2023 IEEE Latin American Conference on Computational Intelligence (LA-CCI) | 979-8-3503-4807-1/23/$31.00 ©2023 IEEE | DOI: 10.1109/LA-CCI58595.2023.10409384

Program Synthesis with Generative Pre-trained
Transformers and Grammar-Guided Genetic
Programming Grammar

Ning Tao*, Anthony Ventresque'$, and Takfarinas Saber'*
*School of Computer Science, University College Dublin, Ireland
Email: ning.tao@ucdconnect.ie
fLero — the Irish Software Research Centre
fSchool of Computer Science, University of Galway, Galway, Ireland
Email: takfarinas.saber @universityofgalway.ie
§School of Computer Science and Statistics, Trinity College Dublin, Ireland
Email: anthony.ventresque @tcd.ie

Abstract—Grammar-Guided Genetic Programming (G3P) is
widely recognised as one of the most successful approaches to
program synthesis. Using a set of input/output tests, G3P evolves
programs that fit a defined BNF grammar and that are capable
of solving a wide range of program synthesis problems. However,
G3P’s inability to scale to more complex problems has limited
its applicability. Recently, Generative Pre-trained Transformers
(GPTs) have shown promise in revolutionizing program synthesis
by generating code based on natural language prompts. However,
challenges such as ensuring correctness and safety still need to
be addressed as some GPT-generated programs might not work
while others might include security vulnerabilities or blacklisted
library calls. In this work, we proposed to combine GPT (in
our case ChatGPT) with a G3P system, forcing any synthesised
program to fit the BNF grammar-thus offering an opportunity
to evolve/fix incorrect programs and reducing security threats.
In our work, we leverage GPT-generated programs in G3P’s
initial population. However, since GPT-generated programs have
an arbitrary structure, the initial work that we undertake is to
devise a technique that maps such programs to a predefined BNF
grammar before seeding the code into G3P’s initial population.
By seeding the grammar-mapped code into the population of
our G3P system, we were able to successfully improve some
of the desired programs using a well-known program synthesis
benchmark. However, in its default configuration, G3P is not
successful in fixing some incorrect GPT-generated programs—
even when they are close to a correct program. We analysed
the performance of our approach in depth and discussed its
limitations and possible future improvements.

Index Terms—Program Synthesis, Grammar Guided Genetic
Programming, Generative Pre-trained Transformers, Large Lan-
guage Models, Grammar

I. INTRODUCTION

The advent of the new era of Artificial Intelligence (AI) has
led to a significant increase in automation across various appli-
cation domains. Al has revolutionized the way we interact with
technology and has opened up new possibilities for automation
in fields such as finance, transportation, and programming.

979-8-3503-4807-1/23/$31.00 ©2023 European Union

Automation has become an essential tool for businesses to
increase efficiency and productivity while reducing costs. A
plethora of research on automation in computer programming
has been carried out with the aim of making the job of the
programmer easier by giving them a variety of tools and
methods to produce programming code based on their high-
level intent. This process is commonly referred to as program
synthesis, which has the potential to significantly reduce the
time and effort required for software development while also
improving the quality of the code produced.

A multitude of algorithms has been proposed for automatic
programming using various programming languages, ranging
from object-oriented languages such as Python [1] and Java [2]
to procedural languages such as C [3], [4], to scripting and
markup languages such as HTML [5], [6]. Despite the target
language’s diversity, there is also a lot of variation in the
techniques and the types of user intent: Beltramelli proposed
pix2code [6], a system that produces web development (i.e.,
HTML/CSS) interface code based on user provided graphical
user interface screenshot images using Convolutional Neural
Network (CNN). A transition and state mapping algorithm
for generating Java code from Unified Modelling Language
(UML) diagrams and state patterns developed by Niaz et
al. [2]. Bassil and Alwani [5] developed an approach that
outputs an HTML code using a Context-Free Grammar (CFG)
parser and a finite-state machine-based lexical analyser. A G3P
system proposed in [7]-[9] generates a Python program based
on textual task description and input/output train and test cases.
Boutekkouk [4] proposed a system that generates C codes
based on Visual Basic and Action Language to exploit UML
diagrams. Using huge transformer language models and large-
scale sampling, the AlphaCode developer team created a code
generation method to address previously unsolved competitive
programming issues'. Nevertheless, despite this diversity, Ge-

Uhttps://www.deepmind.com/blog/competitive-programming-with-
alphacode

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:27:50 UTC from IEEE Xplore. Restrictions apply.

netic Programming (GP [10]) continues to be the competitive
method for addressing program synthesis problems [11].

