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Abstract—This paper deals with program optimization, i.e.,
learning of more efficient programs. The programs we want
to improve are Z3 solving strategies. Z3 is a SMT (SAT
Modulo Theory) solver which is currently developed by Microsoft
Research. We define strategy generators based on evolutionary
processes. SMT solving strategies include various aspects that
can affect the performance of a SMT solver dramatically.Each
of these elements includes a huge amount of options which cannot
be exploited without expert knowledge. We define a generic
evolutionary algorithm based on genetic programming concepts.
This strategy generation process aims at learning better strategies
by successive improvements, using rules that can be combined in
order to handle both structures and parameters of the strategies.
We experiment 7 different strategies generators on 2 SMT logics
(QF_LRA,QF_LIA). The results show that the learned strategies
improve default strategies available in the solver.

Keywords : Program optimization; Genetic Programming;
SAT modulo theory; Strategy Generation; Learning

I. INTRODUCTION

Program optimization is the process of modifying a program

to make some aspects of it work more efficiently or use fewer

resources (for example, a program may be optimized so that

it executes more rapidly, or with less memory).
SAT Modulo Theories (SMT) is a generalization of the

famous satisfaction problem (SAT) for logical formulas over

one or more theories: Boolean variables may be replaced by

formulas expressed over different theories (e.g., real arith-

metic, arrays, ...) in order to validate a logical formula. For

instance, ∀x∃y ((x > 1) ∨ (y < 0)) ∧ (x + y = 0) is a

formula over linear integer arithmetic with quantified variables

(see [8] for a recent survey). Hence, an SMT solver usually

needs to combine several algorithms and components in order

to improve proof efficiency: a solving strategy (i.e., a program)

defines how to select and use these solving components. The

SMT-LIB standard introduces the concepts of Theories and

Logics in order to classify problems: a problem belongs to a

logic; a logic refers to some theories. Z3 [2] from Microsoft

Research is one of the most famous SMT system.

In this paper, we want to optimize Z3 solving strategies in

order to solve more problems, and if possible, more quickly.

In some previous work [9], we used techniques issued from

automated parameter tuning [4], [6] to optimize some given

strategies. We obtained good results when restricting the

scope of strategy transformation to mainly changing numerical

parameters and ordering of solvers in a sequence). The strategy

space is considerably huge with regards to classic parameter

tuning tasks: a program must be learned/modified/optimized,

some components must be selected, and some value parame-

ters must be tuned. These tools allow users to exert strategic

control over core heuristic aspects of high-performance SMT

solvers, a challenge that has been pointed out in [3].

We thus propose a strategy generation process based on

evolutionary computation techniques that aim at learning better

strategies by successive improvements. This automated strat-

egy generation process has to take into account the following

components:

1) an evolutionary algorithmic engine that generates and

evaluates strategies in order to converge to a strategy

that improves solver performances on a given set of

SMT instances (mainly in terms of number of solved

instances in a given time, i.e., in the conditions of the

SMT Comp [1]) ;

2) a set of rules that are used to build and/or modify

strategies within the previous algorithmic engine; some

of these rules modify the structure of the strategies

(i.e., change the program) whereas other rules focus on

parameter values management;

3) an initial strategy since the search space is huge and

starting from scratch may often be intractable; here, we

start from Z3 default strategies;

In this paper, we propose a generic evolutionary algo-

rithm. Its components (and the rules it can manage) are

then instantiated in order to obtain several strategy gener-
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ators/optimizers. We experimented 7 generators on 2 SMT

logics (QF_LRA,QF_LIA). The results show that the learned

strategies improve initial strategies.

II. Z3 SOLVING STRATEGY LANGUAGE

The Z3 solving strategy language is defined by a grammar

whose terminals may be: solvers to check the satisfiability of

a formulas over some theories, probes to check properties of

formulas, heuristics to split a problem into a sequence of sub-

problems, and (numeric or symbolic value) parameters to con-

trol the behaviour of strategies. These components are linked

by operators such as try-for or using-params to assign

parameters to sub-strategies (for instance a running time or a

random seed), and combinators such as and-then (a kind

of conjunction of the results of sub-strategies) and or-else
(a kind of disjunction of the result of sub-strategies) for

combining sub-strategies. Fig. 1 shows a strategy with solvers

(e.g., sat or smt), a probe (fail-if(not(is-ilp))),

a heuristic (simplify), and combinors (or-else and

and-then).

