝑗 = 𝑥𝑗 − 𝑠𝑖𝑛 (6𝜋𝑥1 +
𝑗𝜋

𝑛
) , 𝑗 = 2, … , 𝑛

ℎ(𝑡) = 2𝑡2 − 𝑐𝑜𝑠(4𝜋𝑡) + 1

𝑆𝑒𝑎𝑟𝑐ℎ 𝑠𝑝𝑎𝑐𝑒 𝑖𝑠 [0, 1] × [−1, 1]𝑛−1

UF7

[28]

𝑓1 = √𝑥1
5 +

2

|𝐽1|
∑ 𝑦𝑗

2

𝑗∈𝐽1

𝑓2 = 1 − √𝑥1
5 +

2

|𝐽2|
∑ 𝑦𝑗

2

𝑗∈𝐽2

𝑦𝑗 = 𝑥𝑗 − 𝑠𝑖𝑛 (6𝜋𝑥1 +
𝑗𝜋

𝑛
) , 𝑗 = 2, … , 𝑛

𝑆𝑒𝑎𝑟𝑐ℎ 𝑠𝑝𝑎𝑐𝑒 𝑖𝑠 [0, 1] × [−1, 1]𝑛−1

In MLSGA the Pareto front is stored externally, and is

used for illustrative purposes and to calculate the Inverted

Generational Distance (IGD), but is not integral to the

reproduction mechanisms. The biggest advantage of the

approach is the fact that the mechanism allows for the use of

any standard genetic algorithm mechanism at the individual

level, though a simple mechanism is selected for early

benchmarking. IGD is the performance measure function of

Pareto front, which shows the average distance between all

points in the true Pareto front and the closest solution from

the achieved set and is calculated by (4);

 𝐼𝐺𝐷(𝐴, 𝑃∗) =
∑ 𝑑(𝑣,𝐴)𝑣∈𝑃∗

|𝑃∗|
; (4)

where P∗ is a set of uniformly distributed points along the

Pareto front, in the objective space, A is an approximate set to
the Pareto front and d(v, A) is the minimum Euclidean distance
between v and the points in A.

The test cases used are the unconstrained UF and

constrained CF functions taken from the CEC ’09

competition [28] and are shown in the Table II and Table III.

The results are compared with other algorithms following the

CEC ’09 competition rules [20], based on the calculated IGD

values.

TABLE III. CONSTRAINED TEST CASES

Test

case
Objective functions

CF1

[28]

𝑓1 = 𝑥1 +
2

|𝐽1|
∑ (𝑥𝑗 − 𝑥1

0.5(1+
3(𝑗−2)

𝑛−2)
)

2

𝑗∈𝐽1

𝑓2 = 1 − 𝑥1 +
2

|𝐽2|
∑ (𝑥𝑗 − 𝑥1

0.5(1+
3(𝑗−2)

𝑛−2)
)

2

𝑗∈𝐽2

For all CF functions:

𝐽1 = {𝑗|𝑗 𝑖𝑠 𝑜𝑑𝑑 𝑎𝑛𝑑 2 ≤ 𝑗 ≤ 𝑛}

𝐽2 = {𝑗|𝑗 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑎𝑛𝑑 2 ≤ 𝑗 ≤ 𝑛}

Constrain:

𝑓1 + 𝑓2 − 𝑎|sin[𝑁𝜋(𝑓1 − 𝑓2 + 1)]| − 1 ≥ 0

𝑆𝑒𝑎𝑟𝑐ℎ 𝑠𝑝𝑎𝑐𝑒 𝑖𝑠 [0, 1]𝑛

CF2

[28]

𝑓1 = 𝑥1 +
2

|𝐽1|
∑ (𝑥𝑗 − 𝑠𝑖𝑛 (6𝜋𝑥1 +

𝑗𝜋

𝑛
))

2

𝑗∈𝐽1

𝑓2 = 1 − √𝑥1 +
2

|𝐽2|
∑ (𝑥𝑗 − 𝑠𝑖𝑛 (6𝜋𝑥1 +

𝑗𝜋

𝑛
))

2

𝑗∈𝐽2

Constrain:

𝑡

1 + 𝑒4|𝑡| ≥ 0

𝑡 = √𝑓1 + 𝑓2 − 𝑎 sin[𝑁𝜋(√𝑓1 − 𝑓2 + 1)] − 1

𝑆𝑒𝑎𝑟𝑐ℎ 𝑠𝑝𝑎𝑐𝑒 𝑖𝑠 [0, 1] × [−1, 1]𝑛−1

CF3

[28]