Genetic Programming [10] is a technique of evolving pro-
grams, starting from a population of unfit programs, fit for a
particular task by applying operations analogous to natural
genetic processes. One of the most effective GP systems
is PushGP [12]. It generates programs in the stack-based
language Push, which is designed specifically for program
synthesis tasks. Every data type in Push has its own stack,
which facilitates the genetic programming process. While
PushGP has been shown to be highly effective at generating
code for a variety of problems, its dependence on a specialized
language makes it difficult to apply in real-world scenarios
where other programming languages are more commonly used.

However, GP has limitations when it comes to evolving
programs that are syntactically correct and semantically mean-
ingful. G3P [1] is a technique that addresses this limitation by
introducing language grammar to GP, such that the syntactic
structure of programs may be constrained. G3P is widely
recognised as one of the most successful approaches for pro-
gram synthesis. G3P has been shown capable of successfully
evolving programs in arbitrary languages that solve several
program synthesis problems. Despite its success, the restriction
on the system to only evolve with the randomly generated
population it derives limits its performance to larger and more
complex problems.

Following on the Large Language Models (LLMs) and GPT
trend, there is a sizeable and growing number of approaches
for generating source code based on textual problem descrip-
tions. Therefore, it is now, more than ever, time to introduce
G3P to evolve programs based on GPT-generated code, com-
bined with a random initial population. GPT techniques might
output: (i) several incomplete snippets or not fully fit-for-
purpose codes which often makes them impossible to exploit
in their form, (ii) incorrect programs which need improvement,
or (iii) programs that include security vulnerabilities or black-
listed library calls that posing a safety/security risk. Therefore,
in this work, we propose an approach whereby such GPT-
generated programs are mapped into a BNF grammar.

In this paper, we would like to assess the potential for
G3P to evolve programs based on the generated code from
arbitrary sources (i.e., ChatGPT) using the description of
the task. We particularly propose an algorithm that maps
a code from arbitrary sources to a program that fits BNF
grammar. Through our experimental evaluation on a well-
known program synthesis benchmark, we have shown that G3P
successfully manages to evolve some of the desired programs
with the code generated from the task prompt. Although, in its
default configuration, G3P is not able to solve all the problems
with a code close to the correct solution seeded into the initial
population.

The rest of the paper is structured as follows: Section II
summarises the background and work related to our study.
Section III presents our proposed novel G3P approach. Sec-
tion IV details our experimental setup. Section V reports and
discusses the results of our experiments. Finally, Section VI

concludes this work and discusses our future studies.

II. BACKGROUND AND RELATED WORK

This section provides an overview of the research back-
ground and related works.

A. Genetic Programming

GP is an evolutionary algorithm that generates programs
based on certain fitness calculations to perform specific tasks.
With the goal to produce better programs, GP iteratively
evolves a population starting with randomly selected individ-
uals (typically not very well suited for purpose props) using
operators similar to natural genetic processes (e.g., Crossover,
mutation, and selection). A number of GP systems have been
proposed over time, each with their own unique characteristics
(e.g., GP [10], Linear GP [13], Cartesian GP [14]).

B. Grammar-Guided Genetic Programming

While there are many other GP systems, G3P is one of
the most effective GP systems. G3P is a variant of GP that
uses grammar as the representation, with the most famous
variants being Context-Free Grammar Genetic Programming
(CFG-GP) by Whigham [15] and Grammatical Evolution [16].
The use of grammar as a guideline for creating syntactically
sound programs throughout its evolution is what makes G3P
unique and powerful. Due to their adaptability and ability to
be designed outside of the GP system to describe the search
space, grammars are widely used in program synthesis [17],
managing traffic systems [18], and scheduling wireless com-
munications [19]-[23].

To handle various synthesis problems, Forstenlechner et
al. [1] suggested a G3P system with a composite and self-
adaptive grammar, which overcame the drawback of grammar
that needed to be customised or adjusted for each problem.
There are several short grammars predefined, each for a data
type that specifies the function/program to be evolved. As a
result, G3P may reuse these grammars for arbitrary problems
while minimizing the scope of evolution by excluding unnec-
essary data types. Predefined grammars are further improved
in [24] to handle character data type and recursions, which
was not supported in the previous approach.

