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I. ABSTRACT 

An algebraic model for an unknown, nonlinear, MISO 
(multiple input, single output) system is derived from a 
table of the system’s input and output values. Genetic 
programming is used to find a model that is optimal (or 
nearly optimal) with respect to a nonlinear performance 
index. In order to apply genetic programming to this task, 
an encoding strategy to represent the model is devised. 
Then, specialized genetic operators are defined to refine 
the solution. The technique is shown to produce a good 
model for a simple nonlinear example having two inputs 
and one output. 

11. INTRODUCTION 

Model identification for unknown systems (“black 
boxes”) has been the focus of much investigation [ 11. This 
paper uses genetic programming [2,3,4,5] to model an 
algebraic, nonlinear, time-invariant system based on its 
input-output data. To illustrate the technique, a model is 
found for the widely published wind chill table 161, which 
is a static system that defines one output (apparent 
temperature) in terms of two inputs (actual temperature 
and wind speed). This simple example has been chosen to 
demonstrate some of the design issues involved in using 
genetic programming for this purpose. 

111. PROBLEM STATEMENT 

In order to derive an algebraic model for the system, the 
system’s output to some set of input values (a “training 
sequence”) must be known. For a physical system, this 
information can be measured directly. In choosing the 
amount of input-output data to use for this proce@re, it is 
desirable to represent as wide a range of possibilities for 
the input variables as possible. A model based on too little 
data may not accurately represent the system’s response. 

For notational purposes, let the input-output pairs be 
numbered sequentially, such that Uk is the Ph input vector 
Of the unknown system, and yk is the corresponding output. 
Given uk and yk, it is desired to find a nonlinear function h, 
such that 
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for all k. In general, it is impossible to fmd a function h 
that satisfies (1) exactly. Instead, the model having the 
best possible fit is sought. To measure the quality of fit for 
a particular model, the fitness function is chosen to be 
based on the L, norm [7,8] of the error: 

- 1 1 - 
l+llfDZ l + c l f D Z  ( e k  )I (2) 

k 

where the output error ek is defined as 
A 

ek = Y k  - Y k  (3) 

and where f k  is the model’s estimate of Yk. The dead- 
zone function is defined as 

[x-UB, x > U B  
0, L B I x S U B  

X-LB,  x < L B  
(4) 

where UB and LB are respectively the upper and lower 
bounds of the dead zone. By setting UB and LB 
respectively equal to the upper and lower bounds of the 
additive measurement error, the dead-zone function is used 
to penalize the error only when it exceeds the measurement 
noise in the data. Any error on the same order of 
magnitude as measurement noise is ignored. 

The fitness hnction in (2) is structured to transform an 
error E [ O p )  into a fitness value E (0,1]. From (2), an 
error of zero corresponds to a fitness of 1, and an infinite 
error maps to a fitness of zero. 

IV. PROBLEM SOLUTION 

This section provides a brief introduction to genetic 
programming, lists the s and weaknesses of this 
technique, discusses th of encoding strategy, and 
defines the genetic operators used. The selection of the 
encoding strategy determines exactly how the candidate 
solutions (in this case, the function h) are represented in 
the population. The genetic operators are a predetermined 
set of rules designed to combine information from 
individual candidates. An intelligent choice of data 
structures and genetic operators will speed the algorithm’s 
convergence. Thus, the main contribution of this work is 
the choice of genetic operators and encoding strategy that 
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allow the determination of an analytic model for the wind 
chill table. 

A. Introduction to Genetic Programming 
Genetic programming (GP) and genetic algorithms 

(GAS) [2,3,4,5] are iterative optimization techniques based 
on artificial intelligence. These methods are based on 
Darwin’s survival of the fittest hypothesis. Genetic 
algorithms are a special case of genetic programming. 
While a genetic algorithm manipulates lists of numbers, 
genetic programming uses more complicated data 
structures. In some applications, GP is used to choose 
among several modules of executable computer code [4]. 
For the wind chill problem, the GP is used to manipulate 
algebraic functions. The data structures and genetic 
operators used in solving the wind chill problem will be 
explained in greater detail later. 

