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Abstract--Genetic Programming arguably represents the most 
general form of Evolutionary Computation. However, such 
generality is not without significant computational overheads. 
Particularly, the cost of evaluating the fitness of individuals in 
any form of Evolutionary Computation represents the single 
most significant computational bottleneck. A less widely 
acknowledged computational overhead in GP involves the 
implementation of the crossover operator. To this end a page- 
based definition of individuals is used to restrict crossover to 
equal length code fragments. Moreover, by using a register- 
machine context, the significance of apriori internal register - 
r:.temal output definitions is emphasized. 

Index Terms--Genetic Programming, Register Machines 

I. INTRODUCTION 
Genetic Programming is a form of beam search in which 
the beam - set of candidate solutions - are computer 
programs, the selection criteria or cost function takes the 
form of a fitness ranking, and the contents of the beam is 
manipulated by genetically motivated operators 
(reproduction, crossover and mutation) [ 11. This definition 
provides a very flexible environment for automatic problem 
solving. However, the structure of representation and the 
efficiency ofthe operators used to advance the search i.e. 
manipulate the contents of the beam (population), have a 
significant effect on the overall performance. The first 
structure to reliably demonstrate characteristics suitable for 
what is now widely referred to as Genetic Programming 
(GP) was a tree based structure [ 1,2]. Specifically, 
‘program trees’ are defined in terms of functional and 
terminal sets where such a set is defined a priori [3]. The 
function set defines the internal nodes of the tree and 
possess the property of syntactic closure. The terminal set 
defines the set of leaf nodes to the program tree and 
therefore represents the inputs to the program (variables or 
constants). The mutation operator randomly substitutes 
internal or leaf nodes with other elements from the 
functional or terminal set respectively. Crossover typically 
involves arbitrarily selecting nodes from a pair of trees and 
swapping the following branch (or leaf). 

Since this pioneering work, other structures have been 
defined. For example the work of Teller and Veloso uses 
graphs, hence including the case of a program tree as a 
special case [4]. The interest in this work however lies in 
structures that map efficiently to computing platforms based 

on the concept of a register machine. Such a GP structure is 
commonly referred to as a linear structure, and takes the 
form of assembly language type instructions [ 5 ] .  By the 
term ‘register machine’ it is implied that the operation of 
the host computing platform is expressed in terms of 
operations on sets of registers, where some registers are 
associated with specialist hardware. The work of Nordin et 
al. represents by far the most extensive work with linearly 
structured GPs [5-71. Common to Nordin’s work however is 
the use of standard Von Neumann CPUs as the target- 
computing platform. In all cases a 3-address, 32-bit 
instruction format is employed, where this decision is 
dictated by the architecture of the host CPU. Moreover, the 
original definitions of the mutation and crossover operators 
remain. In contrast, the purpose of this work is to provide 
succinct computing cores of a register machine nature, 
where the target computing platform takes the form of a 
custom computing machine (CCM) [8,9]. To do so, all. 
operations require analysis from a hardware perspective. In 
particular the classical definition of the crossover operator 
in Genetic Programming represents a significant memory 
management overhead, hence introducing hardware 
complexity. The crossover operator is therefore constrained 
to that of swapping equal length ‘pages’ from linearly 
structured individuals and a second mutation operator, 
swap, introduced where this interchanges two instructions 
from the same individual. 

The purpose of this paper is to summarize these ideas whilst 
investigating the significance of other micro-architectural 
features. In particular the significance of allowing GP to 
evolve the relationship between outputs and internal 
registers, and internal registers and constants is assessed. 
Moreover, the robustness of linearly structured GP is 
assessed within the context of solving problems requiring 
the evolution of constants. The significance of different 
scale factors is therefore also investigated over a set of 
benchmark symbolic regression problems. 

The remainder of the paper is organized as follows. Firstly 
the concept of page-based linearly structured GP is 
introduced, Section 11. In addition specific micro- 
architectural design decisions for the internal registers and 
outputs are discussed. This provides the basis for the 
simulation study in Section 111. Finally, conclusions and 
recommendations for future work are given in Section IV. 
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11. PAGE-BASED LINEAR GENETIC PROGRAMMING 

The principle operations of a GP based register machine are 
summarised as follows [lo], 

1. 