C. Large Language Models

LLMs are deep learning algorithms that can identify, con-
dense, translate, forecast, and produce text and other material
using knowledge gathered from enormous datasets. LLMs
emerged around 2018 [25] and perform well at a wide variety
of tasks. They are built up of a neural network with several
parameters (usually billions of weights or more), trained via
self-supervised learning on a significant amount of unlabeled
text. LLMs are among the most successful applications of
transformer models.

OpenAI’s ChatGPT [26] is a Generative Pre-trained Trans-
former with a LLM that can produce text that resembles human
speech and programming code (full or partial). ChatGPT can
produce content in a range of styles and formats as it is trained

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:27:50 UTC from IEEE Xplore. Restrictions apply.

on a vast corpus of text. It has been used for a wide range
of applications, including content creation, customer service,
language translation, and automated program generation.

D. Abstract Syntax Tree

An abstract syntax tree (AST [27]) is a tree-shaped represen-
tation of the structure of source code written in a programming
language. It is an abstract data structure that may be used to
recreate code that is functionally the same as the original in
any language. ASTs are often used to represent code written
in a specific programming language, such as Python or C++.
ASTs are widely used data structures to represent the structure
of program code. It frequently acts as a program’s interim
representation at various phases and has a significant influence
on the final executable code’s optimization and performance.

III. PROPOSED APPROACH

The goal of this research is double: (i) generate programs
that correctly solve program synthesis problems (ii) while
fitting a pre-defined grammar to reduce their security threat
and ensure their safety. Additionally, as an added bonus,
fitting programs to a BNF grammar enables us to leverage
the research on G3P to continue evolving and improving GPT-
generated programs. We build a system that is able to generate
arbitrary source code, map to another program that fits the
BNF grammar, and leverage the resulting program in G3P. The
first step of our system is to use a GPT tool (e.g., ChatGPT) to
generate a program using a textual task description. In the next
step, we use our proposed algorithm to map the GPT-generated
code into another program that fits the BNF grammar while
handling potential grammar conflicts. Last but not least, the
system evolves the population with the seeded program to
achieve a better solution. This work is particularly focused
on (i) mapping as much information from the GPT-generated
code to programs that suit BNF grammar and (ii) improving
the performance of the program synthesis by seeding GPT-
generated programs in G3P.

Figure 1 shows an overview of our proposed approach. It is
an extension of the G3P system with seeding programs from
the arbitrary source into the initial population. The system
starts by generating a program based on a textual description of
the task. Then it maps the GPT-generated code into a program
that suits BNF grammar and combines it with a randomly
generated initial population to make it ready for evolution.
Finally, it evolves the population to generate solutions for the
task.

A. Generate Code Based On Textual Description

The LLMs (i.e., ChatGPT) show amazing potential for
generating code based on the user description. For the first
step of the research, we used ChatGPT to generate the code
by providing the task textual descriptions.

B. Map GPT-Generated Programs into Programs That Fit
BNF Grammar

Transforming arbitrary source code into a program that fits
a BNF grammar poses a significant challenge for this research.

(A
Textual Generated Code with
Description ChatGPT ﬁ Arbitraty Structure
BNF Code Mapping
Grammar Grammar
Input/Output Grammar Mapping [—>
A
/ Solution
A 4

| Initial Population |—>|

G3P

Evolution l——) P

Fig. 1. Overview of our G3P system

The challenges of mapping such a program to a target BNF
grammar are mainly (i) the unavailability of operators/function
calls used in the source code in the target BNF grammar, (ii)
the mismatch of variable names between the source code and
the target BNF grammar, and (iii) unsupported structures in
the target BNF grammar.

The mapping is applied in the following main steps:

o Convert GPT-generated source code into AST: We start
mapping by transforming the source code into AST to
split each expression. Then we can iterate through each
expression and perform the remaining steps.

e Map variable names: Before mapping each expression,
we applied variable name mapping based on variable
type since a fixed number of variables are predefined for
G3P evolution. Specifically, we check if the name of the
variable in the GPT-generated code is the same as the
predefined variable. Then we iterate through predefined
variables in G3P that match the type of variable in
GPT-generated code and change the name with the first
unmapped variable name.

e Handle each expression: We build a recursion-based
mapping algorithm for each type of expression. We used
a top-down approach to build an expression tree that fits
the BNF grammar (individuals are represented as a tree
in G3P).

o Insert a dummy expression in case of a conflict: We
replace mismatched variables with a random predefined
variable that fits the variable data type. In addition, we
insert a dummy expression (a simple assign statement
that assigns a random predefined variable to itself) for
unsupported expressions in BNF grammar.

