
Page-based Linear Genetic Programming
Heywood M.I., Zincir-Heywood A.N.

Abstract--Genetic Programming arguably represents the most
general form of Evolutionary Computation. However, such
generality is not without significant computational overheads.
Particularly, the cost of evaluating the fitness of individuals in
any form of Evolutionary Computation represents the single
most significant computational bottleneck. A less widely
acknowledged computational overhead in GP involves the
implementation of the crossover operator. To this end a page-
based definition of individuals is used to restrict crossover to
equal length code fragments. Moreover, by using a register-
machine context, the significance of apriori internal register -
r:.temal output definitions is emphasized.

Index Terms--Genetic Programming, Register Machines

I. INTRODUCTION
Genetic Programming is a form of beam search in which
the beam - set of candidate solutions - are computer
programs, the selection criteria or cost function takes the
form of a fitness ranking, and the contents of the beam is
manipulated by genetically motivated operators
(reproduction, crossover and mutation) [11. This definition
provides a very flexible environment for automatic problem
solving. However, the structure of representation and the
efficiency ofthe operators used to advance the search i.e.
manipulate the contents of the beam (population), have a
significant effect on the overall performance. The first
structure to reliably demonstrate characteristics suitable for
what is now widely referred to as Genetic Programming
(GP) was a tree based structure [1,2]. Specifically,
‘program trees’ are defined in terms of functional and
terminal sets where such a set is defined a priori [3]. The
function set defines the internal nodes of the tree and
possess the property of syntactic closure. The terminal set
defines the set of leaf nodes to the program tree and
therefore represents the inputs to the program (variables or
constants). The mutation operator randomly substitutes
internal or leaf nodes with other elements from the
functional or terminal set respectively. Crossover typically
involves arbitrarily selecting nodes from a pair of trees and
swapping the following branch (or leaf).

Since this pioneering work, other structures have been
defined. For example the work of Teller and Veloso uses
graphs, hence including the case of a program tree as a
special case [4]. The interest in this work however lies in
structures that map efficiently to computing platforms based

on the concept of a register machine. Such a GP structure is
commonly referred to as a linear structure, and takes the
form of assembly language type instructions [5] . By the
term ‘register machine’ it is implied that the operation of
the host computing platform is expressed in terms of
operations on sets of registers, where some registers are
associated with specialist hardware. The work of Nordin et
al. represents by far the most extensive work with linearly
structured GPs [5-71. Common to Nordin’s work however is
the use of standard Von Neumann CPUs as the target-
computing platform. In all cases a 3-address, 32-bit
instruction format is employed, where this decision is
dictated by the architecture of the host CPU. Moreover, the
original definitions of the mutation and crossover operators
remain. In contrast, the purpose of this work is to provide
succinct computing cores of a register machine nature,
where the target computing platform takes the form of a
custom computing machine (CCM) [8,9]. To do so, all.
operations require analysis from a hardware perspective. In
particular the classical definition of the crossover operator
in Genetic Programming represents a significant memory
management overhead, hence introducing hardware
complexity. The crossover operator is therefore constrained
to that of swapping equal length ‘pages’ from linearly
structured individuals and a second mutation operator,
swap, introduced where this interchanges two instructions
from the same individual.

The purpose of this paper is to summarize these ideas whilst
investigating the significance of other micro-architectural
features. In particular the significance of allowing GP to
evolve the relationship between outputs and internal
registers, and internal registers and constants is assessed.
Moreover, the robustness of linearly structured GP is
assessed within the context of solving problems requiring
the evolution of constants. The significance of different
scale factors is therefore also investigated over a set of
benchmark symbolic regression problems.

The remainder of the paper is organized as follows. Firstly
the concept of page-based linearly structured GP is
introduced, Section 11. In addition specific micro-
architectural design decisions for the internal registers and
outputs are discussed. This provides the basis for the
simulation study in Section 111. Finally, conclusions and
recommendations for future work are given in Section IV.

Dalhousie University. Faculty of Computer Science. 6050 University
Avenue, Halifax, Nova Scotia. Canada. B3H 1 W5.
email: mheywood@cs.dal.ca

0-7803-6583-6/00/$10.00 0 2000 IEEE 3823

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:19:03 UTC from IEEE Xplore. Restrictions apply.

11. PAGE-BASED LINEAR GENETIC PROGRAMMING

The principle operations of a GP based register machine are
summarised as follows [lo],

1.

2.

3.

4.

5 .

the fetch decode cycle (as in a general purpose
computer);
evaluation of a suitable cost function, hence fitness of
the population;
application of suitable crossover and mutation
operators;
memory management in support of the latter two
activities; and
generation of random bit sequences (stochastic
selection).