With both GP and GA, candidate solutions to a problem 
are represented as individual members of a population. 
For the wind chill problem, each member of the population 
represents a possibility for the input-output function h. 
Each candidate model is simulated, and the model’s 
simulated output is compared to the actual system’s output. 
As the generations progress, the candidate solutions are 
refined until convergence is reached. 

Although the initial population can be a random 
collection of individuals, the individuals interact and breed 
to form future generations. Stronger individuals reproduce 
more often than do weaker individuals. Presumably, the 
population will get collectively stronger as generations 
pass and weaker individuals die out. The quantitative 
application of these basic ideas to an actual algorithm is a 
combination of science and art. 

In a genetic optimization problem, the objective is to 
maximize a piness finction. The fimess is calculated for 
each member of the population, and some individuals are 
selected to survive into the next generation. Under 
roulette-wheel selection [4,5], a function’s probability of 
survival is directly proportional to its fimess value. The 
selection operation forms the next generation of solutions 
by copying randomly chosen survivors from the previous 
generation. It is possible that some very fit functions 
might be copied into the next generation more than once 
(cloning), while some unfit functions might not be copied 
at all (death). Because of the probabilistic nature of this 
selection mechanism, it is also possible for the best 
solution to be passed over and not be chosen for survival. 
This work uses elitism (the automatic copying of the best 
solutions to the next generation) [4,5] to guarantee that the 
best solution will always survive. 

Once the new generation of candidate solutions is 
formed, genetic operators are used to combine information 
from various candidate solutions. The operators used here 
are discussed in a later section, but most operators are a 
variation on the themes of crossover or mutation. Genetic 
crossover operators simulate breeding by selecting 
“parents” and combining them using specified rules to 
form “children” which include some information from 

each parent. The choice of crossover operator depends on 
the problem being optimized and the structure of the 
candidate solutions. Mutation (randomly changing some 
members of the population) [5 ]  is used to introduce 
diversity into the population and to help avoid convergence 
to a local (rather than global) maximum of the fitness 
function. As another way to introduce diversity, a few 
completely random individuals are placed in the population 
during each generation. 

B. Strengths & Limitations of Genetic Programming 
Genetic Programming has the ffollowing advantages 

over conventional optimization techniques: 
1. 

2. 

3. 

4. 

5.  

6. 

Because of its iterative, evolutionary nature, GP can 
optimize with respect to a nonlinear, analytically 
intractable performance index. 

GP does not require a differentiable performance 
index. Thus, this research is not restricted to using the 
least-square error criterion. 

GP can readily enforce constraints on the solutions. In 
contrast, enforcing constraints using conventional 
techniques can result in an intractable set of partial 
differential equations to be solved. 

If some information is already known about the 
problem (such as a heuristic way of solving the 
problem), GP can use that information by including in 
the initial population candidate solutions reflecting 
that information. 

Because GP maintains a population of potential 
solutions, it is less susceptible than other optimization 
methods to becoming trapped in 8 local optimum. 
The structure of the optimization technique can 
become more or less complicated to match the 
complexity of the problem. If a problem consists only 
of fmding the best set of parameters, the full tree 
structure of GP is unnecessary. In this case, genetic 
programming reduces to a genetic algorithm. 

These advantages give GP great flexibility in modeling. 
However, like any computation technique, GP has its 
limitations. Two important limitations of GP (and how to 
lessen their impact) are: 
1. 

2. 

Computational eflort required GP can require the 
evaluation of thousands of candidate solutions before 
converging on the best solution. The wind chill 
problem is simple enough that this is not really a 
factor. Complicated modeling problems would have 
to be solved off-line, rather than h real-time. 

Di&Gculty in Choosing a Stopping Criterion It is 
sometimes difficult to determine whether the GP 
algorithm has found the optimal solution. Although 
GP is less susceptible to getting trapped in a local 
(rather than global) optimum than other techniques 
such as hill climbing or simulated annealing [4,5], 
converging to a suboptimal solution is still possible. 
Increasing the population size, evolving the population 
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for more generations, or increasing the amount of 
mutation in the population can counteract suboptimal 
convergence. In other words, it is difficult to 
determine whether or not the algorithm should 
continue searching for a better solution. Sometimes, 
an arbitrary choice of stopping criterion is made (such 
as iterating for a set number of generations) and then 
the answer is subjectively judged as to whether it is 
sufficiently accurate. 