In this way, we proposed a novel algorithm that is capable
of mapping code from an arbitrary source into a syntactically
correct program that suits BNF grammar while retaining as
much information as possible.

C. Evolve Population With Seeded Program

The mapped program from the previous section is seeded
into G3P’s initial population to guide its evolution more
effectively. This approach is used to improve the quality of

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:27:50 UTC from IEEE Xplore. Restrictions apply.

the G3P algorithm by providing a starting point that is closer
to the desired output.

IV. EXPERIMENT SETUP

In this section, we will provide a detailed overview of the
experimental setup used in our research.

A. Program Synthesis Problems

Helmuth and Spector [28], [29] introduced a set of program
synthesis problems. It provides a textual description as well
as two sets of input/output pairs for both training and testing
during the program synthesis process. We used 28 problems
(except “String Differences” as in [1], [24] since it requires
a data structure as output value containing multiple types) to
test the code generation capability of ChatGPT and proposed
G3P system.

B. Generating Program Using ChatGPT

The G3P calculates the fitness value of each individual
solution by turning each G3P program into a Python function,
running it with all inputs of all test cases, and comparing
the returned values with the corresponding output values.
However, using the original problem descriptions, verbatim,
as prompts to ChatGPT will return code snippets (instead of
functions) with console prints (instead of function returns).
Thus, seeding such code into G3P’s initial population will not
be meaningful. To overcome this issue, we slightly modified
the original textual description of the benchmark suite to
explicitly request that ChatGPT generates a program formatted
as a function and that the function returns the result instead
of printing it on the console (as it is defined in the bench-
mark [28], [29]).

C. Parameter Settings

The general settings for the GP system are: 100 Runs; 300
Generations; Population size of 1000; Tournament selection
with tournament size of 7 (we forced at least one of each
pair of first 500 parents contain seeded code to guarantee the
seeded program is fully utilised); 0.9 Crossover probability
and 0.05 mutation probability; 3 variable for per data type;
and 1 second max execution time.

V. RESULT

In this section, we present and discuss the results of our
evaluations.

A. GPT-generated Code analysis

We compare the results obtained by ChatGPT in our ex-
periments with the results obtained by G3P with tournament
selection in this subsection. Table I shows the results obtained
by ChatGPT compared to the results obtained by G3P on
the benchmark problems. A checkmark (v') indicates that
GPT-generated programs were correct or at least one correct
solution has been found with 100 runs. A cross (X) indicates
that the GPT-generated programs were incorrect or the GP
evolution did not find a correct solution after 100 runs.

Overall, ChatGPT has demonstrated remarkable power in
generating code for benchmark problems, correctly suggesting
26 out of 28 considered problems. Even for the two failed
problems, it was able to generate programs that were very
close to the correct solution. For “Wallis Pi”, it generated a
program that calculates the value of 7 instead of 7/4, whereas
for “Digits”, it successfully separated each digit into a list but
was unable to handle the negative sign (i.e.,”-”).

TABLE I
CHATGPT PERFORMANCE ON BENCHMARK SUITE COMPARED WITH
G3P AND GRAMMAR MAPPING STATUS FOR GPT-GENERATED CODE

G3P ChatGPT | Grammar

Mapping Status

Benchmark Problem

NumberIO

Small Or Large

For Loop Index

Compare String Lengths
Double Letters

Collatz Numbers

Replace Space with Newline
Even Squares

Wallis Pi

String Lengths Backwards
Last Index of Zero

Vector Average

Count Odds

Mirror Image

Super Anagrams

Sum of Squares

Vectors Summed

X-Word Lines

Pig Latin

Negative To Zero
Scrabble Score

Word Stats

Checksum

Digits

Grade

Median

Smallest

Syllables

Number Of Problems Solved

*

X

E ENENENENENENENENEN

N L NENENEN
* *

SRR R N NN NN RN R IR NEN
S R N N N N N N N N NN NN NENENEN

—_
(98]

