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Abstract— Genetic algorithms (GAs) are population-based 

optimisation tools inspired by evolution and natural selection. 

They are applied in many areas of engineering and industry, on 

increasingly complex problems. To improve the performance, 

the new algorithms have a tendency to be derived from 

sophisticated mathematical and computational mechanisms, 

where many biological and evolutionary advances have been 

neglected. One such mechanism is multi-level selection theory 

which has been proposed as being necessary for evolution. 

Previously, an algorithm developed using this theory as its 

inspiration has shown promising performance on simple test 

problems. It proposes the addition of a collective reproduction 

mechanism alongside the standard individual one. Here the 

algorithm, Multi-Level Selection Genetic Algorithm (MLSGA), 

is benchmarked on more sophisticated test instances from CEC 

’09 and compared to the final rankings. In this instance a simple 

genetic algorithm is used at the individual level. The developed 

algorithm cannot compete with top algorithms on complex 

unconstrained problems, however it shows interesting results 

and behaviour, and better performance on constrained test 

functions. The approach provides promise for further 

investigation, especially in integrating state-of-the-art 

individual reproduction methods to improve the performance 

and improving the novel collective mechanism.  

Keywords— Evolutionary theory, evolutionary computation, 

genetic algorithms, multi-level selection, multi-objective 

optimization. 

I.  INTRODUCTION 

A number of evolutionary algorithms have been 

developed since the original work of Holland in the 1960’s 

[1]-[19]. Each of them introduced novel mechanisms and 

improvements, with many of the leading algorithms 

benchmarked on complex multi-objective optimisation 

problems as part of CEC’09 [20]. Current trends are towards 

more complex algorithms based on mathematical and 

computational concepts, and advanced evolutionary-based 

concepts are often pushed aside. Evolutionary theory has 

made much progress since the original GA was developed 

and the authors feel that exploration of these modern 

evolutionary concepts can lead to an increase in performance 

of the modern genetic algorithms. One of them is multi-level 

selection originally proposed by Sober and Wilson [21]. 

In nature individuals often group together, into packs or 

tribes, in order to cooperate and increase their chances of 

survival. During the life cycle, collectives are competing with 

each other, and similar to individuals, fitter groups survive 

and create offspring, while those with a lower fitness produce 

fewer or no offspring. This process can be compared to insect 

colonies, or human tribes, competing for food sources, where 

fitter colonies are able to collect enough to sustain their 

population and the less fit die from starvation [22]. According 

to Sober and Wilson [21] and Okasha [22] development of 

many skills of organisms such as, social skills and altruism 

are difficult to explain if selection only occurs at one level, as 

these traits are usually disadvantageous to the individual. A 

good example is self-sacrifice of the individual for the 

“greater good” of the group, reducing the chances of the 

individual passing on its genetic material. Multi-level 

selection (MLS) theory states that fitness can be defined, and 

thus selection and competition can occur, separately on more 

than one level. In multi-level selection theory two main 

variants are proposed MLS1 and MLS2. In multilevel 

selection 1, both collective and individual levels of selections 

depend on a single evolutionary function and thus the fitness 

of the collective is simply the aggregate of the fitness of 

individuals inside of it. This means that both collective and 

each individual contribute to the improvement of this single 

function. In MLS2 the fitness function differs on each level 

and therefore the selection is independent; which generates 

an emergent selection property. Thus, it is possible that the 

evolution of collectives will be dependent on different key 

aspects than the evolution of individuals, leading to 

competition between them [22].  

There have already been attempts to incorporate the levels 

of selection theory into evolutionary computation, however 

in these attempts key aspects have been ignored. Lenaert et 

al. [23] presented an algorithm with intradermic group 

selection. However, no direct selection method, with separate 

fitness, can be found at the higher level, which is required for 

a true multi-level selection approach. Akbari et al. [24][25] 

proposed an algorithm with three separate between-group 

dynamics: colonization, regrouping and migration. The 

colonization module partially reproduces MLS1, and after 

each generation the worst collective is eliminated with one of 

the remaining collectives reproducing and creating offspring. 

However, in this algorithm, only the best individual in the 

collective is considered to represent the fitness for the whole 
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collective, and the collective with one strong individual can 

survive, when other stronger in average, but with weaker the 

best solution will extinct, which results in the loss of many 

good solutions. In addition, only one collective takes part in 

the reproduction step, which decreases the possible gene 

pool. Wu and Banzhaf [26] introduced a genetic algorithm 

using a many level hierarchical model. In this algorithm 

reproduction occurs separately on group level and on the 

individual level. However, in this approach, groups from 

different levels can interact with each other during the 

reproduction step and basic concepts of MLS, such as 

separate selection mechanisms on each level, are not 

obviously introduced. 