1 (and-then
2 (fail-if (not(is-ilp)))
3 simplify
4 split-clause
5 (or-else
6 (try-for sat 100)
7 (using-params
8 smt
9 :random-seed 100)))

Fig. 1. Example: a Z3 solving strategy.

The application of a strategy to an instance returns: no when

the strategy proves that there is no solution, a solution when

the strategy finds one, and unknown otherwise. These tools

allow users to exert strategic control over core heuristic aspects

of high-performance SMT solvers, a challenge that has been

pointed out in [3]. Therefore, due to the complexity of this

strategy language, there is a clear need of automated processes

to help the users to design efficient strategies for given SMT

problems.

III. STRATEGY GENERATION ALGORITHM

We propose a classic evolutionary process [5] described by

Algorithm 1. The evolution loop is applied on individuals of

the population, i.e., on Z3 solving strategies. This is a steady-

state evolutionary algorithm: at each iteration, an evolution

rule is chosen. The individuals (as many as required by the

rule) are selected and processed by the chosen rule. The

resulting individual(s) are then classically inserted in the

population.

Indn is a vector of n individuals (remind that individuals

are strategies). At each iteration, the rule selection function

selectR selects a rule from possible set of variation rules

(described later). Since these rule may apply on different

elements of the strategy, we have to identify the arity of

the rule ar(r). Therefore, the individual selection function

Algorithm 1 Evolutionary Algorithm Scheme

Input: a SMT-LIB logic set of instances,

an initial strategy Is,

a population size N ,

a set of evolution rules R,

a rule selection function selectR,

an individual selection function selectI ,

a fitness function fitness,

an ending criterion endC

Output: Optimized strategy st∗

1: Initialize population using st
2: repeat
3: r ← selectR(R)
4: ar(r) = n
5: Indn ← selectI(n, population, fitness)
6: Indn →r Ind′n

′

7: insert( Ind′n
′
,population,fitness)

8: st∗ ← best(population)

9: until endC
10: return st∗

(selectI ) and the insertion function (insert) have to take into

account this variability. These functions may be adapted to fit

a particular strategy generator and are detailed later.

We now briefly describe the main components of our

algorithm

• Initialization of the population: Is provides an initial

strategy. The initial population is generated with size
individuals built from Is with a randomly chosen rules

from SV .

• Fitness function : the fitness function involves the number

of solved instances and, as a second criterion, the time

used for solving these instances. We define our fitness

function as:

f : PStrat �→ N× N

f(st) = (i(st), t(st))
(1)

where:

1) i(st): number of instances solved using the strategy

st.
2) t(st): elapsed time for solving these instances.

Since this fitness function is defined on N×N, we use the

lexicographic ordering 	≡ (>,>) in order to compare

fitness values, i.e., given st, st′ ∈ PStrat, f(st) =
(i, t), f(st′) = (i′, t′), we have f(st) 	 f(st′) if and

only if i > i′, or i = i′ and t < t′.
• Individuals selection: the choice of the individual is

performed by a classic tournament selection that consists

in selecting randomly k individuals of the population and

then, selecting the best n individuals according to the

fitness function (see [4] for more details on evolutionary

algorithms). As already mentioned, n is adjusted accord-

ing to the arity of the rule to be applied.

• Individual insertion: insertion consists in replacing the

current worst n′ individuals of the population by the
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generated individuals. Note that again n′ depends on the

selected rule.

• Ending criterion: it corresponds either to a time limit or

to the fact that the population has converged, i.e., 80%

of the population has the same fitness.

The initial population is generated with size individuals

built from the Is initial strategy with randomly chosen varia-

tion rules - to get some diversity. The fitness function involves

the number of solved instances and, as a second criterion,

the time used for solving these instances. Ending condition

corresponds to a limited time or the observed convergence of

the population.

The rules constitute the key feature of our strategy genera-

tion process. A rule is applied on a strategy in order to modify

either its structure or its behavior. According to the Z3 strategy

grammar, we classify these possible modifications according

to the elements that they affect:

1) structural components: the tactics (i.e., solvers, probes,

and heuristics) that can be used in strategies and the

combinators that define how tactics are combined and

applied;

2) behavioral parameters: the parameters values (either

numeric or symbolic) that help to define the specific

behavior of the tactics (execution time, seeds, etc.).