It is assumed that the responsibility for forming an initial
population of (linearly structured) individuals is performed
off-line by the host (most custom computing machine
(CCM) platforms take the form of PCI cards [9]). Point 5
implies that random numbers are created off-line’ and read
by the custom computing machine as and when required.
Point 2 is application specific, but for the case of the results
discussed in section 3, a scalar square error cost function is
assumed. However, such an evaluation represents the inner
loop of the GP, for which the principle method of
accelerated evaluation remains paralleled register machines.
Points 1, 3 and 4 are inter-related and therefore the focus of
the following discussion. In particular we note that the most
expensive operation (from the context of a CCM) is that of
a memory access. That is to say, the crossover operator is
responsible for creating significant overheads in terms of
memory management and memory accesses. Classically,
the central bottleneck of any computing system is the
memory-processor interface. It is therefore desirable to
minimise I/O as much as possible, a design philosophy that
has resulted in most Von Neumann CPUs dedicating half of
the available silicon real estate to memory. Such a solution
is not applicable to a CCM due to the low (silicon)
efficiency in realising memory using random logic elements
typical to (typically Field Programmable Gate Array based)
CCM platforms [8, 91.

11, the particular case of the crossover operator, as
classically applied, the main memory management problem
comes from the requirement to swap code fragments of
differing lengths between pairs of individuals. This means,
for example, that enough memory space needs reserving for
each individual up to the maximum program length
(irrespective of the individual’s actual program length), and
entire blocks of code physically shuffled. Moreover, both
instances have to be implemented directly in hardware c.f.
the spatial implementation of any algorithm on a CCM
platform, thus resulting in a lot of ‘messy’ control circuitry.

’ By using a reconfigurable computing platform supporting
both FPGA and DSP we are able to generate random
number sequences using the DSP whilst dedicating the
FPGA to evaluation of the GP.

One approach to removing the undesirable effects of
crossover is to drop the icrossover operator completely. Tbi
has indeed been shown lo produce very effective GPs in th;
case of tree based structures [111. However, this approach
requires the definition o f a more varied set of mutation
operators, some of which effectively replace a terminal wit
a randomly grown sub-tree, hence another memory
management problem. The approach chosen here therefore
is to define the initial individuals in terms of the number oi
program pages and the program page size. Pages are
composed of a fixed number of instructions (common to a1
individuals) and the crossover operator is constrained to
defining the pages that are swapped between two parents.
Hence we do not allow inore than one page to be swapped
at a time. This means that, following the initial definition c
the population of progra.ms - the number of pages each
individual may contain i(uniform1y randomly selected over
the interval [min program length, max program length]) -
the program length of an individual remains constant. The
memory management nlaw simplifies to reading programs
and copying the contents of parents to their children.

In addition to the typical approach to mutation - perform a
logical ExOR between Ihe candidate instruction and a
random bit sequence - a second mutation operator is
introduced. In this case, an arbitrary painvise swap is
performed between two instructions in the same individua
The motivation here is ihat the sequence, in which
instructions are executed within a program has a significar
effect on the solution. Thus, a program may have the
correct composition of iinstructions but specified in the
wrong order.

The overall algorithm is summarized by figure 1. Attentio
is drawn to the use of sieady-state toumament based as
opposed to generationall population wide selection. That is
to say, only a small subset of the total number of
individuals compete to have their fitness assessed over thc
data set. From a hardware perspective, this implies that: (1
there are the same numlber of register machines as there a1
individuals in the tournament, providing for parallel
evaluation of the individuals; and (2) the fitness ranking
may now also be performed directly in hardware, as the
number of individuals ranked is decoupled from the size (1
the overall population.

1.
2.

3.

4.

5 .

6. Apply painvise crossover test.
7.
8.

Initialize the population of ‘N’ individuals.
Choose ‘M’ individuals to participate in a tournamen
(M << N).
Evaluate the fitness of individuals participating in th,
toumament.
Rank individuals firom tournament in ascending ordel
of fitness.
Copy fittest M / 2 individuals over worst (denotes th;
children).

Apply test for standard mutation.
Apply test for swalp based mutation.

3824

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:19:03 UTC from IEEE Xplore. Restrictions apply.