2. 

3. 

4. 

5 .  

the fetch decode cycle (as in a general purpose 
computer); 
evaluation of a suitable cost function, hence fitness of 
the population; 
application of suitable crossover and mutation 
operators; 
memory management in support of the latter two 
activities; and 
generation of random bit sequences (stochastic 
selection). 

It is assumed that the responsibility for forming an initial 
population of (linearly structured) individuals is performed 
off-line by the host (most custom computing machine 
(CCM) platforms take the form of PCI cards [9]).  Point 5 
implies that random numbers are created off-line’ and read 
by the custom computing machine as and when required. 
Point 2 is application specific, but for the case of the results 
discussed in section 3, a scalar square error cost function is 
assumed. However, such an evaluation represents the inner 
loop of the GP, for which the principle method of 
accelerated evaluation remains paralleled register machines. 
Points 1, 3 and 4 are inter-related and therefore the focus of 
the following discussion. In particular we note that the most 
expensive operation (from the context of a CCM) is that of 
a memory access. That is to say, the crossover operator is 
responsible for creating significant overheads in terms of 
memory management and memory accesses. Classically, 
the central bottleneck of any computing system is the 
memory-processor interface. It is therefore desirable to 
minimise I/O as much as possible, a design philosophy that 
has resulted in most Von Neumann CPUs dedicating half of 
the available silicon real estate to memory. Such a solution 
is not applicable to a CCM due to the low (silicon) 
efficiency in realising memory using random logic elements 
typical to (typically Field Programmable Gate Array based) 
CCM platforms [8, 91. 

11, the particular case of the crossover operator, as 
classically applied, the main memory management problem 
comes from the requirement to swap code fragments of 
differing lengths between pairs of individuals. This means, 
for example, that enough memory space needs reserving for 
each individual up to the maximum program length 
(irrespective of the individual’s actual program length), and 
entire blocks of code physically shuffled. Moreover, both 
instances have to be implemented directly in hardware c.f. 
the spatial implementation of any algorithm on a CCM 
platform, thus resulting in a lot of ‘messy’ control circuitry. 

’ By using a reconfigurable computing platform supporting 
both FPGA and DSP we are able to generate random 
number sequences using the DSP whilst dedicating the 
FPGA to evaluation of the GP. 

One approach to removing the undesirable effects of 
crossover is to drop the icrossover operator completely. Tbi 
has indeed been shown lo produce very effective GPs in th; 
case of tree based structures [ 111. However, this approach 
requires the definition o f  a more varied set of mutation 
operators, some of which effectively replace a terminal wit 
a randomly grown sub-tree, hence another memory 
management problem. The approach chosen here therefore 
is to define the initial individuals in terms of the number oi 
program pages and the program page size. Pages are 
composed of a fixed number of instructions (common to a1 
individuals) and the crossover operator is constrained to 
defining the pages that are swapped between two parents. 
Hence we do not allow inore than one page to be swapped 
at a time. This means that, following the initial definition c 
the population of progra.ms - the number of pages each 
individual may contain i(uniform1y randomly selected over 
the interval [min program length, max program length]) - 
the program length of an individual remains constant. The 
memory management nlaw simplifies to reading programs 
and copying the contents of parents to their children. 

In addition to the typical approach to mutation - perform a 
logical ExOR between Ihe candidate instruction and a 
random bit sequence - a second mutation operator is 
introduced. In this case, an arbitrary painvise swap is 
performed between two instructions in the same individua 
The motivation here is ihat the sequence, in which 
instructions are executed within a program has a significar 
effect on the solution. Thus, a program may have the 
correct composition of iinstructions but specified in the 
wrong order. 

The overall algorithm is summarized by figure 1. Attentio 
is drawn to the use of sieady-state toumament based as 
opposed to generationall population wide selection. That is 
to say, only a small subset of the total number of 
individuals compete to have their fitness assessed over thc 
data set. From a hardware perspective, this implies that: ( 1  
there are the same numlber of register machines as there a1 
individuals in the tournament, providing for parallel 
evaluation of the individuals; and (2) the fitness ranking 
may now also be performed directly in hardware, as the 
number of individuals ranked is decoupled from the size (1 
the overall population. 