Note that GP is not generally used for problems easily 
optimized using conventional techniques. For difficult 
optimization problems such as nonlinear modeling, the 
power and flexibility of GP outweigh the limitations. 

C. Encoding Strategy for the Wind Chill Problem 
As stated earlier, the GP solutions represent the input- 

output function h(u). However, the candidate fimctions 
that estimate h are not stored directly in the population. If 
the candidates were stored in the population without regard 
to mathematical structure, a great deal of computational 
effort would be used to discard solutions that fit the data 
poorly. Instead, an interpolation technique inspired by the 
finite-element method [9] of solving differential equations 
is used. The basic premise is that a function of n 
independent variables can be rewritten as a systematic, 
nonlinear combination of n scalar functions, one for each 
variable. Since the interpolation technique constrains the 
estimate to pass exactly through four of the data points, a 
separate step is used to introduce some error at these data 
points, in order to reduce the error at the other points. The 
wind chill problem demonstrates the technique. 

The wind chill problem’s input-output function h has 
two independent variables, actual temperature and wind 
speed. Graphically, let the inputs be the basis for the xy- 
plane, and let the output (wind chill temperature) be 
represented by z, the elevation above the plane. Let the x 
and y axes in the plane be scaled and translated so that 
each independent variable is mapped onto the interval 
[0,1]. The mapping used here is 

t 
70 

x = 0.5 -- w-5 
Y=- 40 

where &[-35,35] is the temperature in O F  and we[5,45] is 
the wind speed in miles per hour. Other mappings are also 
acceptable, provided that the mapping is one-to-one 
between the original data interval and the interval [O,l]. 

Let f(x) and g(yl be scalar functions of one variable that 
pass through (0,O) and (1,l). That is, f(O)=O, f(l)=l, 
g(O)=O, and g( 1)=1. Then the following relation betweenf; 
g, and h ensures that the function h passes through the four 
data points corresponding to the comers of the unit square 
in the xy-plane: 

(6) 

where qxy) is the measured output corresponding to the 
input pair (x,y). Note the behavior of these four terms at 
the comers of the unit square, where (x,y) E {(O,O), (O,l), 

4 x 9  Y )  = S(x)g(Y)z(, , ,  + S ( X ) [ l -  g(.Y)lz(l,o) 

+ [1 - f(x)lg(Y)z(o,,, + 11 - f(x)l[l-  g(Y)l~(o,,, 

(1,0), (1,I)l. For any (xl,yl) in this set (that is, at a 
comer), the term corresponding to (x,,yl) is multiplied by 
1, while the other three terms are multiplied by 0. For 
example, suppose that (xi,y,)=(O,l). Thus, f(xl)=O and 
g(yl)=l, because these functions are constructed to pass 
through (0,O) and (1,l). Therefore, any term multiplied by 
f(x) is multiplied by 0 when evaluated at x=xi=O, and any 
term multiplied by [I-g(y)] is multiplied by 0 when 
evaluated at y=yl=l. The only remaining term is q o . ~ ) ,  
which is multiplied by 1, 

Thus, the form of (6)  constrains the function h to pass 
exactly through the data corresponding to the four comers 
of the unit square. For input pairs in the interior of the unit 
square, the effect of this equation is to interpolate the data. 
The shape of the interpolation is determined by the shapes 
of f(x) and g(y>. As an illustration, assume that f(x) =x and 
g(yl=y. The coefficient of qo,l) is then (I-x)y, which is 
graphed in Figure 1. 

1 

I c 
Q1 .- 

$ 0.5 
0 
0 

0 
1 

I 

Figure 1. Coefficient for qo,l) 

The coefficient exhibits a smooth transition from 
(x,y)=(O,l), where it equals 1, to the other three comers, 
where it equals 0. The portion of the graph that is hidden 
from view in Fig. 1 is symmetrical to the portion shown. 
An analogous transition occurs for the other three 
coefficients. From (6),  the final estimate is a linear 
combination of four graphs like that in Fig. 1. 