In this paper both MLS1 and MLS2 variants of MLSGA 

are benchmarked on a number of complex two-objectives 

constrained and unconstrained test instances, taken from 

CEC’09, in order to evaluate their performance on more 

demanding functions. 

II. METHODOLOGY 

MLSGA splits the whole population into subgroups, 

collectives, which operate on the same search space, and 

introduces the additional level of selection. After each 

generation, the worst collectives, defined by low fitness, are 

eliminated and replaced by an equal number of new groups, 

generated from the remaining population. The size of the new 

collectives is equal to the size of the old ones in order to 

maintain a constant size for the whole population. Two 

variants of multi-level selection (MLS) are defined in 

MLSGA. In MLS1 the fitness function is defined as the same 

at both levels, collective and individual, and is the average of 

the f1 and f2 objective functions (1). In MLS2 both levels 

have separate fitness definitions; the f1 objective function is 

assigned to individual level (2) and f2 is assigned to collective 

level (3). The assignment of the fitness function at each level, 

individual or collective, has a large impact on the results as 

the both selection levels have a different selection pressure; 

where previous research implies that the individual level is 

stronger. In order to continue to investigate the sensitivity of 

the results to the way in which the objective is defined, 

MLS2R is defined here as the opposite of MLS2. Table I 

demonstrates the specific mechanisms used in this paper. 

 

 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  
𝑓1(𝑥)+𝑓2(𝑥)

2
 (1) 

 𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑓1(𝑥)  (2) 

   

 𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑓2(𝑥) (3) 

TABLE I.  MLSGA PARAMETERS 

Step Parameter Value 

1. Initialisation 

Type Random 

Encoding 
Real values 

16 decimals 

Pop. Size 600 

2. 

Classification 

Method SVM 

N. Collectives 6 

3. Individual Reproduction 

Step Parameter Value 

3.1 Fitness 

Evaluation 
Type MLS1 or MLS2 

3.2 Selection Type Roulette wheel 

3.3 Mating 

Crossover type Real variable SBX 

Crossover rate 0.7 

Mutation type Polynomial 

Mutation rate 0.08 

3.4 Elitism Rate 0.1 

4. Collective Reproduction 

4.1 Fitness 
Evaluation 

Type 
MLS1 or MLS2 or 

MLS2R 

4.2 Elimination 
Number of eliminated 

collectives 
2 

4.3 

Replacement 

Number of new 

collectives 
2 

5.Termination Criterion 
Reaching 500 

generation 

   

TABLE II.  UNCONSTRAINED TEST CASES 

Test 

case 
Objective functions 

UF1 

[28] 

𝑓1 =  𝑥1 +
2

|𝐽1|
∑ 𝑦𝑗

2

𝑗∈𝐽1

 

𝑓2 =  1 − √𝑥1 +
2

|𝐽2|
∑ 𝑦𝑗

2

𝑗∈𝐽2

 

𝑦𝑗 = 𝑥𝑗 − 𝑠𝑖𝑛 (6𝜋𝑥1 +
𝑗𝜋

𝑛
) , 𝑗 = 2, … , 𝑛 

For all UF functions: 

𝐽1 = {𝑗|𝑗 𝑖𝑠 𝑜𝑑𝑑 𝑎𝑛𝑑 2 ≤ 𝑗 ≤ 𝑛} 

𝐽2 = {𝑗|𝑗 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑎𝑛𝑑 2 ≤ 𝑗 ≤ 𝑛} 

𝑆𝑒𝑎𝑟𝑐ℎ 𝑠𝑝𝑎𝑐𝑒 𝑖𝑠 [0, 1] × [−1, 1]𝑛−1 

UF2 

[28] 

𝑓1 =  𝑥1 +
2

|𝐽1|
∑ 𝑦𝑗

2

𝑗∈𝐽1

 

𝑓2 =  1 − √𝑥1 +
2

|𝐽2|
∑ 𝑦𝑗

2

𝑗∈𝐽2

 

𝑦𝑗 = {
𝑥𝑗 − ℎ(𝑡)𝑐𝑜𝑠 (6𝜋𝑥1 +

𝑗𝜋

𝑛
) 𝑗 ∈ 𝐽1

𝑥𝑗 − ℎ(𝑡)𝑠𝑖𝑛 (6𝜋𝑥1 +
𝑗𝜋

𝑛
) 𝑗 ∈ 𝐽1

  

ℎ(𝑡) = 0.3𝑥1
2𝑐𝑜𝑠 (24𝜋𝑥1 +

4𝑡𝜋

𝑛
) + 0.6𝑥1 

𝑆𝑒𝑎𝑟𝑐ℎ 𝑠𝑝𝑎𝑐𝑒 𝑖𝑠 [0, 1] × [−1, 1]𝑛−1 

UF3 

[28] 