1. 
2. 

3. 

4. 

5 .  

6.  Apply painvise crossover test. 
7. 
8.  

Initialize the population of ‘N’ individuals. 
Choose ‘M’ individuals to participate in a tournamen 
(M << N). 
Evaluate the fitness of individuals participating in th, 
toumament. 
Rank individuals firom tournament in ascending ordel 
of fitness. 
Copy fittest M / 2 individuals over worst (denotes th; 
children). 

Apply test for standard mutation. 
Apply test for swalp based mutation. 
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9. Replace individuals in original population 
corresponding to M 1 2  worst case ranked toumament 
individuals with M 1 2  children from step 8. 

return to step 2. 
10. If fittest individual satisfies stop criteria END, else 

Fig I .  Algorithm for the Genetic Program 

Opcode 
Target register 
Source 1 

In addition to the above comments, several other micro- 
architectural decisions regarding the relationship between 
internal registers and global interfaces are likely to have a 
significant effect on the algorithm. In particular, consider 
the relationship between outputs and intemal registers (i.e. 
from where are results taken), and to which intemal 
register(s) are constants loaded. In the case of the following 
study, we are interested in assessing the significance of two 
different contexts. In the first case, outputs are a priori 
assigned to internal registers 0 to n, where there are n + 1 
intemal registers in total. All instructions loading a constant 
to a register are assigned to register n + 1 [5 ,  61. In the 
second case, no constraints are imposed on the register 
acting as the target, and outputs are defined by the internal 
register with the best fitness over the entire data set. 

bit const. to target reg. 
Only 6 defined <+, -, %, *, NOP, EOP> 

Register identifier c.f. mode bits 

3 
3 Internal register identifier 
3 

In effect, the first case enforces an a priori methodology 
common to all individuals. Any individuals not conforming 
to this structure are likely to have a poor fitness measure, 
hence penalized during selection. This means that 
individuals first need to learn the apriori relationship 
between internal registers (constants) and the outputs, and 
then begin to evolve solutions2. In the second case, each 
individual is free to define their own relationships between 
internal registers and results (constants). The penalty for 
this freedom, however, is an increase in computational 
effort during evaluation of fitness, and the possibly of an 
incompatibility between individuals during crossover 
(individuals are now have their own contexts, where this 
may be incompatible). One of the purposes of the following 
study is to provide an empirical assessment of the 
significance of these issues. 

register 
Source 2 
register 

111. SIMULATION 
The modifications proposed above to the GP search 
operators, represent significant departures from the normal 
h e a r  GP. The purpose of the following study is therefore 
to demonstrate that these modifications do not inhibit the 
problem solving properties of the GP. To this end a 
software implementation3 is used to assess the effects of 
these re-defined operators using well-known function 
approximation (symbolic regression) benchmarks of y = x4 
t x3 + x2 + x, x E [-1, I]; y = (x + 1)3, x E [-1, 0); and y = x6 
- 2x4 + x2, x E [-1, 13. The first problem has been used 
widely as a benchmark problem [3, 111. The cubic problem 
introduces the need to evolve constants, as well as having 

3 Register identifier c.f. mode bits 

’ A further altemative would be to try to incorporate any a 
priori definition of register purpose during initialisation c.f. 
population seeding. 

SOOMhz, 64Mb RAM. 3825 
Watcom e++, version 11 .O, Windows 95, Pentium I11 

Mode 

Table 1. Formats of 2- and 3- register address instructions 

Field 
field 

CO O> two intemal register sources; 40 1> 
internal and extemal register sources; < I  
O> two external register sources; < I  I >  8 

2 <O 02 intemal register source; <O I >  
external register source; Cl x> 8 bit const. 