B. Map GPT-generated Code into Solutions Fit BNF Gram-
mar

Grammar Mapping Status column in Table I shows the
mapping status from the GPT-generated code into solution
that fit the BNF grammar. We categorised the conversion
status into three groups: “Completely Mapped” (noted as v'),
which is able to map all of the GPT-generated codes into a
code that fits the BNF grammar; “Mostly mapped” (noted
as v'*), which indicates that most of the structure has been
successfully mapped; and “Poorly mapped” (noted as X),
which indicates that no informative part has been mapped
successfully. Overall, our proposed algorithm successfully
mapped GPT-generated codes for 13 problems into programs
that fit BNF grammar with no loss of information (i.e.,
Completely Mapped). It also mapped GPT-generated codes
for four problems to programs that are close to being solved
(i.e., Mostly mapped). However, it was unable to map GPT-
generated solutions for 11 problems due to large grammar

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:27:50 UTC from IEEE Xplore. Restrictions apply.

conflicts (i.e., Poorly mapped). The analysis of the mapped
code is discussed in the following subsections.

1) Analysis of Mostly Mapped Programs: In this sub-
section, the GPT-generated codes and our grammar-mapped
programs are reported for the four mostly mapped programs
from table I (i.e., Replace Space with Newline, Even Squares,
Last Index of Zero, and Digits). We also analysed the part that
we were not able to map correctly in each case.

o Replace Space with Newline: For this problem, every-
thing except the calculation of the new line character
using List Comprehension (line 2 in GPT-generated code
in Listing 1. and grammar-mapped code in Listing 2.) is
successfully mapped.

I resO0O = inO.replace(" ", "\n")
> count = len([c for ¢ in in0 if c != " "])
» resl = count

Listing 1. GPT-Generated Program for “Replace Space with Newline”

I resO0 = inO.replace(’ ’,’\n")
» 12 = len(s0)
3 resl = 12

Listing 2. Grammar-Mapped Program for “Replace Space with Newline”

o Even Squares: The grammar-mapped program ignored the
step parameter since BNF grammar does not support for
Range function (line 1 in Listing 3 and Listing 4). It
also replaces is_integer function with predefined boolean
variable since G3P does not support specific function
(line 3 in Listing 3 and Listing 4).

1 for i in range(2, in0O, 2):

if (1i%%0.5) .is_integer():
res0.append (i)

Listing 3. GPT-Generated Program for “Even Squares”

i for i2 in saveRange (int (2.0), 1in0):

if bO:
res0.append (i2)

Listing 4. Grammar-Mapped Program for “Even Squares”

o Last Index of Zero: The Listing 5 and Listing 6 shows the
GPT-generated program and grammar-mapped program
of this problem. It ignored step parameter as mentioned
in the previous problem and also ignored break statement,
which is not supported in BNF grammar.

1 resO = -1
> for i in range(len(in0O)-1, -1, -1):
if in0[i] == 0:
resO0 = 1
break

Listing 5. GPT-Generated Program for “Last Index of Zero”

I resO = —-int (1.0)
> for i2 in saveRange((len(in0) - int(1.0)), -
int (1.0)):
if (getIndexIntList (in0O, i2) == int (0.0)):
res0 = i2

Listing 6. Grammar-Mapped for “Last Index of Zero”

o Digits: The return statement (line 2 in Listing 7 and
Listing 8) is ignored as it is not supported. The negative

sign in line 5 in Listing 7 and Listing 8) replaces with
“0.0” due to only the number can be appended to the list
in BNF grammar.

I 1if in0 ==
return [0]

3 resO = []

i if in0 < O:
res0.append("-")

6 in0 = -in0

7 while inO > O:

8 res0.append(in0 % 10)

9 in0 //= 10

»

Listing 7. GPT-Generated Program for “Digits

if (in0 == int (0.0)):
b0 = b0
resO = 1i0

4 1if (in0 < int (0.0)):

res0.append (int (0.0))
6 while (in0 > int (0.0)):
res0.append (mod (in0, int (10.0)))
8 in0 += int (10.0)

Listing 8. Grammar-Mapped Program for “Digits”

2) Poorly Mapped Programs Analysis: Eleven poorly
mapped problems are categorised and analysed in this sub-
section.