𝑓1 =  𝑥1 +
2

|𝐽1|
(4 ∑ 𝑦𝑗

2

𝑗∈𝐽1

− 2 ∏ 𝑐𝑜𝑠 (
20𝑦𝑗𝜋

√𝑗
)

𝑗∈𝐽1

+ 2) 

𝑓2 =  1 − √𝑥1 +
2

|𝐽2|
(4 ∑ 𝑦𝑗

2

𝑗∈𝐽2

− 2 ∏ 𝑐𝑜𝑠 (
20𝑦𝑗𝜋

√𝑗
)

𝑗∈𝐽2

+ 2) 

𝑦𝑗 = 𝑥𝑗 − 𝑥1

0.5(1+
3(𝑗−2)

𝑛−2 )
, 𝑗 = 2, … , 𝑛 

𝑆𝑒𝑎𝑟𝑐ℎ 𝑠𝑝𝑎𝑐𝑒 𝑖𝑠 [0, 1]𝑛 

UF4 

[28] 
𝑓1 =  𝑥1 +

2

|𝐽1|
∑ ℎ(𝑦𝑗)

𝑗∈𝐽1
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Test 

case 
Objective functions 

𝑓2 =  1 − 𝑥1
2 +

2

|𝐽2|
∑ ℎ(𝑦𝑗)

𝑗∈𝐽2

 

𝑦𝑗 = 𝑥𝑗 − 𝑠𝑖𝑛 (6𝜋𝑥1 +
𝑗𝜋

𝑛
) , 𝑗 = 2, … , 𝑛 

ℎ(𝑡) =
|𝑡|

1 + 𝑒2|𝑡| 

𝑆𝑒𝑎𝑟𝑐ℎ 𝑠𝑝𝑎𝑐𝑒 𝑖𝑠 [0, 1] × [−2, 2]𝑛−1 

UF5 

[28] 

𝑓1 =  𝑥1 + (
1

2𝑁
+ 𝜀) |𝑠𝑖𝑛(2𝑁𝜋𝑥1)| +

2

|𝐽1|
∑ ℎ(𝑦𝑗)

𝑗∈𝐽1

 

𝑓2 =  1 − 𝑥1 + (
1

2𝑁
+ 𝜀) |𝑠𝑖𝑛(2𝑁𝜋𝑥1)| +

2

|𝐽2|
∑ ℎ(𝑦𝑗)

𝑗∈𝐽2

 

𝑦𝑗 = 𝑥𝑗 − 𝑠𝑖𝑛 (6𝜋𝑥1 +
𝑗𝜋

𝑛
) , 𝑗 = 2, … , 𝑛 

ℎ(𝑡) = 2𝑡2 − 𝑐𝑜𝑠(4𝜋𝑡) + 1 

𝑆𝑒𝑎𝑟𝑐ℎ 𝑠𝑝𝑎𝑐𝑒 𝑖𝑠 [0, 1] × [−1, 1]𝑛−1 

UF7 

[28] 

𝑓1 =  √𝑥1
5 +

2

|𝐽1|
∑ 𝑦𝑗

2

𝑗∈𝐽1

 

𝑓2 =  1 − √𝑥1
5 +

2

|𝐽2|
∑ 𝑦𝑗

2

𝑗∈𝐽2

 

𝑦𝑗 = 𝑥𝑗 − 𝑠𝑖𝑛 (6𝜋𝑥1 +
𝑗𝜋

𝑛
) , 𝑗 = 2, … , 𝑛 

𝑆𝑒𝑎𝑟𝑐ℎ 𝑠𝑝𝑎𝑐𝑒 𝑖𝑠 [0, 1] × [−1, 1]𝑛−1 

 

 

In MLSGA the Pareto front is stored externally, and is 

used for illustrative purposes and to calculate the Inverted 

Generational Distance (IGD), but is not integral to the 

reproduction mechanisms. The biggest advantage of the 

approach is the fact that the mechanism allows for the use of 

any standard genetic algorithm mechanism at the individual 

level, though a simple mechanism is selected for early 

benchmarking. IGD is the performance measure function of 

Pareto front, which shows the average distance between all 

points in the true Pareto front and the closest solution from 

the achieved set and is calculated by (4); 

 

 

 𝐼𝐺𝐷(𝐴, 𝑃∗) =
∑ 𝑑(𝑣,𝐴)𝑣∈𝑃∗

|𝑃∗|
; (4) 

 
where P∗ is a set of uniformly distributed points along the 

Pareto front, in the objective space, A is an approximate set to 
the Pareto front and d(v, A) is the minimum Euclidean distance 
between v and the points in A. 