𝑓1 = 𝑥1 +
2

|𝐽1|
(4 ∑ 𝑦𝑗

2

𝑗∈𝐽1

− 2 ∏ 𝑐𝑜𝑠 (
20𝑦𝑗𝜋

√𝑗
)

𝑗∈𝐽1

+ 2)

𝑓2 = 1 − 𝑥1
2 +

2

|𝐽2|
(4 ∑ 𝑦𝑗

2

𝑗∈𝐽2

− 2 ∏ 𝑐𝑜𝑠 (
20𝑦𝑗𝜋

√𝑗
)

𝑗∈𝐽2

+ 2)

𝑦𝑗 = 𝑥𝑗 − 𝑠𝑖𝑛 (6𝜋𝑥1 +
𝑗𝜋

𝑛
) , 𝑗 = 2, … , 𝑛

Constrain:

𝑓1
2 + 𝑓2 − 𝑎 sin[𝑁𝜋(𝑓1

2 − 𝑓2 + 1)] − 1 ≥ 0

𝑆𝑒𝑎𝑟𝑐ℎ 𝑠𝑝𝑎𝑐𝑒 𝑖𝑠 [0, 1] × [−2, 2]𝑛−1

CF4

[28]

𝑓1 = 𝑥1 + ∑ ℎ𝑗(𝑦𝑗)

𝑗∈𝐽1

𝑓2 = 1 − 𝑥1 + ∑ ℎ𝑗(𝑦𝑗)

𝑗∈𝐽2

𝑦𝑗 = 𝑥𝑗 − 𝑠𝑖𝑛 (6𝜋𝑥1 +
𝑗𝜋

𝑛
) , 𝑗 = 2, … , 𝑛

ℎ2(𝑡) = {
|𝑡| 𝑖𝑓 𝑡 <

3

2
(1 −

√2

2
)

0.125 + (𝑡 − 1)2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

and ℎ𝑗(𝑡) = 𝑡2

Constrain:

𝑡

1 + 𝑒4|𝑡| ≥ 0

𝑡 = 𝑥2 − 𝑠𝑖𝑛 (6𝜋𝑥1 +
2𝜋

𝑛
) − 0.5𝑥1 + 0.25

𝑆𝑒𝑎𝑟𝑐ℎ 𝑠𝑝𝑎𝑐𝑒 𝑖𝑠 [0, 1] × [−2, 2]𝑛−1

CF5

[28]
𝑓1 = 𝑥1 + ∑ ℎ𝑗(𝑦𝑗)

𝑗∈𝐽1

1615
Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:58:11 UTC from IEEE Xplore. Restrictions apply.

Test

case
Objective functions

𝑓2 = 1 − 𝑥1 + ∑ ℎ𝑗(𝑦𝑗)

𝑗∈𝐽2

𝑦𝑗 = {
𝑥𝑗 − 0.8𝑥1𝑐𝑜𝑠 (6𝜋𝑥1 +

𝑗𝜋

𝑛
) 𝑗 ∈ 𝐽1

𝑥𝑗 − 0.8𝑥1𝑠𝑖𝑛 (6𝜋𝑥1 +
𝑗𝜋

𝑛
) 𝑗 ∈ 𝐽1

ℎ2(𝑡) = {
|𝑡| 𝑖𝑓 𝑡 <

3

2
(1 −

√2

2
)

0.125 + (𝑡 − 1)2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

and ℎ𝑗(𝑡) = 2𝑡2 − cos(4𝜋𝑡) + 1

Constrain:

𝑥2 − 0.8𝑥1𝑠𝑖𝑛 (6𝜋𝑥1 +
2𝜋

𝑛
) − 0.5𝑥1 + 0.25 ≥ 0

𝑆𝑒𝑎𝑟𝑐ℎ 𝑠𝑝𝑎𝑐𝑒 𝑖𝑠 [0, 1] × [−2, 2]𝑛−1

CF6

[28]