9. Replace individuals in original population
corresponding to M 1 2 worst case ranked toumament
individuals with M 1 2 children from step 8.

return to step 2.
10. If fittest individual satisfies stop criteria END, else

Fig I . Algorithm for the Genetic Program

Opcode
Target register
Source 1

In addition to the above comments, several other micro-
architectural decisions regarding the relationship between
internal registers and global interfaces are likely to have a
significant effect on the algorithm. In particular, consider
the relationship between outputs and intemal registers (i.e.
from where are results taken), and to which intemal
register(s) are constants loaded. In the case of the following
study, we are interested in assessing the significance of two
different contexts. In the first case, outputs are a priori
assigned to internal registers 0 to n, where there are n + 1
intemal registers in total. All instructions loading a constant
to a register are assigned to register n + 1 [5 , 61. In the
second case, no constraints are imposed on the register
acting as the target, and outputs are defined by the internal
register with the best fitness over the entire data set.

bit const. to target reg.
Only 6 defined <+, -, %, *, NOP, EOP>

Register identifier c.f. mode bits

3
3 Internal register identifier
3

In effect, the first case enforces an a priori methodology
common to all individuals. Any individuals not conforming
to this structure are likely to have a poor fitness measure,
hence penalized during selection. This means that
individuals first need to learn the apriori relationship
between internal registers (constants) and the outputs, and
then begin to evolve solutions2. In the second case, each
individual is free to define their own relationships between
internal registers and results (constants). The penalty for
this freedom, however, is an increase in computational
effort during evaluation of fitness, and the possibly of an
incompatibility between individuals during crossover
(individuals are now have their own contexts, where this
may be incompatible). One of the purposes of the following
study is to provide an empirical assessment of the
significance of these issues.

register
Source 2
register

111. SIMULATION
The modifications proposed above to the GP search
operators, represent significant departures from the normal
h e a r GP. The purpose of the following study is therefore
to demonstrate that these modifications do not inhibit the
problem solving properties of the GP. To this end a
software implementation3 is used to assess the effects of
these re-defined operators using well-known function
approximation (symbolic regression) benchmarks of y = x4
t x3 + x2 + x, x E [-1, I]; y = (x + 1)3, x E [-1, 0); and y = x6
- 2x4 + x2, x E [-1, 13. The first problem has been used
widely as a benchmark problem [3, 111. The cubic problem
introduces the need to evolve constants, as well as having

3 Register identifier c.f. mode bits

’ A further altemative would be to try to incorporate any a
priori definition of register purpose during initialisation c.f.
population seeding.

SOOMhz, 64Mb RAM. 3825
Watcom e++, version 11 .O, Windows 95, Pentium I11

Mode

Table 1. Formats of 2- and 3- register address instructions

Field
field

CO O> two intemal register sources; 40 1>
internal and extemal register sources; < I
O> two external register sources; < I I > 8

2 <O 02 intemal register source; <O I >
external register source; Cl x> 8 bit const.

Opcode
Target/ source

to target reg.
Only 6 defined <+, -, %, *, NOP, EOPz 3

3 Internal register identifier

GP id
VarRegXX
FixRegXX
xx

Description
Variable constant and output registers allocation.
Fixed constant and output registers allocation.
Max limit of 8 bit constants (0 - XX)

1 register
Source 2 I 3 I Register identifier c.f. mode bits

Pop Size
Initial Pop

Termination
Experiments

125
Uniform random generation of integers with
instruction type bias of: 16% constants; 50%
input; 33% internal registers. Max populations
of 8x4, 16x4 or 32x4.
30,000 tournaments
38 independent runs per parameter setting
(population limit, register address mode; and
table 2).

Table 3. GP Parameter Tableau for all experiments

The details for the address formats employed here are
summarised in Table 1. In each case, we design to provide:
up to 8 internal registers; up to 7 opcodes (the eighth is
retained for a reserved word denoting end of program
(EOP)); an eight bit integer constant field; and up to 8 input
ports. Table 2 summarizes the labels used throughout the
following tests to distinguish different GP configurations.

In terms of specific tests, the significance of the swap based
mutation operator has already been established [lo]. The
purpose of the following study is therefore to: (1)
demonstrate the significance of the relationship between

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:19:03 UTC from IEEE Xplore. Restrictions apply.

Table 4. Simple Symbolic Regression - Convergence Properties

2 address (~1000)

AV Toumament 7.7 8.2 1 0 6
Converg.Cases 12 12 . 13

FixReg255
Av.Toumament I 520 I 532 I 1259 I 5354 I 3111 I 4378
Converg.Cases I 37 I 36 I 37 I 31 I 36 I 34

3 address (XIOOO)

9.3- [8.7 1 9 2
9 I 24 I 19

Table 5. Simple Symbolic Regression - Computational Effort.

internal registers and output; and (2) evaluate the
significance of different normalizations to the range of
constants, where this has already been identified as a
significant factor in tree based GP [12]. Moreover, as the
page-based crossover operator results in individuals of fixed
length, experiments are conducted across maximum
numbers of pages of 8, 16 and 32 (4 instructions per page in
each case) - actual number of pages per individual is
selected as a uniform random variate from 1 to max number
of pages.