 

The test cases used are the unconstrained UF and 

constrained CF functions taken from the CEC ’09 

competition [28] and are shown in the Table II and Table III. 

The results are compared with other algorithms following the 

CEC ’09 competition rules [20], based on the calculated IGD 

values. 
 

 

 
 

 

 

TABLE III.  CONSTRAINED TEST CASES 

Test 

case 
Objective functions 

CF1 

[28] 

𝑓1 =  𝑥1 +
2

|𝐽1|
∑ (𝑥𝑗 − 𝑥1

0.5(1+
3(𝑗−2)

𝑛−2 )
)

2

𝑗∈𝐽1

 

𝑓2 =  1 − 𝑥1 +
2

|𝐽2|
∑ (𝑥𝑗 − 𝑥1

0.5(1+
3(𝑗−2)

𝑛−2 )
)

2

𝑗∈𝐽2

 

For all CF functions: 

𝐽1 = {𝑗|𝑗 𝑖𝑠 𝑜𝑑𝑑 𝑎𝑛𝑑 2 ≤ 𝑗 ≤ 𝑛} 

𝐽2 = {𝑗|𝑗 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑎𝑛𝑑 2 ≤ 𝑗 ≤ 𝑛} 

Constrain: 

𝑓1 + 𝑓2 − 𝑎|sin[𝑁𝜋(𝑓1 − 𝑓2 + 1)]| − 1 ≥ 0 

𝑆𝑒𝑎𝑟𝑐ℎ 𝑠𝑝𝑎𝑐𝑒 𝑖𝑠 [0, 1]𝑛 

CF2 

[28] 

𝑓1 =  𝑥1 +
2

|𝐽1|
∑ (𝑥𝑗 − 𝑠𝑖𝑛 (6𝜋𝑥1 +

𝑗𝜋

𝑛
))

2

𝑗∈𝐽1

 

𝑓2 =  1 − √𝑥1 +
2

|𝐽2|
∑ (𝑥𝑗 − 𝑠𝑖𝑛 (6𝜋𝑥1 +

𝑗𝜋

𝑛
))

2

𝑗∈𝐽2

 

Constrain: 

𝑡

1 + 𝑒4|𝑡| ≥ 0 

𝑡 = √𝑓1 + 𝑓2 − 𝑎 sin[𝑁𝜋(√𝑓1 − 𝑓2 + 1)] − 1 

𝑆𝑒𝑎𝑟𝑐ℎ 𝑠𝑝𝑎𝑐𝑒 𝑖𝑠 [0, 1] × [−1, 1]𝑛−1 

CF3 

[28] 

𝑓1 =  𝑥1 +
2

|𝐽1|
(4 ∑ 𝑦𝑗

2

𝑗∈𝐽1

− 2 ∏ 𝑐𝑜𝑠 (
20𝑦𝑗𝜋

√𝑗
)

𝑗∈𝐽1

+ 2) 

𝑓2 =  1 − 𝑥1
2 +

2

|𝐽2|
(4 ∑ 𝑦𝑗

2

𝑗∈𝐽2

− 2 ∏ 𝑐𝑜𝑠 (
20𝑦𝑗𝜋

√𝑗
)

𝑗∈𝐽2

+ 2) 

𝑦𝑗 = 𝑥𝑗 − 𝑠𝑖𝑛 (6𝜋𝑥1 +
𝑗𝜋

𝑛
) , 𝑗 = 2, … , 𝑛 

Constrain: 

𝑓1
2 + 𝑓2 − 𝑎 sin[𝑁𝜋(𝑓1

2 − 𝑓2 + 1)] − 1 ≥ 0 

𝑆𝑒𝑎𝑟𝑐ℎ 𝑠𝑝𝑎𝑐𝑒 𝑖𝑠 [0, 1] × [−2, 2]𝑛−1 

CF4 

[28] 

𝑓1 =  𝑥1 + ∑ ℎ𝑗(𝑦𝑗)

𝑗∈𝐽1

 

𝑓2 =  1 − 𝑥1 + ∑ ℎ𝑗(𝑦𝑗)

𝑗∈𝐽2

 

𝑦𝑗 = 𝑥𝑗 − 𝑠𝑖𝑛 (6𝜋𝑥1 +
𝑗𝜋

𝑛
) , 𝑗 = 2, … , 𝑛 

ℎ2(𝑡) = {
|𝑡|               𝑖𝑓 𝑡 <

3

2
(1 −

√2

2
)

0.125 + (𝑡 − 1)2  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

and   ℎ𝑗(𝑡) = 𝑡2 

Constrain: 