Intuitively, structural rules modify the structure of a strategy

(e.g., by changing a combinator, by changing the arity of a

combinator, by adding or removing a combinator, etc.). They

can also change the tactics, e.g., replacing a heuristic by

another one. Behavioral rules change parameters values, e.g.,

to give more time to a given solver, to change a random seed,

or to change a solver parameter.

According to previous remarks, we can define more pre-

cisely 4 sets of rules.

Structural variation rules (SV): these rules modify the

structure of the strategy by introducing or modifying

combinators, solvers or heuristics. For instance, a

strategy and-then(simplify,try-for sat 100)
can be transformed into and-then(simplify,
try-for smt 100) by changing the solver or into

and-then(simplify,split-clause,try-for
sat 100) by introducing a new heuristics. Note that some

constraints have to be checked to insure that the strategy is

correct according to Z3 requirements.

Structural recombination rules (SR): these rules are used

to exchange subparts of strategies. Taking two individuals as

input, this is a classic mechanism in genetic programming [7]

that allows the algorithm to produce two new individuals.

Again, the coherence of this swap has to be insured by

selecting compatible sub-strategies.

Behavioral variation rules BV : these rules focus on the

parameters of the strategy. In Z3, numerous parameters can

be used for the different components (some solvers have more

than 50 parameters). When these parameters are not explicitly

mentioned in a strategy, default values are used. In order

to limit the size of our search space, we do not consider

introduction of new parameters and consider only parameters

from initial strategies. Moreover, time parameters are intro-

duced to manage the time budget allocated to a given strategy

according to user’s needs using the try-for operator. These

time values are carefully handled in our process to finely tune

them.

Behavioral recombination rules BR: we introduce a specific

rule to better diversify parameters values. This rule is applied

on the whole population and uniformly select parameters

values to get a new strategy.

These different sets of rules we now design different algo-

rithms by considering either behavioral rules or structural rules

or even by combining them in hybrid strategy generators. We

now present some possible combinations.

IV. SELECTED STRATEGY GENERATORS

We consider 7 strategy generators: 2 simple generators,

and 5 hybrid generators. Back to Algorithm 1, the different

generators involve different sets of rules as well as different

rule selection functions selectR. A concise view of the re-

spective designs of these generators is proposed in Table I,

which shows the set of rules used in the generators together

with their proportion of use. Note that + indicates that rules

are used in sequence, ∗ stands for a loop on a sequence, |
indicates a possible choice between different rule sets, and ;
the sequential composition of two sub-processes. There are 2

vectors of proportions when the hybrid generator is a sequence

of 2 generators.

TABLE I
RULES AND THEIR USE PROPORTION INSIDE THE GENERATOR

Gen.
Structural Behavioural

Use and Proportion
SV SR BV BR

StrucG � � � � (SR+ SV )∗
(structure) 2:1:0:0

ParG � � � � (BR+BV )∗
(parameters) 0:0:1:1

LocG � � � � BV ∗
(local search) 0:0:1:0
Struc+ParG � � � � StrucG; ParG

(2:1:1:1; 18:10:3:1)
Struc+LocG � � � � StrucG; LocG

(2:1:1:0; 18:10:3:0)
H1 � � � � (SR|SV )∗; (BR|BV )∗

(2:1);(1:1)
H2 � � � � (SR|SV )∗; (BR|BV )∗

reactive/adaptive

StrucG is a classic genetic programming procedure which

starts from a given initial strategy to learn the best possible

strategy by applying structural rules (S). The sequence of rule

application is the following: a SR rule is selected and applied

on 2 individuals (selected using a classic tournament selection

that randomly picks n individuals of the population and then

choose the best one w.r.t. the fitness function (see [4] for more

details). We perform this action twice to get two individuals.)

leading to two new individuals (i.e., a kind of crossover rule).

The 2 next loops apply SV rules over the newly generated
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individuals. The insertion function replaces the current worst

individual of the population by the best generated individual

using the SR rule, and it replaces the second worst individual

of the population if the best generated individual using SV
outperforms it. The ending criterion is either a time limit (i.e.,

the Ltb parameter) or a convergence property (i.e., 80% of the

population has the same fitness).