𝑓1 = 𝑥1 + ∑ 𝑦𝑗
2

𝑗∈𝐽1

𝑓2 = (1 − 𝑥1)2 + ∑ 𝑦𝑗
2

𝑗∈𝐽2

𝑦𝑗 = {
𝑥𝑗 − 0.8𝑥1𝑐𝑜𝑠 (6𝜋𝑥1 +

𝑗𝜋

𝑛
) 𝑗 ∈ 𝐽1

𝑥𝑗 − 0.8𝑥1𝑠𝑖𝑛 (6𝜋𝑥1 +
𝑗𝜋

𝑛
) 𝑗 ∈ 𝐽1

Constrains:

𝑥2 − 0.8𝑥1𝑠𝑖𝑛 (6𝜋𝑥1 +
2𝜋

𝑛
) − 𝑠𝑖𝑔𝑛(𝑘1)√|𝑘1| ≥ 0

𝑥4 − 0.8𝑥1𝑠𝑖𝑛 (6𝜋𝑥1 +
4𝜋

𝑛
) − 𝑠𝑖𝑔𝑛(𝑘2)√|𝑘2| ≥ 0

𝑘1 = 0.5(1 − 𝑥1) − (1 − 𝑥1)2

𝑘2 = 0.25√1 − 𝑥1 − 0.5(1 − 𝑥1)

𝑆𝑒𝑎𝑟𝑐ℎ 𝑠𝑝𝑎𝑐𝑒 𝑖𝑠 [0, 1] × [−2, 2]𝑛−1

CF7

[28]

𝑓1 = 𝑥1 + ∑ ℎ𝑗(𝑦𝑗)

𝑗∈𝐽1

𝑓2 = (1 − 𝑥1)2 + ∑ ℎ𝑗(𝑦𝑗)

𝑗∈𝐽2

𝑦𝑗 = {
𝑥𝑗 − 𝑐𝑜𝑠 (6𝜋𝑥1 +

𝑗𝜋

𝑛
) 𝑗 ∈ 𝐽1

𝑥𝑗 − 𝑠𝑖𝑛 (6𝜋𝑥1 +
𝑗𝜋

𝑛
) 𝑗 ∈ 𝐽1

ℎ2(𝑡) = ℎ4(𝑡) = 𝑡2

and ℎ𝑗(𝑡) = 2𝑡2 − cos(4𝜋𝑡) + 1

Constrains:

𝑥2 − 𝑠𝑖𝑛 (6𝜋𝑥1 +
2𝜋

𝑛
) − 𝑠𝑖𝑔𝑛(𝑘1)√|𝑘1| ≥ 0

𝑥4 − 𝑠𝑖𝑛 (6𝜋𝑥1 +
4𝜋

𝑛
) − 𝑠𝑖𝑔𝑛(𝑘2)√|𝑘2| ≥ 0

𝑘1 = 0.5(1 − 𝑥1) − (1 − 𝑥1)2

𝑘2 = 0.25√1 − 𝑥1 − 0.5(1 − 𝑥1)

𝑆𝑒𝑎𝑟𝑐ℎ 𝑠𝑝𝑎𝑐𝑒 𝑖𝑠 [0, 1] × [−2, 2]𝑛−1

III. RESULTS

The benchmarking is performed for different

unconstrained two-objective functions, UF1-UF5 and UF7

shown in Table II, with 30 variables each and for constrained

problems, CF1-5 with 1 constraint and CF6-7 with 2

constraints shown in Table III, with 10 variables each. For

each function 30 separate runs have been performed, the

stopping criteria is 300,000 function evaluations for each run,

and the 100 best solutions are considered for the purpose of

the IGD calculation; the average IGD value is presented in

order to follow CEC’09 rules [20].

The results for UF1-5 and 7 are found and the Pareto

fronts are illustrated for the UF1, Fig 1, and for the UF2

function Fig 2. UF1 and UF2 functions are chosen as they

provide results representative of the worst and the best cases

for the unconstrained functions.

For UF1 function the Pareto fronts show that all the

variants were able to reach the true Pareto front but were

unable to find a range of values. MLS2 and MLS2R found a

wider variety of points along the true Pareto front than MLS1

although most of them were far from it.

Better performance can be observed on the UF2 problem,

Fig. 2. In this benchmark all variants, were able to reach the

front and to develop a diverse range of points. However, even

in the best case of MLS2R, only half of the front is explored.

Fig. 1. Pareto front of MLSGA variants on UF1 function

Fig. 2. Pareto front of MLSGA variants on UF2 function

1616
Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:58:11 UTC from IEEE Xplore. Restrictions apply.