𝑡

1 + 𝑒4|𝑡| ≥ 0 

𝑡 = 𝑥2 − 𝑠𝑖𝑛 (6𝜋𝑥1 +
2𝜋

𝑛
) − 0.5𝑥1 + 0.25  

𝑆𝑒𝑎𝑟𝑐ℎ 𝑠𝑝𝑎𝑐𝑒 𝑖𝑠 [0, 1] × [−2, 2]𝑛−1 

CF5 

[28] 
𝑓1 =  𝑥1 + ∑ ℎ𝑗(𝑦𝑗)

𝑗∈𝐽1
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Test 

case 
Objective functions 

𝑓2 =  1 − 𝑥1 + ∑ ℎ𝑗(𝑦𝑗)

𝑗∈𝐽2

 

𝑦𝑗 = {
𝑥𝑗 − 0.8𝑥1𝑐𝑜𝑠 (6𝜋𝑥1 +

𝑗𝜋

𝑛
) 𝑗 ∈ 𝐽1

𝑥𝑗 − 0.8𝑥1𝑠𝑖𝑛 (6𝜋𝑥1 +
𝑗𝜋

𝑛
) 𝑗 ∈ 𝐽1

  

ℎ2(𝑡) = {
|𝑡|               𝑖𝑓 𝑡 <

3

2
(1 −

√2

2
)

0.125 + (𝑡 − 1)2  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

and   ℎ𝑗(𝑡) = 2𝑡2 − cos(4𝜋𝑡) + 1 

Constrain: 

𝑥2 − 0.8𝑥1𝑠𝑖𝑛 (6𝜋𝑥1 +
2𝜋

𝑛
) − 0.5𝑥1 + 0.25 ≥ 0  

𝑆𝑒𝑎𝑟𝑐ℎ 𝑠𝑝𝑎𝑐𝑒 𝑖𝑠 [0, 1] × [−2, 2]𝑛−1 

CF6 

[28] 

𝑓1 =  𝑥1 + ∑ 𝑦𝑗
2

𝑗∈𝐽1

 

𝑓2 =  (1 − 𝑥1)2 + ∑ 𝑦𝑗
2

𝑗∈𝐽2

 

𝑦𝑗 = {
𝑥𝑗 − 0.8𝑥1𝑐𝑜𝑠 (6𝜋𝑥1 +

𝑗𝜋

𝑛
) 𝑗 ∈ 𝐽1

𝑥𝑗 − 0.8𝑥1𝑠𝑖𝑛 (6𝜋𝑥1 +
𝑗𝜋

𝑛
) 𝑗 ∈ 𝐽1

  

Constrains: 

𝑥2 − 0.8𝑥1𝑠𝑖𝑛 (6𝜋𝑥1 +
2𝜋

𝑛
) − 𝑠𝑖𝑔𝑛(𝑘1)√|𝑘1| ≥ 0 

𝑥4 − 0.8𝑥1𝑠𝑖𝑛 (6𝜋𝑥1 +
4𝜋

𝑛
) − 𝑠𝑖𝑔𝑛(𝑘2)√|𝑘2| ≥ 0 

𝑘1 = 0.5(1 − 𝑥1) − (1 − 𝑥1)2 

𝑘2 = 0.25√1 − 𝑥1 − 0.5(1 − 𝑥1) 

𝑆𝑒𝑎𝑟𝑐ℎ 𝑠𝑝𝑎𝑐𝑒 𝑖𝑠 [0, 1] × [−2, 2]𝑛−1 

CF7 

[28] 

𝑓1 =  𝑥1 + ∑ ℎ𝑗(𝑦𝑗)

𝑗∈𝐽1

 

𝑓2 =  (1 − 𝑥1)2 + ∑ ℎ𝑗(𝑦𝑗)

𝑗∈𝐽2

 

𝑦𝑗 = {
𝑥𝑗 − 𝑐𝑜𝑠 (6𝜋𝑥1 +

𝑗𝜋

𝑛
) 𝑗 ∈ 𝐽1

𝑥𝑗 − 𝑠𝑖𝑛 (6𝜋𝑥1 +
𝑗𝜋

𝑛
) 𝑗 ∈ 𝐽1

  

ℎ2(𝑡) = ℎ4(𝑡) = 𝑡2 

and   ℎ𝑗(𝑡) = 2𝑡2 − cos(4𝜋𝑡) + 1 

Constrains: 

𝑥2 − 𝑠𝑖𝑛 (6𝜋𝑥1 +
2𝜋

𝑛
) − 𝑠𝑖𝑔𝑛(𝑘1)√|𝑘1| ≥ 0 

𝑥4 − 𝑠𝑖𝑛 (6𝜋𝑥1 +
4𝜋

𝑛
) − 𝑠𝑖𝑔𝑛(𝑘2)√|𝑘2| ≥ 0 

𝑘1 = 0.5(1 − 𝑥1) − (1 − 𝑥1)2 

𝑘2 = 0.25√1 − 𝑥1 − 0.5(1 − 𝑥1) 