Opcode 
Target/ source 

to target reg. 
Only 6 defined <+, -, %, *, NOP, EOPz 3 

3 Internal register identifier 

GP id 
VarRegXX 
FixRegXX 
xx 

Description 
Variable constant and output registers allocation. 
Fixed constant and output registers allocation. 
Max limit of 8 bit constants (0 - XX) 

1 register 
Source 2 I 3 I Register identifier c.f. mode bits 

Pop Size 
Initial Pop 

Termination 
Experiments 

125 
Uniform random generation of integers with 
instruction type bias of: 16% constants; 50% 
input; 33% internal registers. Max populations 
of 8x4, 16x4 or 32x4. 
30,000 tournaments 
38 independent runs per parameter setting 
(population limit, register address mode; and 
table 2). 

Table 3. GP Parameter Tableau for all experiments 

The details for the address formats employed here are 
summarised in Table 1. In each case, we design to provide: 
up to 8 internal registers; up to 7 opcodes (the eighth is 
retained for a reserved word denoting end of program 
(EOP)); an eight bit integer constant field; and up to 8 input 
ports. Table 2 summarizes the labels used throughout the 
following tests to distinguish different GP configurations. 

In terms of specific tests, the significance of the swap based 
mutation operator has already been established [lo]. The 
purpose of the following study is therefore to: (1) 
demonstrate the significance of the relationship between 
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Table 4. Simple Symbolic Regression - Convergence Properties 

2 address (~1000) 

AV Toumament 7.7 8.2 1 0 6  
Converg.Cases 12 12 . 13 

FixReg255 
Av.Toumament I 520 I 532 I 1259 I 5354 I 3111 I 4378 
Converg.Cases I 37 I 36 I 37 I 31 I 36 I 34 

3 address (XIOOO) 

9.3-  [ 8.7 1 9 2  
9 I 24 I 19 

Table 5. Simple Symbolic Regression - Computational Effort. 

internal registers and output; and (2) evaluate the 
significance of different normalizations to the range of 
constants, where this has already been identified as a 
significant factor in tree based GP [12]. Moreover, as the 
page-based crossover operator results in individuals of fixed 
length, experiments are conducted across maximum 
numbers of pages of 8, 16 and 32 (4 instructions per page in 
each case) - actual number of pages per individual is 
selected as a uniform random variate from 1 to max number 
of pages. 

Time constraints dictate that only 25 patterns are used to 
evolve individuals, however, 250 independent patterns 
employed to verify the generality of the relation learnt. 
Table 3 summarizes the GP parameters employed during 
the study. 

A .  Simple Symbolic Regression: y = x4 -+ x3 + x3 + x 

The simple symbolic regression problem represents a 
problem in which no constants are necessary. Hence, our 
interest lies in whether this favours a particular GP 
algorithm, and whether any favouritism is carried over to 
pl.oblems requiring constants. Results are fnstly 
summarised in terms of the average number of tournaments 
(converging instances alone) and number of converging 
instances (38 trials per test); Table 4. It is evident that the 
configurations with a priori fixed relations between intemal 
registers typically converge faster and more frequently than 
GP without a priori definitions. In both cases, the 3 address 
cases are both slower and provide a lower number of . 
converging instances than the 2 address cases. Moreover, 
there is little difference between performance of programs 
using different ranges of constants (0 to 255 verses 0 to 5). 

Table 5 summarises minimal computational effort as 
expressed by the following expression of Koza [3]. 

3826 

Table 6. Cubic Problem - Convergence Properties. 

11.8 
28 28 

Table 7. Cubic Problem - Computational Effort. 

log(1- z )  E = T x i x  
log(1- C(T,i))  

where T is the tournament size (= 4); i is the generation at 
which convergence of an individual occurred; z (= 0.99) is 
the target probability of success; and C(t, i )  is the 
cumulative probability of seeing a converging individual in 
the experiment. The data reported in table 5 is for i*, the 
generation minimizing computational effort. 

This re-emphasizes the preference for the predefined 
register format and short program lengths. 

Table 8. Sextic Problem - Convergence Properties. 