o “String Lengths Backwards”, “Sum of Squares”, “Vec-
tors Summed”, and “Negative To Zero”: Advanced
Python grammar (i.e., List Comprehension) used for
GPT-generated code that BNF grammar is unable to map.

o “Super Anagrams”: The BNF grammar for this problem
does not support compound statements (i.e., if state-
ments), which failed to map the structure from the GPT-
generated code.

o “X-Word Lines”, “Pig Latin”, “Word Stats”: These prob-
lem involves splitting a string, but BNF grammar supports
the Split function as a part of for loop only. It also used
the join function for string, which is not supported.

o “Super Anagrams”, “Scrabble Score”: The GPT-
generated code for these problems contains Dictionary
data type, which is not supported by BNF grammar.

C. Evolve G3P With Seeded GPT Program

The results of our G3P with a seeded GPT-generated pro-
gram (that was mapped to the grammar) compared to G3P are
shown in Table II. Overall, our proposed G3P system (seeded
G3P) successfully solved 16 problems while G3P solved only
12 problems. For the problems “Replace Space with Newline”
and “Last Index of Zero”, G3P with a ChatGPT program
as seed significantly improved the success rate. However,
for the remaining two problems in the “Mostly Mapped”
category (i.e., “Even Square” and “Digits”), G3P was unable to
fix the incomplete/incorrect GPT-generated programs through
evolution even though these GPT-generated programs were
very close to the correct solution.

VI. CONCLUSION AND FUTURE WORK

One of the most effective methods for program synthesis is
widely recognised to be G3P. However, G3P’s inability to scale

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:27:50 UTC from IEEE Xplore. Restrictions apply.

TABLE II

NUMBER OF TIMES OUT OF 100 RUNS A CORRECT PROGRAM IS FOUND
Benchmark Problem G3P Seeded G3P
NumberIlO 39 100
Small Or Large 5 100
For Loop Index 0 100
Compare String Lengths 0 100
Double Letters 0 100
Collatz Numbers 0 100
Replace Space with Newline | 4 43
Even Squares 0 0
Wallis Pi 0 0
String Lengths Backwards 3 4
Last Index of Zero 28 100
Vector Average 0 0
Count Odds 1 100
Mirror Image 33 100
Super Anagrams 0 0
Sum of Squares 0 0
Vectors Summed 0 0
X-Word Lines 0 0
Pig Latin 0 0
Negative To Zero 7 6
Scrabble Score 0 0
Word Stats 0 0
Checksum 0 0
Digits 0 0
Grade 6 100
Median 45 100
Smallest 93 100
Syllables 5 100
Number Of Problems Solved | 12 16

to larger and more complex program synthesis problems has
limited its applicability. Recently, GPTs have shown promise
in revolutionizing program synthesis by generating code based
on natural language prompts. However, challenges such as
ensuring correctness and safety still need to be addressed as
some GPT-generated programs might not work while others
might include security vulnerabilities or blacklisted library
calls. In this work, we proposed to combine GPT (in our
case ChatGPT) with a G3P system, forcing any synthesised
program to fit the BNF grammar—thus offering an opportu-
nity to evolve/fix incorrect programs and reducing security
threats of GPT-generated programs. In our work, we leverage
ChatGPT’s generated programs in G3P’s initial population.
We presented a novel algorithm to map an arbitrary source
program to a program that applies BNF grammar and suc-
cessfully mapped the solution generated by ChatGPT to the
program that suits BNF grammar. We evaluated our system for
problems from the well-known benchmark suite. Our results
show that our approach can effectively map Python programs
to BNF grammar and improve the performance of G3P for
some problems. Our approach has the potential to be used in
a wide range of applications, including software development,
code optimization, and code generation, and could be extended
to other programming languages and grammar.

To tackle the limitations of our proposed approach, we
aim, in future work, to take full advantage of the knowledge
obtained from the seeded solution by adapting evolutionary
operators (the crossover and selection operators) of the G3P
system.

Acknowledgment: partially supported by Science Founda-
tion Ireland grant 13/RC/2094_P2 to Lero.

REFERENCES

[1] S. Forstenlechner, D. Fagan, M. Nicolau, and M. O’Neill, “A grammar
design pattern for arbitrary program synthesis problems in genetic
programming,” in EuroGP, 2017.

[2] 1. A. Niaz, J. Tanaka et al., “Mapping uml statecharts to java code.” in
IASTED, 2004.