𝑆𝑒𝑎𝑟𝑐ℎ 𝑠𝑝𝑎𝑐𝑒 𝑖𝑠 [0, 1] × [−2, 2]𝑛−1 

 

III. RESULTS 

The benchmarking is performed for different 

unconstrained two-objective functions, UF1-UF5 and UF7 

shown in Table II, with 30 variables each and for constrained 

problems, CF1-5 with 1 constraint and CF6-7 with 2 

constraints shown in Table III, with 10 variables each. For 

each function 30 separate runs have been performed, the 

stopping criteria is 300,000 function evaluations for each run, 

and the 100 best solutions are considered for the purpose of 

the IGD calculation; the average IGD value is presented in 

order to follow CEC’09 rules [20].  

The results for UF1-5 and 7 are found and the Pareto 

fronts are illustrated for the UF1, Fig 1, and for the UF2 

function Fig 2. UF1 and UF2 functions are chosen as they 

provide results representative of the worst and the best cases 

for the unconstrained functions.  

For UF1 function the Pareto fronts show that all the 

variants were able to reach the true Pareto front but were 

unable to find a range of values. MLS2 and MLS2R found a 

wider variety of points along the true Pareto front than MLS1 

although most of them were far from it. 

Better performance can be observed on the UF2 problem, 

Fig. 2.  In this benchmark all variants, were able to reach the 

front and to develop a diverse range of points. However, even 

in the best case of MLS2R, only half of the front is explored. 

 

 
Fig. 1. Pareto front of MLSGA variants on UF1 function 

 

 

 
Fig. 2. Pareto front of MLSGA variants on UF2 function 
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The process is repeated for the constrained CF1-7 

functions. CF1 Fig 3, and CF3, Fig 4, are chosen as they 

illustrate the worst and the best cases for the constrained test 

set. 

The obtained results show that all MLSGA variants 

perform similarly; they were all able to reach the true Pareto 

front, and find a diverse range of points. However, the 

algorithm lacks accuracy for the border values of Pareto 

front, and concentrates its search on the middle. 

The worst performance is observed on the CF3 test 

instance, Fig 4, where MLSGA was not able to reach the 

front, and only gets close to it in the best case. For this 

function, as for the other CF functions, all variants perform 

similarly. 

 

 
Fig. 3. Pareto front of MLSGA variants on CF1 function 

 
Fig. 4. Pareto front of MLSGA variants on CF3 function 

 

The results of the three variants of MLSGA are compared 

to each other and to the other algorithms from CEC ’09 [20]. 

The rankings are presented for unconstrained test cases in 

Table IV for UF1-3, in Table V for UF 4,5 and 7, and for 

constrained functions CF1-4, Table VI, and CF5-7, Table 

VII.  