However, for the wind-chill modeling problem, it is not 
desired to constrain the model to be exact at th 
comers. Instead, it is desired to allow some error 
four comers, if allowing this error reduces the error 
elsewhere in the square and improves the overall fitness of 
the solution. Thus, a perturbation is added to each data 
value in (6), giving 
w, Y )  = f ( M Y ) [ ~ ( l , l ,  +c, I+ f(x)[l -g(Y)l[~( , ,o ,  + c* 3 (7) 
+ I1 - f(x)lg(Y)[z,o, , ,+ c3 1 +U - f(x)IU- g(Y)l[z(,,,,)+ c* 1 

where the perturbations are parameters found by the GP 
algorithm to optimize the fitness of the solution. 

To use this technique, the GP maintains three separate 
populations, one each forf, g, and c,. The corresponding 
elements of these populations are then combined according 
to (7) to form h. The initial population is chosen 
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randomly. For each individual in the population, the 
function f(x) is randomly chosen from the set {x, 2x-x2, 
[ 1 -exp(ax)]/[ I-exp(u)]), and the function g(u) is randomly 
chosen from a similar set of functions in y. These 
functions were heuristically chosen because of their 
simplicity and their resemblance to the data. Of course, 
more functions could have been added to the set if 
warranted by the problem structure. The parameter a in 
the exponential form is randomly chosen to be a positive 
number. Note that this function has been scaled to pass 
through (1,l). The perturbation values, ci in (7), are all 
initially set to zero. 

D. Genetic Operators for the Wind Chill Problem 
The wind chill model is optimized through the use of 

four kinds of crossover operator and two kinds of 
mutation. The crossover operators are binary operators 
designed to exchange information between two candidate 
solutions (“parents”). Each operator defines a way to form 
two “children” by combining pieces of each parent. The 
children replace their parents in the population. In 
contrast, the mutation operators are unary operators 
designed to provide a mechanism for changing the 
structure of a candidate solution. All crossover and 
mutation operators are constructed so that the new 
candidate solutions produced have component functions (f 
and g) that continue to pass through (0,O) and (1,l). 
Furthermore, to prevent these operators from destroying 
good solutions, elitism guarantees that a predetermined 
number of the best solutions are guaranteed to survive into 
the next generation. 

“parents” whose input-output relation is given in (7). 
Simple crossover breaks these pairs and re-distributes the 
halves. Thus, it defines the children as (f1(x),&(y)} and 
{ f2(x),gl(y)). Arithmetic crossover [4] randomly selects an 
independent variable and performs a weighted average of 
the corresponding parts of the parents. If x were chosen 
for this operation, the children would become 
{[afi(x)+(l-a)f2(x)l,gi(~)) and {[(I-~)~I(x)+~~~(x)I,~z(U)). 
The parameter a is a random scalar between 0 and 1. 

In order to allow the algorithm to build complicated 
finctions fkom simple pieces, composition and 
multiplication (two additional crossover operators) are 
defined. Each of these operators randomly chooses an 
independent variable and combines the corresponding parts 
of the candidates. If x were chosen for composition, the 

x were chosen for multiplication, the children would be 

Two mutation operators are used to provide a way for 
the algorithm to escape from a local (rather than global) 
optimum. The scaling operator multiplies one of the 
candidate solution’s independent variables by a constant, a. 
The value of a is determined by successively setting a 
equal to values in the set {S, .75, .9, -95, .995, 1, 1.005, 
1.05, 1.1, 1.5, 2) and keeping the one producing the 
solution with the highest fitness. If y were chosen for 