[3] H. Dakhore and A. Mahajan, “Generation of c-code using xml parser,”
ISCET, vol. 2010, 2010.

[4] F. Boutekkouk, “Automatic systemc code generation from uml models
at early stages of systems on chip design,” IJCA, 2010.

[51 Y. Bassil and M. Alwani, “Autonomic html interface generator for web
applications,” arXiv, 2012.

[6] T. Beltramelli, “pix2code: Generating code from a graphical user inter-
face screenshot,” in ACM SIGCHI, 2018.

[7]1 N. Tao, A. Ventresque, and T. Saber, “Assessing similarity-based
grammar-guided genetic programming approaches for program synthe-
sis,” in OLA. Springer, 2022.

[8] N. Tao, A. Ventresque, and T. Saber, “Multi-objective grammar-guided
genetic programming with code similarity measurement for program
synthesis,” in IEEE CEC, 2022.

[9] N. Tao, A. Ventresque, and T. Saber, “Many-objective grammar-guided
genetic programming with code similarity measurement for program
synthesis,” in IEEE LACCI, 2023.

[10] J. R. Koza et al., Genetic programming II. MIT press, 1994.

[11] D. Sobania, M. Briesch, and F. Rothlauf, “Choose your programming
copilot: a comparison of the program synthesis performance of github
copilot and genetic programming,” in GECCO, 2022.

[12] E. Pantridge and L. Spector, “Pyshgp: Pushgp in python,” in GECCO,
2017.

[13] M. Brameier, W. Banzhaf, and W. Banzhaf, Linear genetic programming.
Springer, 2007.

[14] J. F. Miller and S. L. Harding, “Cartesian genetic programming,” in
GECCO, 2008.

[15] P. A. Whigham, “Grammatical bias for evolutionary learning.” 1997.

[16] M. O’Neill and C. Ryan, “Grammatical evolution: Evolutionary au-
tomatic programming in a arbitrary language, volume 4 of genetic
programming,” 2003.

[17] M. O’Neill, M. Nicolau, and A. Agapitos, “Experiments in program
synthesis with grammatical evolution: A focus on integer sorting,” in
IEEE CEC, 2014.

[18] T. Saber and S. Wang, “Evolving better rerouting surrogate travel costs
with grammar-guided genetic programming,” in /EEE CEC, 2020.

[19] D. Lynch, T. Saber, S. Kucera, H. Claussen, and M. O’Neill, “Evolution-
ary learning of link allocation algorithms for 5g heterogeneous wireless
communications networks,” in GECCO, 2019.

[20] T. Saber, D. Fagan, D. Lynch, S. Kucera, H. Claussen, and M. O’Neill,
“Multi-level grammar genetic programming for scheduling in heteroge-
neous networks,” in EuroGP, 2018.

[21] T. Saber, D. Fagan, D. Lynch, S. Kucera, H. Claussen, and M. O’Neill,
“A multi-level grammar approach to grammar-guided genetic program-
ming: the case of scheduling in heterogeneous networks,” GPEM, 2019.

[22] T. Saber, D. Fagan, D. Lynch, S. Kucera, H. Claussen, and M. O’Neill,
“Hierarchical grammar-guided genetic programming techniques for
scheduling in heterogeneous networks,” in IEEE CEC, 2020.

[23] T. Saber, D. Fagan, D. Lynch, S. Kucera, H. Claussen, and M. O’Neill,
“A hierarchical approach to grammar-guided genetic programming the
case of scheduling in heterogeneous networks,” in TPNC, 2018.

[24] S. Forstenlechner, D. Fagan, M. Nicolau, and M. O’Neill, “Extending
program synthesis grammars for grammar-guided genetic programming,”
in PPSN. Springer, 2018.

[25] C. D. Manning, “Human language understanding & reasoning,’
Daedalus, 2022.

[26] OpenAl, “Gpt-4 technical report,” 2023.

[27] 1. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone
detection using abstract syntax trees,” in ICSME. IEEE, 1998.

[28] T. Helmuth and L. Spector, “General program synthesis benchmark
suite,” in GECCO, 2015.

[29] T. Helmuth and L. Spector, “Detailed problem descriptions for general
program synthesis benchmark suite,” in University of Massachusetts
Ambherst, 2015.

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:27:50 UTC from IEEE Xplore. Restrictions apply.