TABLE IV.  MLSGA IN CEC’09 RANKING ON TWO-OBJECTIVE 

UNCONSTRAINED UF1-3 PROBLEMS 

Rank 
Name/Average IGD 

UF1 UF2 UF3 

1 
MOEA/D 

0.00435 

MTS 

0.00615 

MOEA/D 

0.00742 

2 
GDE3 

0.00534 

MOEA/D-GM 

0.0064 

LiuLi 

0.01497 

3 
MOEA/D-GM 

0.0062 

DMOEA-DD 

0.00679 

DMOEA-DD 

0.03337 

4 
MTS 

0.00646 

MOEA/D 

0.00679 

MOEA/D-GM 

0.049 

5 
LiuLi 

0.00785 

OW-MOSaDE 

0.0081 

MTS 

0.0531 

6 
DMOEA-DD 

0.01038 

GDE3 

0.01195 

Clustering 

MOEA 

0.0549 

7 
NSGA II LS 

0.01153 

LiuLi 

0.0123 

AMGA 

0.06998 

8 
OW-MOSaDE 

0.0122 

NSGA II LS 

0.01237 

DECMOSA-SQP 

0.0935 

9 

Clustering 

MOEA 

0.0299 

AMGA 

0.01623 

MOEP 

0.099 

10 
AMGA 

0.03588 

MOEP 

0.0189 

OW-MOSaDE 

0.103 

11 
MOEP 

0.0596 

Clustering 

MOEA 

0.0228 

NSGA II LS 

0.10603 

12 
DECMOSA-SQP 

0.07702 

DECMOSA-SQP 

0.02834 

GDE3 

0.10639 

13 
OMOEA II 

0.08564 

OMOEA II 

0.03057 

OMOEA II 

0.27141 

14 
MLS2R 

0.205 

MLS2 

0.105 

MLS1 

0.401 

15 
MLS1 

0.213 

MLS1 

0.156 

MLS2R 

0.438 

16 
MLS2 

0.223 

MLS2R 

0.176 

MLS2 

0.447 

TABLE V.  MLSGA IN CEC’09 RANKING ON TWO-OBJECTIVE 

UNCONSTRAINED UF4-7 PROBLEMS 

Rank 
Name/Average IGD 

UF4 UF5 UF7 

1 
MTS 

0.02356 

MTS 

0.01489 

MOEA/D 

0.00587 

2 
GDE3 

0.0265 

GDE3 

0.03928 

LiuLi 

0.0073 

3 
DECMOSA-SQP 

0.03392 

AMGA 

0.09405 

MOEA/D-GM 

0.0076 

4 
AMGA 

0.04062 

LiuLi 

0.16186 

DMOEA-DD 

0.01032 

5 DMOEA-DD DECMOSA-SQP MOEP 
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Rank 
Name/Average IGD 

UF4 UF5 UF7 

0.04268 0.16713 0.0197 

6 
MOEP 

0.0427 

OMOEA II 

0.1692 

NSGA II LS 

0.02132 

7 
LiuLi 

0.0435 

MOEA/D 

0.18071 

Clustering 

MOEA 

0.0223 

8 
OMOEA II 

0.04624 

MOEP 

0.2245 

DECMOSA-SQP 

0.02416 

9 
MOEA/D-GM 

0.0476 

Clustering 

MOEA 

0.2473 

GDE3 

0.02522 

10 
OW-MOSaDE 

0.0513 

DMOEA-DD 

0.31454 

OMOEA II 

0.03354 

11 
NSGA II LS 

0.0584 

OW-MOSaDE 

0.4303 

MTS 

0.04079 

12 

Clustering 

MOEA 

0.0585 

NSGA II LS 

0.5657 

AMGA 

0.05707 

13 
MOEA/D 

0.06385 

MLS2 

0.696 

OW-MOSaDE 

0.0585 

14 
MLS2R 

0.0881 

MLS1 

0.733 

MLS1 

0.398 

15 
MLS1 

0.0882 

MLS2R 

0.767 

MLS2 

0.410 

16 
MLS2 

0.103 

MOEA/D-GM 

1.7919 

MLS2R 

0.412 

 

The unconstrained rankings show that all the MLSGA 

variants are outperformed by all other algorithms on almost 

all of the functions, except UF5 where MOEA/D-GM is the 

worst; additionaly in this case the MLS2 variant is not far 

from the NSGA II LS. Interesingly all MLS varaints show 

similar performance in all tests, and it’s hard to distinguish 

which one is better, which is in contradiction with previous 

research on the simpler ZDT functions, where on these 

simpler functions MLS2R variant strongly outperforms the 

others and MLS1 provides poor diversity of points. 

For the constrained ranking, the results are more 

promising. In this case MLSGA variants are outperformed by 

all other algorithms only on the CF1 and CF4 benchmark. 

However, MLS2R is better than both DECMOSA and 

MOEA/D-GM on CF3 and CF5; MLS1 outperforms these 

algorithms on CF5 and CF6. Again all the MLSGA variants 

have similar performance, but MLS1 is slightly better, which 

is surprising in comparison to the unconstrained ZDT 

functions, where the MLS1 algorithm lacks the diversity of 

points to get a low IGD value. 

The detailed Pareto front results show that MLSGA is 

unable to properly find the whole Pareto front, however it is 

able to reach it and explore it partially, providing promising 

results at this stage, especially for constrained problems. The 

current algorithm only implements simple genetic algorithm 

mechanics at the individual level and the collective level 

mechanics are at an early stage of development but is already 

outperforming some leading algorithms on a range of state-

of-the-art problems. 