The process is repeated for the constrained CF1-7

functions. CF1 Fig 3, and CF3, Fig 4, are chosen as they

illustrate the worst and the best cases for the constrained test

set.

The obtained results show that all MLSGA variants

perform similarly; they were all able to reach the true Pareto

front, and find a diverse range of points. However, the

algorithm lacks accuracy for the border values of Pareto

front, and concentrates its search on the middle.

The worst performance is observed on the CF3 test

instance, Fig 4, where MLSGA was not able to reach the

front, and only gets close to it in the best case. For this

function, as for the other CF functions, all variants perform

similarly.

Fig. 3. Pareto front of MLSGA variants on CF1 function

Fig. 4. Pareto front of MLSGA variants on CF3 function

The results of the three variants of MLSGA are compared

to each other and to the other algorithms from CEC ’09 [20].

The rankings are presented for unconstrained test cases in

Table IV for UF1-3, in Table V for UF 4,5 and 7, and for

constrained functions CF1-4, Table VI, and CF5-7, Table

VII.

TABLE IV. MLSGA IN CEC’09 RANKING ON TWO-OBJECTIVE

UNCONSTRAINED UF1-3 PROBLEMS

Rank
Name/Average IGD

UF1 UF2 UF3

1
MOEA/D

0.00435

MTS

0.00615

MOEA/D

0.00742

2
GDE3

0.00534

MOEA/D-GM

0.0064

LiuLi

0.01497

3
MOEA/D-GM

0.0062

DMOEA-DD

0.00679

DMOEA-DD

0.03337

4
MTS

0.00646

MOEA/D

0.00679

MOEA/D-GM

0.049

5
LiuLi

0.00785

OW-MOSaDE

0.0081

MTS

0.0531

6
DMOEA-DD

0.01038

GDE3

0.01195

Clustering

MOEA

0.0549

7
NSGA II LS

0.01153

LiuLi

0.0123

AMGA

0.06998

8
OW-MOSaDE

0.0122

NSGA II LS

0.01237

DECMOSA-SQP

0.0935

9

Clustering

MOEA

0.0299

AMGA

0.01623

MOEP

0.099

10
AMGA

0.03588

MOEP

0.0189

OW-MOSaDE

0.103

11
MOEP

0.0596

Clustering

MOEA

0.0228

NSGA II LS

0.10603

12
DECMOSA-SQP

0.07702

DECMOSA-SQP

0.02834

GDE3

0.10639

13
OMOEA II

0.08564

OMOEA II

0.03057

OMOEA II

0.27141

14
MLS2R

0.205

MLS2

0.105

MLS1

0.401

15
MLS1

0.213

MLS1

0.156

MLS2R

0.438

16
MLS2

0.223

MLS2R

0.176

MLS2

0.447

TABLE V. MLSGA IN CEC’09 RANKING ON TWO-OBJECTIVE

UNCONSTRAINED UF4-7 PROBLEMS

Rank
Name/Average IGD

UF4 UF5 UF7

1
MTS

0.02356

MTS

0.01489

MOEA/D

0.00587

2
GDE3

0.0265

GDE3

0.03928

LiuLi

0.0073

3
DECMOSA-SQP

0.03392

AMGA

0.09405

MOEA/D-GM

0.0076

4
AMGA

0.04062

LiuLi

0.16186

DMOEA-DD

0.01032

5 DMOEA-DD DECMOSA-SQP MOEP

1617
Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:58:11 UTC from IEEE Xplore. Restrictions apply.