Given a strategy, ParG searches for the best possible

parameter configuration using Behavioral rules (set B). The

given initial strategy is analyzed in order to create an initial

population which size is given by the largest number of value

a parameter can get. The rule selection function selects a

rule from BR which is applied on some randomly selected

individuals. Then, (at the next loop) a rule from BV is selected

and applied on the result of the previous rule application. The

insertion function works as in StrucG, but with regards to BR

and BV sets of rules. The ending criterion is the same as in

StrucG.

LocG can be seen as an evolutionary algorithm with one

individual. Thus, only variation rules are used. LocG proce-

dure starts from a given initial strategy and applies only rules

from SV in order to explore its neighborhood. In our case, the

neighborhood of a strategy is thus fully defined by all possible

values changes of a single parameter. We refer the reader to [6]

for more details on local search.

The two first hybrid generators correspond to off-line in-

tegration: two algorithms are executed sequentially. First, a

structural rule based algorithm is executed in order to obtain

an optimized strategy with regards to structure modification.

Then, its result is the initial strategy of a "parameter tuning

algorithm", i.e., a behavioral rule based algorithm. The two

hybrids are: 1) Struc+ParG which is a genetic programing

structural algorithm (StrucG) calibrated with an evolutionary

programming algorithm (ParG), and 2) Struc+LocG which is

a genetic programing structural algorithm (StrucG) calibrated

with a local search algorithm (LocG).

H1 is an on-line cooperation, based on the engine of StrucG

but using all the rules (SV ∪SR∪BV ∪BR). The rule selection

repetitively performs the following sequence: it first selects a

rule from SR (to be applied on 2 selected members of the

population) that generates 2 individuals on which 2 structural

variation rules (SV ) are applied (1 rule on 1 individual); a

behavioural recombination (BR) rule then tries to improve the

best result obtained with the previous structural variation rules;

finally, a behavioural variation (BV ) rule tries to improve the

best result. The insertion function is the same as in StrucG.

H2 is based on H1. The main difference is the rule selection

process. Two parameters, φ and ρ (with φ < ρ), are required:

φ indicates how many rules from S = SV ∪ SR are used

sequentially, and ρ − φ indicates the number of rules from

B = BV ∪ BR that are then applied. For rules of S, the

following sequence is respected: one rule from SR followed

by 2 rules of SV applied on the 2 resulting individuals. For

behavioral rules, the sequence consists first of a behavioral

recombination rule (BR) to try to improve the best individual

of the population, and then a behavioral variation rule (BV ) to

try to improve the best population member. When the ρ limit

is reached, the counter is reset, and thus, structural rules are

applied again. If a rule from S has been picked, the insertion

is the one from StrucG; otherwise, the best individual obtained

with the selected rules from BR and BV replaces the worst

individual of the population.

V. EXPERIMENTAL RESULTS AND CONCLUSIONS

Our experiments involve two phases. The learning phase

uses a subset of the problems to be solved to learn better

strategies by means of generators. Once an optimized strategy

has been built, its efficiency is evaluated, as usual for cross

validation, on the whole set of problem instances.

We focus here only on two logics from Quantifier Free

Linear Arithmetic logic family, which have many important

SMT applications. Instances that have been solved in SMT-

COMP are called known (either instances proved to be false

by the strategy or for which a solution has been computed),

and the others unknown . (QF_LRA) instances corresponds

to closed linear formulas in linear real arithmetic. QF means

that we conider unquantified linear real arithmetic. These

instances are Boolean combinations of inequations between

linear polynomials over real variables. (QF_LIA) instances

are thus Boolean combinations of inequations between linear

polynomials over integer variables.

(QF_LIA) has 5893 known instances and 302 unknown

while (QF_LRA) has 1626 known instances and 56 unknown.

We limit the learning time for the generators to 2 days: this is

rather short with respect to the total time for trying to solve

all the instances.

In Table II, the different strategy generators are compared

with regards to the number of instances they succeed to solve

and their solving times. The Z3 default line corresponds to

the performance of the Z3 default strategy that is used as

input for the generators. The two columns % solv and % time

correspond to the improvements with regards to the default

strategy. Of course, solving time must be used as a second

criterion (since it is related to the number of solved instances).