TABLE VI.  MLSGA IN CEC’09 RANKING ON TWO-OBJECTIVE 

CONSTRAINED CF1-4 PROBLEMS 

Rank 
Name/Average IGD 

CF1 CF2 CF3 CF4 

1 
LiuLi 

0.00085 

DMOEADD 

0.0021 

DMOEADD 

0.056305 

DMOEADD 

0.00699 

2 
NSGAIILS 

0.00692 

LiuLi 

0.0042 

MTS 

0.10446 

GDE3 

0.00799 

3 
MEOADGM 

0.0108 

MEOADGM 

0.008 

GDE3 

0.127506 

MTS 

0.01109 

4 
DMOEADD 

0.01131 

NSGAIILS 

0.01183 

LiuLi 

0.182905 

LiuLi 

0.01423 

5 
MTS 

0.01918 

GDE3 

0.01597 

NSGAIILS 

0.23994 

NSGAIILS 

0.01576 

6 
GDE3 

0.0294 

MTS 

0.02677 

MLS2R 

0.435 

MEOADGM 

0.0707 

7 
MLS2R 

0.0872 

DECMOSA 

0.0946 

MEOADGM 

0.5134 

DECMOSA 

0.15265 

8 
MLS1 

0.0933 

MLS1 

0.160 

MLS1 

0.522 

MLS1 

0.332 

9 
MLS2 

0.0996 

MLS2R 

0.164 

MLS2 

0.633 

MLS2R 

0.348 

10 
DECMOSA 

0.10773 

MLS2 

0.1829 

DECMOSA 

1000000 

MLS2 

0.387 

 

TABLE VII.  MLSGA IN CEC’09 RANKING ON TWO-OBJECTIVE 

CONSTRAINED CF5-7PROBLEMS 

Rank 
Name/Average IGD 

CF5 CF6 UF7  

1 
DMOEADD 

0.01577 

LiuLi 

0.013948 

DMOEADD 

0.01905 

2 
MTS 

0.02077 

DMOEADD 

0.01502 

MTS 

0.02469 

3 
GDE3 

0.06799 

MTS 

0.01616 

GDE3 

0.04169 

4 
LiuLi 

0.10973 

NSGAIILS 

0.02013 

LiuLi 

0.10446 

5 
NSGAIILS 

0.1842 

GDE3 

0.06199 

NSGAIILS 

0.23345 

6 
MLS1 

0.390 

MLS1 

0.141 

DECMOSA 

0.26049 

7 
MLS2R 

0.393 

DECMOSA 

0.14782 

MLS2R 

0.522116 

8 
DECMOSA 

0.41275 

MEOADGM 

0.2071 

MEOADGM 

0.5356 

9 
MLS2 

0.426 

MLS2 

0.502 

MLS1 

0.538741 

10 
MEOADGM 

0.5446 

MLS2R 

2.746 

MLS2 

0.571981 
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IV. DISCUSSION 

The results show that MLSGA provides promising results 

on complex two-objective problems, representing the current 

state-of-art. On all the test cases, each MLSGA variant has a 

similar performance and is able to reach the true Pareto front, 

in some cases with a good diversity of points. This increases 

the performance of the classic genetic algorithm, on which 

the current version of MLSGA is based, to compete with 

current state-of-the-art genetic algorithms. Lack of a 

substantial difference between MLS2 and MLS2R was 

predictable as all UF and CF test cases have similar 

complexity for both f1 and f2. This is different from the ZDT 

functions tested on previously where performance between 

the variants showed a large difference, but these functions are 

less well balanced between objectives. More interesting is the 

similarity in performance between MLS1 and MLS2 variants, 

which also differs from the previous results. The authors 

suggest that the reason behind this is that the UF test 

problems are too complex for the current, simple version of 

MLSGA and both variants are struggling in finding the 

proper solutions. MLS1 results have previously shown poor 

diversity of solutions whereas MLS2 finds a diverse range of 

solutions once the front is found. In these cases, the front is 

more difficult to find so the MLS2 variant is not able to create 

a spread of results, showing similar performance to MLS1.   

 MLSGA is based on simple principles and thus further 

work is necessary. Possible methods to improve the 

performance are to develop the new collective evolutionary 

mechanism, which is underdeveloped compared to individual 

level mechanisms, and employ better performing methods 

than the simple classic GA mechanisms. The authors suggest 

to incorporate top individual mechanisms, such as MOEA/D, 

NSGAII and DMOEA-DD into MLSGA for even greater 

gains in performance. Other approaches could be 

implementation of local search methods such as MTS into 

collective reproduction mechanisms, and the introduction of 

different MLS types and fitness definitions into each 

collective, where some collectives in one run can utilise 

MLS1 and others MLS2 or MLS2R, for wider area searches. 

Additionally, the authors suggest that the MLSGA approach 

may be more successful on other kind of problems including: 

multi-level functions, noisy and dynamic problems, where 

the split in fitness function and population may lead to 

increased performance.  

V. CONCLUSION 

There are a number of different approaches to improve 

performance of genetic algorithms. This paper implements a 

novel bio-inspired mechanism, based on modern theories of 

evolution, multi-level selection. A simple genetic algorithm 

is used at the individual level and an initial, novel, collective 

level mechanism is implemented; these are benchmarked on 

CEC’09 test problems and compared with current state-of-art 

competitors. Interestingly all variants are able to reach the 

true Pareto front and show similar performance to each other. 

The developed algorithm needs further improvements, 

however the current mechanisms are simple and it is 

proposed to introduce more complex individual reproduction 

from the current state-of-art to improve performance.  
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