- ~p FtxReg255 
AV. Toumament I N/a I 15.4 V T  12.6 1 29 4 1 219 

VarReg5 
AV. Toumament 1 4 6 I 13.4 I 11.6 l?z,! 1 9 1 12 1 

Converg. Cases I o 1 2 I 1 1  I Z p p I p - - l  1 3 

Converg. Cases 1- I I I T p - l  
FtxReg5 

I AV Toumament I 1 2 1  I 9 6 9  I 9.1 
1 Converg.Cases I 11 1 2 1 - 1 2 6  I L 4 -  1-11 I 9 

1-74 1 I 1 7  3 1 12 I 
I 

Table 9. Sextic Problem - Computational Effort. 
~- 

T2;ddGss (XI 000) I 3 address ( ~ 1 0 0 0  
Max. Pages I 8 I 16ppp-1 32 I 8- I 16 
VarReg255 I 295 I 54 6 1-34.51110 TTZppp 
FixReg255 I Nla I 6,256 I 220 I 383 I 20,319 
VarReg5 I 737 I 164 I 649 1 54 1 55- 
FlxR*=L-648 I 5 4 4  -1  32.5 1 5 2 7  1 1,115 

32 
197 
p 128 
32 
904 
-- 
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B. Cubic Problem: y = (x + 1)' 
This problem introduces the requirement to evolve 
constants and is summarised by tables 6 and 7. A definate 
partition in performance is now apparent. Two address 
based instruction always out perform their 3 counterpart. 
However, within the case of each address type the 
following observations are made. On 2 address instructions 
Jyith maximum constant range of 0-255, evolved output 
relations (VarReg255) are at least 3 times as efficient (as 
measured by Computational Effort) as the fixed register 
case (FixReg255). Changing to a constant range of 0-5 
reverses this relationship, but not to the same extent. The 
same pattern appearing when comparing 3-address 
instructions alone. 

C. Sextic Problem: y = x6 - 2x4 + x3 
The final and most difficult problem considered is the sextic 
symbolic regression problem first used by Koza [3]. As per 
the above cubic problem, multiple solutions exist and 
constants are necessary to solve the problem. Tables 8 and 9 
summarize performance. The preference identified above 
for 2-address operation appears to also hold true in this 
case. Moreover, Thus 'VarReg255' instances provide the 
highest number of converging trials, lowest computational 
effort and locate solutions in the minimum number of 
tournaments. In addition when using 3-address instructions, 
the evolved register-output programs (VarRegXX) are 
always preferred to the a priori defined cases (FixRefXX). 

One further test is performed. Our interest here is whether 
the programs are in effect still too long to favour the coding 
format of 3-address instructions. We therefore repeat the 
sextic problem for a maximum page size of 6 (all other 
parameters remain unchanged). These results are 
summarised in table 10. Performance of the 2-address 
register instruction format is still significantly better than 
that of 3-address. Moreover, the number of converging 
cases has dropped significantly in both cases from that 
achieved using longer programs, suggesting that the optimal 
maximum program length for both 2 and 3-address 
instruction formats was larger than that provided by 6 
pages. 

IV. CONCLUSION 
The crossover operator is modified to minimize memory 
management overheads in linearly structured GP. This 
results in the description of individuals in terms of the 

number program pages, where a program page is defined by 
a fixed number of instructions, constant across all the 
individuals. The number of pages for each individual, 
however, is determined randomly at initialization. 
Simulation on benchmark problems has previously 
illustrated the appropriateness of the method from the 
context of different register addressing modes. There we 
concentrate on assessing the significance of evolved verses 
a priori defined register to output and register to constant 
relationships. It is found, at least for the single-input, 
single-output problems considered here, that by leaving 
these relations open to evolution, significantly better results 
are achieved. 

Future work will investigate extensions to arbitrary length 
programs, where this has been previously demonstrated 
using the concept of register based I/O [ 6 ,7 ] .  Attention is 
drawn to the significance of internal register sets, where the 
identification of optimal register requirements is 
undoubtedly problem dependent. Future work will therefore 
incorporate the definition of register sets into the cost 
function using the concept of Maximum Description 
Length. Finally, we are also interested in providing 
dynamic modification of page size definitions during the 
evolutionary process. The motivation in this case being to 
encourage the generation of code fragments from page sizes 
of 1 or 2 up to some maximum page size limit, say 4 or 8, 
as the error profile of the individual changes. Finally 
significant interest also lies in the assessment of the page- 
based crossover operator in minimizing the effects of 
introns or code bloat [12]. 
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