Rank
Name/Average IGD

UF4 UF5 UF7

0.04268 0.16713 0.0197

6
MOEP

0.0427

OMOEA II

0.1692

NSGA II LS

0.02132

7
LiuLi

0.0435

MOEA/D

0.18071

Clustering

MOEA

0.0223

8
OMOEA II

0.04624

MOEP

0.2245

DECMOSA-SQP

0.02416

9
MOEA/D-GM

0.0476

Clustering

MOEA

0.2473

GDE3

0.02522

10
OW-MOSaDE

0.0513

DMOEA-DD

0.31454

OMOEA II

0.03354

11
NSGA II LS

0.0584

OW-MOSaDE

0.4303

MTS

0.04079

12

Clustering

MOEA

0.0585

NSGA II LS

0.5657

AMGA

0.05707

13
MOEA/D

0.06385

MLS2

0.696

OW-MOSaDE

0.0585

14
MLS2R

0.0881

MLS1

0.733

MLS1

0.398

15
MLS1

0.0882

MLS2R

0.767

MLS2

0.410

16
MLS2

0.103

MOEA/D-GM

1.7919

MLS2R

0.412

The unconstrained rankings show that all the MLSGA

variants are outperformed by all other algorithms on almost

all of the functions, except UF5 where MOEA/D-GM is the

worst; additionaly in this case the MLS2 variant is not far

from the NSGA II LS. Interesingly all MLS varaints show

similar performance in all tests, and it’s hard to distinguish

which one is better, which is in contradiction with previous

research on the simpler ZDT functions, where on these

simpler functions MLS2R variant strongly outperforms the

others and MLS1 provides poor diversity of points.

For the constrained ranking, the results are more

promising. In this case MLSGA variants are outperformed by

all other algorithms only on the CF1 and CF4 benchmark.

However, MLS2R is better than both DECMOSA and

MOEA/D-GM on CF3 and CF5; MLS1 outperforms these

algorithms on CF5 and CF6. Again all the MLSGA variants

have similar performance, but MLS1 is slightly better, which

is surprising in comparison to the unconstrained ZDT

functions, where the MLS1 algorithm lacks the diversity of

points to get a low IGD value.

The detailed Pareto front results show that MLSGA is

unable to properly find the whole Pareto front, however it is

able to reach it and explore it partially, providing promising

results at this stage, especially for constrained problems. The

current algorithm only implements simple genetic algorithm

mechanics at the individual level and the collective level

mechanics are at an early stage of development but is already

outperforming some leading algorithms on a range of state-

of-the-art problems.

TABLE VI. MLSGA IN CEC’09 RANKING ON TWO-OBJECTIVE

CONSTRAINED CF1-4 PROBLEMS

Rank
Name/Average IGD

CF1 CF2 CF3 CF4

1
LiuLi

0.00085

DMOEADD

0.0021

DMOEADD

0.056305

DMOEADD

0.00699

2
NSGAIILS

0.00692

LiuLi

0.0042

MTS

0.10446

GDE3

0.00799

3
MEOADGM

0.0108

MEOADGM

0.008

GDE3

0.127506

MTS

0.01109

4
DMOEADD

0.01131

NSGAIILS

0.01183

LiuLi

0.182905

LiuLi

0.01423

5
MTS

0.01918

GDE3

0.01597

NSGAIILS

0.23994

NSGAIILS

0.01576

6
GDE3

0.0294

MTS

0.02677

MLS2R

0.435

MEOADGM

0.0707

7
MLS2R

0.0872

DECMOSA

0.0946

MEOADGM

0.5134

DECMOSA

0.15265

8
MLS1

0.0933

MLS1

0.160

MLS1

0.522

MLS1

0.332

9
MLS2

0.0996

MLS2R

0.164

MLS2

0.633

MLS2R

0.348

10
DECMOSA

0.10773

MLS2

0.1829

DECMOSA

1000000

MLS2

0.387

TABLE VII. MLSGA IN CEC’09 RANKING ON TWO-OBJECTIVE

CONSTRAINED CF5-7PROBLEMS

Rank
Name/Average IGD

CF5 CF6 UF7

1
DMOEADD

0.01577

LiuLi

0.013948

DMOEADD

0.01905

2
MTS

0.02077

DMOEADD

0.01502

MTS

0.02469

3
GDE3

0.06799

MTS

0.01616

GDE3

0.04169

4
LiuLi

0.10973

NSGAIILS

0.02013

LiuLi

0.10446

5
NSGAIILS

0.1842

GDE3

0.06199

NSGAIILS

0.23345

6
MLS1

0.390

MLS1

0.141

DECMOSA

0.26049

7
MLS2R

0.393

DECMOSA

0.14782

MLS2R

0.522116

8
DECMOSA

0.41275

MEOADGM

0.2071

MEOADGM

0.5356

9
MLS2

0.426

MLS2

0.502

MLS1

0.538741

10
MEOADGM

0.5446

MLS2R

2.746

MLS2

0.571981

1618
Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:58:11 UTC from IEEE Xplore. Restrictions apply.