Let {fl(x),gl(y)) and {f2(x)&(y)) represent 

children would be {fl(f2(x)),gl(y)) and {f2(fdx)),g2W. If 

{ I(x)f2(x))9g I(Y) and {fl(x)f2(X))&(Y)) * 

scaling, {fi(x),gl(y)} would be replaced by 
{fl(x),gday)/gl(a)). This operation i,s especially useful for 
optimizing curvature of nonlinear functions such as 
parabolas or exponential functions. This operator has no 
effect on a linear function, because the parameter a cancels 
out of the quotient. Because of this observation and the 
fact that the algorithm was observed to set f(x) equal to x, 
the scaling operator is only applied to y for this wind chill 
problem. The other mutation operator, reflection, reflects 
of one of the candidate’s component jhctions with respect 
to a straight line. If x were chosen for reflection, 
{fdx),gdy)) would be replaced by {[:lx-fl(x)],g~(y)). 

Although the perturbation values, ci in (7), are all 
initially set to zero, the algorithm searches for the best 
values whenever a new solution is generated. The 
algorithm searches the possibilities of adding each member 
of the set (-0.5, -0.25, -0.1, 0, 0.1, 0.25, 0.5) to the 
current value of each ci. Each q is examined separately. 
Thus, each search examines 4x7 = 28 possibilities. 

Since the GP algorithm randomly selects when to use 
these crossover and mutation operators, a probability of 
choosing each operator must be defined. For the wind chill 
problem, these probabilities are chosein heuristically. 

V. RESULTS 

A population of 24 functional foims was evolved for 
200 generations. Since the wind chill table is rounded to 
the nearest 1”F, the dead zone’s upper and lower bounds in 
(4) are set to UB=0.5 and LB- -0.5 to reflect the 
measurement error. The probability of each genetic 
operator is given in Table 1. 

Table 1. Probability of Each Genetic Operator 

Ouerator Probabilitv 
~ ~~~ 

Simple Crossover 0.80 
Arithmetic Crossover 0.15 
Composition 0.15 
Multiplication 0.10 
Scaling 0.20 
Reflection 0.15 

The best input-output relation found was 

f (x) = x 

[c, c2 c3 ~,]=[0.80 -0.05 0.10 0.201 
g(x) = 1 .OS9 [l - exp(-2,889y)] 

The fitness of this final solution is 01.4971. From (7), the 
final estimate of the input-output relation simplifies to 

(9) h(x ,y)  =0.1142-113.3x 
+ [32.09 + 39.13 x] exp(-2.889y) 
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Using (5) gives the input-output relation in terms of t 
and w, which are temperature (“F) and wind speed (mph), 
respectively: 

(10) h(t,w) = -56.52 + 1.618t 
+ [ 74.11 - 0.8021 t 3 exp(-0.07223 w) 

The estimated and actual input-output relations are 
graphed in Fig. 2 .  

40 

Actual Temperature (‘F) Wind speed (mph) 

Figure 2. Comparison of Actual (Shaded) and 
Estimated (Unshaded) Wind Chi11 Curves 

In the shaded regions of Fig. 2, the actual curve is 
visible because it is higher (more positive) than the 
estimate. In the unshaded regions, the estimate is more 
positive curve and therefore visible. Although the two 
surfaces are not exactly coincident, the difference between 
them is small. In fact, the surfaces never differ by more 
than 1.5”F. 

In an attempt to ascertain whether the solution in (IO) is 
optimal, the improvement in fitness as the generations 
progress is shown in Figure 3.  

3 100 150 200 
50 

Generation 
OO 

Figure 3. Fitness of Each Generation’s Best Solution 

Most of the improvement in the fitness of the solution 
was achieved in the first 10 generations, and no 
improvement occurred after 78 generations. The fact that 
the final 122 generations could not improve this solution 
suggests, but does not prove, that this solution is optimal. 

This suggestion, together with the fact that the estimate is 
never more than 1.5”F in error, provides motivation to 
accept (10) as an analytic model for the wind chill table. 

VI. CONCLUSION 

The wind chill example presented here demonstrates the 
ability of GP to fmd a ear model of an algebraic 
system. Although the chill example is a simple 
problem, it demonstrates the need for an intelligent choice 
of encoding strategy and genetic operators to improve 
convergence of the algorithm. Thus, the techniques 
outlined here are applicable to nonlinear system modeling. 
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