The strategies are evaluated with two different time budgets

for each instance : 10 seconds and 2400 seconds (as in SMT

competitions).

A first important point is that we succeed in improving the

default Z3 strategy for QF_LIA known: indeed, this logic cor-

responds to the set of instances for which the default strategy

has been finely designed by experts, using an empirical and

costly process. Moreover, we also see that our generators allow

us to improve strategies for the other cases. The generated

strategies are able to solve new instances (in particular in

unknown sets). Comparing the different generators, we may

observe that the hybrid approaches seem to constitute a rather

good compromise by mixing structural improvements of the

strategy with finer tuning of the parameters. Note that we get

similar results (not reported here) for others logics families

(LRA and LIA).
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TABLE II
EXPERIMENTAL RESULTS ON SELECTED BENCHMARKS

Time 10 2400 (smt-comp)
QF_LIA known solved time % solv % time solved time % solv % time

Z3 default 4102 22689,20 - - 5617 659286,39 - -
ParG 4104 23194,00 0,05 2,22 5508 928736,69 -1,94 40,87
LocG 4090 22992,18 -0,29 1,34 5522 894412,13 -1,69 35,66

StrucG 4220 22957,21 2,88 1,18 5536 831662,86 -1,44 26,15
Struc+ParG 4097 24368,00 -0,12 7,40 5598 693616,42 -0,34 5,21
Struc+LocG 3977 24363,48 -3,05 7,38 5489 942000,73 -2,28 42,88

H1 4209 20956,49 2,61 -7,64 5630 633432,62 0,23 -3,92
H2 4102 22684,11 0,00 -0,02 5605 710597,18 -0,21 7,78

QF_LIA unknown solved time % solv %time solved time % solv % time
Z3 default 110 2120,39 - - 130 -298769,18 - -

ParG 197 1185,68 79,09 -44,08 208 -480806,91 60,00 60,93
LocG 188 1236,72 70,91 -41,67 197 -458378,72 51,54 53,42

StrucG 198 1081,21 80,00 -49,01 210 -490382,22 61,54 64,13
Struc+ParG 203 1031,21 84,55 -51,37 210 -488629,23 61,54 63,55
Struc+LocG 199 1049,46 80,91 -50,51 211 -487799,89 62,31 63,27

H1 199 1187,69 80,91 -43,99 209 -486727,99 60,77 62,91
H2 199 1372,72 80,91 -35,26 211 -489968,73 62,31 64,00

QF_LRA known solved time % solv %time solved time % solv % time
Z3 default 1173 5024,45 - - 1530 346598,57 - -

ParG 1160 5248,78 -1,11 4,46 1505 399381,88 -1,63 15,23
LocG 1160 5248,78 -1,11 4,46 1505 399381,88 -1,63 15,23

StrucG 1250 4501,67 6,56 -10,40 1571 184432,72 2,68 -46,79
Struc+ParG 1227 4744,60 4,60 -5,57 1568 199240,73 2,48 -42,52
Struc+LocG 1227 4744,60 4,60 -5,57 1568 199240,73 2,48 -42,52

H1 1240 4606,86 5,71 -8,31 1577 175574,16 3,07 -49,34
H2 1259 4438,26 7,33 -11,67 1571 184974,65 2,68 -46,63

QF_LRA unknown solved time % solv %time solved time % solv % time
Z3 default 0 560,00 - - 2 132486,58 - -

ParG 0 560,00 - - 2 131586,23 0,00 -0,68
LocG 0 560,00 - - 2 131586,23 0,00 -0,68

StratEVO 1 555,47 1,79 -0,81 32,3 76758,47 57,68 -42,81
StrucG 1 554,14 1,79 -1,05 34 72965,82 1600,00 -44,93

Struc+ParG 1 554,95 1,79 -0,90 31 79865,59 1450,00 -39,72
Struc+LocG 1 555,18 1,79 -0,86 31 79865,59 1450,00 -39,72

H1 1 553,91 1,79 -1,09 3 130285,20 50,00 -1,66
H2 1 557,35 1,79 -0,47 36 70096,20 1700,00 -47,09
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