Time constraints dictate that only 25 patterns are used to
evolve individuals, however, 250 independent patterns
employed to verify the generality of the relation learnt.
Table 3 summarizes the GP parameters employed during
the study.

A . Simple Symbolic Regression: y = x4 -+ x3 + x3 + x

The simple symbolic regression problem represents a
problem in which no constants are necessary. Hence, our
interest lies in whether this favours a particular GP
algorithm, and whether any favouritism is carried over to
pl.oblems requiring constants. Results are fnstly
summarised in terms of the average number of tournaments
(converging instances alone) and number of converging
instances (38 trials per test); Table 4. It is evident that the
configurations with a priori fixed relations between intemal
registers typically converge faster and more frequently than
GP without a priori definitions. In both cases, the 3 address
cases are both slower and provide a lower number of .
converging instances than the 2 address cases. Moreover,
there is little difference between performance of programs
using different ranges of constants (0 to 255 verses 0 to 5).

Table 5 summarises minimal computational effort as
expressed by the following expression of Koza [3].

3826

Table 6. Cubic Problem - Convergence Properties.

11.8
28 28

Table 7. Cubic Problem - Computational Effort.

log(1- z) E = T x i x
log(1- C(T,i))

where T is the tournament size (= 4); i is the generation at
which convergence of an individual occurred; z (= 0.99) is
the target probability of success; and C(t, i) is the
cumulative probability of seeing a converging individual in
the experiment. The data reported in table 5 is for i*, the
generation minimizing computational effort.

This re-emphasizes the preference for the predefined
register format and short program lengths.

Table 8. Sextic Problem - Convergence Properties.

- ~p FtxReg255
AV. Toumament I N/a I 15.4 V T 12.6 1 29 4 1 219

VarReg5
AV. Toumament 1 4 6 I 13.4 I 11.6 l?z,! 1 9 1 12 1

Converg. Cases I o 1 2 I 1 1 I Z p p I p - - l 1 3

Converg. Cases 1- I I I T p - l
FtxReg5

I AV Toumament I 1 2 1 I 9 6 9 I 9.1
1 Converg.Cases I 11 1 2 1 - 1 2 6 I L 4 - 1-11 I 9

1-74 1 I 1 7 3 1 12 I
I

Table 9. Sextic Problem - Computational Effort.
~-

T2;ddGss (XI 000) I 3 address (~ 1 0 0 0
Max. Pages I 8 I 16ppp-1 32 I 8- I 16
VarReg255 I 295 I 54 6 1-34.51110 TTZppp
FixReg255 I Nla I 6,256 I 220 I 383 I 20,319
VarReg5 I 737 I 164 I 649 1 54 1 55-
FlxR*=L-648 I 5 4 4 -1 32.5 1 5 2 7 1 1,115

32
197
p 128
32
904
--

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:19:03 UTC from IEEE Xplore. Restrictions apply.

B. Cubic Problem: y = (x + 1)'
This problem introduces the requirement to evolve
constants and is summarised by tables 6 and 7. A definate
partition in performance is now apparent. Two address
based instruction always out perform their 3 counterpart.
However, within the case of each address type the
following observations are made. On 2 address instructions
Jyith maximum constant range of 0-255, evolved output
relations (VarReg255) are at least 3 times as efficient (as
measured by Computational Effort) as the fixed register
case (FixReg255). Changing to a constant range of 0-5
reverses this relationship, but not to the same extent. The
same pattern appearing when comparing 3-address
instructions alone.

C. Sextic Problem: y = x6 - 2x4 + x3
The final and most difficult problem considered is the sextic
symbolic regression problem first used by Koza [3]. As per
the above cubic problem, multiple solutions exist and
constants are necessary to solve the problem. Tables 8 and 9
summarize performance. The preference identified above
for 2-address operation appears to also hold true in this
case. Moreover, Thus 'VarReg255' instances provide the
highest number of converging trials, lowest computational
effort and locate solutions in the minimum number of
tournaments. In addition when using 3-address instructions,
the evolved register-output programs (VarRegXX) are
always preferred to the a priori defined cases (FixRefXX).