IV. DISCUSSION

The results show that MLSGA provides promising results

on complex two-objective problems, representing the current

state-of-art. On all the test cases, each MLSGA variant has a

similar performance and is able to reach the true Pareto front,

in some cases with a good diversity of points. This increases

the performance of the classic genetic algorithm, on which

the current version of MLSGA is based, to compete with

current state-of-the-art genetic algorithms. Lack of a

substantial difference between MLS2 and MLS2R was

predictable as all UF and CF test cases have similar

complexity for both f1 and f2. This is different from the ZDT

functions tested on previously where performance between

the variants showed a large difference, but these functions are

less well balanced between objectives. More interesting is the

similarity in performance between MLS1 and MLS2 variants,

which also differs from the previous results. The authors

suggest that the reason behind this is that the UF test

problems are too complex for the current, simple version of

MLSGA and both variants are struggling in finding the

proper solutions. MLS1 results have previously shown poor

diversity of solutions whereas MLS2 finds a diverse range of

solutions once the front is found. In these cases, the front is

more difficult to find so the MLS2 variant is not able to create

a spread of results, showing similar performance to MLS1.

 MLSGA is based on simple principles and thus further

work is necessary. Possible methods to improve the

performance are to develop the new collective evolutionary

mechanism, which is underdeveloped compared to individual

level mechanisms, and employ better performing methods

than the simple classic GA mechanisms. The authors suggest

to incorporate top individual mechanisms, such as MOEA/D,

NSGAII and DMOEA-DD into MLSGA for even greater

gains in performance. Other approaches could be

implementation of local search methods such as MTS into

collective reproduction mechanisms, and the introduction of

different MLS types and fitness definitions into each

collective, where some collectives in one run can utilise

MLS1 and others MLS2 or MLS2R, for wider area searches.

Additionally, the authors suggest that the MLSGA approach

may be more successful on other kind of problems including:

multi-level functions, noisy and dynamic problems, where

the split in fitness function and population may lead to

increased performance.

V. CONCLUSION

There are a number of different approaches to improve

performance of genetic algorithms. This paper implements a

novel bio-inspired mechanism, based on modern theories of

evolution, multi-level selection. A simple genetic algorithm

is used at the individual level and an initial, novel, collective

level mechanism is implemented; these are benchmarked on

CEC’09 test problems and compared with current state-of-art

competitors. Interestingly all variants are able to reach the

true Pareto front and show similar performance to each other.

The developed algorithm needs further improvements,

however the current mechanisms are simple and it is

proposed to introduce more complex individual reproduction

from the current state-of-art to improve performance.

REFERENCES

[1] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist

multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol.
Comput., vol. 6, no. 2, pp. 182–197, 2002

[2] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the
Strength Pareto Evolutionary Algorithm,” pp. 95–100, 2001.

[3] J. D. Schaffer, “Multiple objective optimization with vector evaluated

genetic algorithms,” The 1st international Conference on Genetic
Algorithms. pp. 93–100, 1985.

[4] D. Corne, J. D. Knowles, and M. Oates, “The Pareto envelope-based
selection algorithm for multiobjective optimization,” Parallel Probl.

Solving from Nature-PPSN VI, no. Mcdm, pp. 839–848, 2000.

[5] N. Srinivas and K. Deb, “Muiltiobjective Optimization Using

Nondominated Sorting in Genetic Algorithms,” Evol. Comput., vol. 2,

no. 3, pp. 221–248, 1994.

[6] R. Hinterding, Z. Michalewicz, and T. C. Peachey, “Self-Adaptive

Genetic Algorithm for Numeric Functions,” Proc. 4th Int. Conf.

Parallel Probl. Solving from Nat., vol. 1141, pp. 420–429, 1996.

[7] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: a

comparative case study and the strength Pareto approach,” Evol.

Comput. IEEE Trans., vol. 3, no. 4, pp. 257–271, 1999.

[8] H. Seade, K. Deb, “U-NSGA-III: A unified evolutionary optimization

procedure for single, multiple, and many objectives: proof-of-principle
results”, 8th International Conference Evolutionary Multi-Criterion

Optimisation, EMO 2015, Guimares, Portugal, 2015.

[9] J. D. Knowles and D. W. Corne, “Approximating the Nondominated

Front Using the Pareto Archived Evolution Strategy,” Evol. Comput.,

vol. 8, no. 2, pp. 149–172, 2000.