One further test is performed. Our interest here is whether
the programs are in effect still too long to favour the coding
format of 3-address instructions. We therefore repeat the
sextic problem for a maximum page size of 6 (all other
parameters remain unchanged). These results are
summarised in table 10. Performance of the 2-address
register instruction format is still significantly better than
that of 3-address. Moreover, the number of converging
cases has dropped significantly in both cases from that
achieved using longer programs, suggesting that the optimal
maximum program length for both 2 and 3-address
instruction formats was larger than that provided by 6
pages.

IV. CONCLUSION
The crossover operator is modified to minimize memory
management overheads in linearly structured GP. This
results in the description of individuals in terms of the

number program pages, where a program page is defined by
a fixed number of instructions, constant across all the
individuals. The number of pages for each individual,
however, is determined randomly at initialization.
Simulation on benchmark problems has previously
illustrated the appropriateness of the method from the
context of different register addressing modes. There we
concentrate on assessing the significance of evolved verses
a priori defined register to output and register to constant
relationships. It is found, at least for the single-input,
single-output problems considered here, that by leaving
these relations open to evolution, significantly better results
are achieved.

Future work will investigate extensions to arbitrary length
programs, where this has been previously demonstrated
using the concept of register based I/O [6 ,7] . Attention is
drawn to the significance of internal register sets, where the
identification of optimal register requirements is
undoubtedly problem dependent. Future work will therefore
incorporate the definition of register sets into the cost
function using the concept of Maximum Description
Length. Finally, we are also interested in providing
dynamic modification of page size definitions during the
evolutionary process. The motivation in this case being to
encourage the generation of code fragments from page sizes
of 1 or 2 up to some maximum page size limit, say 4 or 8,
as the error profile of the individual changes. Finally
significant interest also lies in the assessment of the page-
based crossover operator in minimizing the effects of
introns or code bloat [12].

ACKNOWLEDGEMENT
The authors gratefully acknowledge Mahmut Tamersoy,
Computer Processing Center of the Teba@ Company Group,
for supplying the computational facilities on which this
research was conducted. This work was also supported by
TUBITAK research grant 199E023.

REFERENCES
Koza J.R..: Hierarchical genetic algorithms operating on

populations of computer programs. Proc. of the 11" lntemational
Joint Conference on Artificial Intelligence. (1989) 768-774.

Cramer N.L.: A Representation for Adaptive Generation of
Simple Sequential Programs. hoc . I n Int. Conf. on Genetic
Algorithms and their Applications. (1985) 183-187.

Koza J.R..: Genetic Programming: On the programming of
computers by means of natural selection. MIT Press (1992).

Teller A., Veloso M.: PADO: A new learning architecture for
object recognition. In Ikeuchi K., Veloso M. (eds): Symbolic Visual
Leaming. Oxford University Press (1 996).

Programming An Introduction: On the automatic evolution of
computer programs and its applications. Morgan Kaufmann. ISBN 1-

Nordin J.P.: Evolutionary Program Induction of Binary Machine

Banzhaf W., Nordin P., Keller R.E., Francone F.D.: Genetic

55860-510-X (1998).

Code and its Applications. Krehl Verlag. IBSN 3-931546-07-1
(1 997).

Banzhaf W., Nordin P., Francone F.D., Efficient Evolution of
Machine Code for ClSC Architectures using Instruction Blocks of
Homologous Crossover, in Advances in Genetic Programming.
Volume 3. Spector L. et al. (eds) MIT Press, pp 275-301, ISBN 0-
262-19423-6, 1999.

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:19:03 UTC from IEEE Xplore. Restrictions apply.

[SI

[9] http:!iwww.io.conll-guccioneilIW Iist.html
[I 01

DeHon A., “Reconfigurable Architectures for General Purpose
Computing,” AI Tech Report 1586, MIT AI Laboratory 1996.

Heywood M.I., Zincir-Heywood A.N., “Register Based Genetic
Programming on FPGA Computing Platforms,” European
Conference on Genetic Programming, EuroGP’2000, Lecture Notes
in Computer Science. 1802. pp 44-59,2000.

Crossover. IEEE Trans. on Evolutionary Computation. l(3) (1997)
[I 1 1 Chellapilla K.: Evolving Computer Programs without subtree

209-21 6.
[I21 Daida J.M., et al., “Analysis of Single-Node (Building) Blocks in

Genetic Programming,” in Advances in Genetic Programming. Vol.
3, Spector L., et al. (eds), (1999), pp 217-241.

Langdon W.B., “Size Fair and Homologous Tree Crossovers for
Tree based Genetic Programming,” Genetic Programming and
Evolvable Machines, l(1/2), pp 95-120, April 2000.

[I 31

3828

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:19:03 UTC from IEEE Xplore. Restrictions apply.

http:!iwww.io.conll-guccioneilIW