[10] Q. Zhang and H. Li, “MOEA/D: A Multiobjective Evolutionary

Algorithm Based on Decomposition,” IEEE Trans. Evol. Comput., vol.

11, no. 6, pp. 712–731, 2007.

[11] M. Liu, X. Zou, C. Yu, and Z. Wu, “Performance assessment of

DMOEA-DD with CEC 2009 MOEA competition test instances,”
IEEE Congr. Evol. Comput., no. 1, pp. 2913–2918, 2009.

[12] H. L. Liu and X. Li, “The multiobjective evolutionary algorithm based

on determined weight and sub-regional search,” 2009 IEEE Congr.
Evol. Comput. CEC 2009, pp. 1928–1934, 2009.

[13] V. L. Huang, S. Z. Zhao, R. Mallipeddi, and P. N. Suganthan, “Multi-
objective optimization using self-adaptive aifferential evolution

algorithm,” 2009 IEEE Congr. Evol. Comput., pp. 190–194, 2009.

[14] Y. Wang, C. Dang, H. Li, L. Han, and J. Wei, “A clustering multi-
objective evolutionary algorithm based on orthogonal and uniform

design,” 2009 IEEE Congr. Evol. Comput., no. 5, pp. 2927–2933,

2009.

[15] S. Tiwari, G. M. Fadel, P. Koch, and K. Deb, “AMGA : An Archive-

based Micro Genetic Algorithm,” Gecco, pp. 729–736, 2008.

[16] B. Y. Qu and P. N. Suganthan, “Multi-objective evolutionary

programming without non-domination sorting is up to twenty times
faster,” 2009 IEEE Congr. Evol. Comput. CEC 2009, pp. 2934–2939,

2009.

[17] A. Zamuda, J. Brest, B. Boskovic, and V. Zumer, “Differential
evolution with self-adaptation and local search for constrained

multiobjective optimization,” 2009 IEEE Congr. Evol. Comput. CEC

2009, pp. 195–202, 2009.

[18] S. Gao et al., “An orthogonal multi-objective evolutionary algorithm

with lower-dimensional crossover,” 2009 IEEE Congr. Evol. Comput.
CEC 2009, no. 1, pp. 1959–1964, 2009.

[19] S. Kukkonen and J. Lampinen, “GDE3: the third evolution step of

generalized differential evolution,” 2005 IEEE Congr. Evol. Comput.,
vol. 1, pp. 443–450, 2005.

1619
Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:58:11 UTC from IEEE Xplore. Restrictions apply.

[20] Q. Zhang and P. N. Suganthan, “Final report on CEC ’ 09 MOEA
Competition,” Congress on Evolutionary Computation, pp. 1-11, 2009.

[21] E. Sober, D. S. Wilson, “Unto others: evolution and psychology of

unselfish behaviour”, Harvard University Press, 1999.

[22] S. Okasha, “Evolution and the Levels of Selection”, Clarendon Press,

2006.

[23] T. Lenaerts, A. Defaweux, P. Van Remortel, and B. Manderick,

“Modeling Artificial Multi-level Selection,” AAAI Technical Report

SS-03-02, 2003.

[24] R. Akbari, V. Zeighami, and K. Ziarati, “MLGA: A multilevel

cooperative genetic algorithm,” Proc. 2010 IEEE 5th Int. Conf. Bio-
Inspired Comput. Theor. Appl. BIC-TA 2010, pp. 271–277, 2010.

[25] R. Akbari and K. Ziarati, “A multilevel evolutionary algorithm for

optimizing numerical functions,” Int. J. Ind. Eng. Comput., vol. 2, no.
2, pp. 419–430, 2011.

[26] S. X. Wu, S. John, W. Banzhaf, I. P. Solving, and C. Methods, “A
Hierarchical Cooperative Evolutionary Algorithm,” Group, pp. 233–

240, 2010.

[27] E. Zitzler, K. Deb, and L. Thiele, “Comparison of Multiobjective

Evolutionary Algorithms: Empirical Results,” Evol. Comput., vol. 8,

no. 2, pp. 173–195, 2000.

[28] Q. Zhang, A. Zhou, S. Zhao, P. N. Suganthan, and W. Liu,

“Multiobjective optimization pest instances for the CEC 2009 special

session and competition,” Tech. Rep., pp. 1–30, 2009.

1620
Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:58:11 UTC from IEEE Xplore. Restrictions apply.

