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ABSTRACT 

In our earlier papers, we introduced our adaptive program called “STROGANOFF’ (i.e. 
STructured Representation On Genetic Algorithms for Non-linear Function Fitting), which in- 
tegrated a multiple regression analysis method and a GA-based search strategy. The effectiveness 
of STROGANOFF was demonstrated by solving several system identification problems. This 
paper proposes an  “adaptive recombination” mechanism for STROGANOFF. Our intention is 
to  exploit already built structures by “adaptive recombination”, in which G P  recombination 
is guided by a certain measure. The effectiveness of our approach is shown by the exper- 
iment in predicting a chaotic time series. Thereafter we describe real-world applications of 
STROGANOFF to computer vision. 

1. Introduction 

In traditional G P  (i.e. Genetic Programming), 
recombination can cause frequent disruption of 
building-blocks or mutation can cause abrupt 
changes in the semantics. To overcome these 
difficulties, in our earlier paper [Iba93, 94, 
95a] we introduced our adaptive program called 
“STROGANOFF’ (i.e. STructured Representation 
On Genetic Algorithms for Non-linear Function 
Fitting)’, which integrated a multiple regression 
analysis method and a GA-based search strategy. 
The effectiveness of STROGANOFF was demon- 
strated by solving several system identification 
problems. A tree structure used in STROGANOFF 
is called a “GMDH” tree, in which terminal nodes 
are the input (dependent) variables, and non- 
terminal nodes represent simple polynomial rela- 
tionships between two descendant (lower) nodes. 
STROGANOFF consists of two adaptive processes; 
a) Evolving structured representations using a tra- 
ditional genetic algorithm, b) Fitting parameters of 
the nodes with a multiple regression analysis. The 
advantages of STROGANOFF are summarized as 
follows:- 

1. Analog (i.e. polynomial) expressions com- 
plemented the digital (symbolic) seman- 
tics. Therefore the representational prob- 
lem of standard G P  does not arise for 

‘STROGANOFF is mainly aimed at solving numerical 
problems, such as patter recognitions or time series predic- 
tions. Thus, we call STROGANOFF a numerical GP. 

2. 
STROGANOFF. 
MDL-based fitness evaluation works well for 
tree structures in STROGANOFF, which COII- 
trols GP-based tree search. 

This paper studies another advantage, i.e. the  
adaptive recombination mechanism of 
STROGANOFF. That  is, 

3. Multiple-regressions tuned the node coeffi- 
cients so as to guide G P  recombination effec- 
tively. 

Our intention is to exploit already built structures 
by “adaptive recombination”, in which G P  recorr- 
bination is guided by a certain measure. By “ a d a p  
tive recombination”, we mean controlling the ap- 
plication of recombination operators (i.e. mutation 
or crossover) over the generations, for the sake of 
improvement of search efficiency, which hcLs been 
studied by many researchers in string-based GA 
[Schaffer87,Back91,92,93]. The effectiveness of our 
approach is shown by the experiment in predicting 
a chaotic time series. Thereafter we describe real- 
world applications of STROGANOFF to computer 
vision. 

2. MDL-based guidance for a numeri- 
cal GP 

We propose an  adaptive recombination for a nu- 
merical GP, based on our system-identification ap -  
proach. For this purpose, we use an  MDL (Mini- 
mum Description Length)-based fitness evaluation. 
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The MDL fitness definition for a tree is defined as 
follows [TenorioSO]:- ~ Population Size 

Crossover Prob. 
Mutation Prob. 

Selection Method 
Target Variable 
Terminal Nodes 

Non-terminal Nodes 

# of Training Data 
# of Testing Data 

M D L  = 0.5NlogSL + 0.5klogN (1) 

where N is the number of data pairs, Sa is the 
mean square error, i.e. 

120 
60% 
3.3% 

Tournament 
x ( t  + 85) 

{.(t), 4 t  - 6), 
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500 
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~ ( t  - 12) ,  x ( t  - 18)) 

and k is the number of parameters of the tree 
(see [Iba93] for details). An MDL value involves 
a tradeoff between certain details of the tree, and 
the errors. In general, the smaller the MDL value, 
the better the fitness. Therefore, in order to allow 
adaptive recombination, we calculate MDL values 
for all subtrees in a GMDH tree. When applying 
G P  operations, we use these MDL values to  decide 
which subtree will be chosen (i.e. to  which subtree a 
G P  operator is applied). We show the effectiveness 
of this approach with experiments which predict 
Mackey-Glass time series. 

Mackey-Glass time series is generated by inte- 
grating the following delay differential equation and 
is used as a standard benchmark for prediction al- 
gorithms. 

with a=0.2, b= 0.1 and ~=17, the trajectory 
is chaotic and lies on an approximately 2.1- 
dimensional strange attractor. Following Hart- 
man [Hartmangl], we experimented in predicting 
a:(t+85) given z ( t ) ,  x(t-B), a:@-12) and z(t-18) 
as inputs, and used 500 training and 500 testing 
patterns. 

The STROGANOFF parameters used are shown 
in Table 1. Fig.1 illustrates an exemplar GMDH 
tree for this problem, in which the error of fitness 
ratios (i.e. mean square error, MSE) and MDL val- 
ues are shown for all subtrees. As can be seen from 
the figure, the MSE values monotonically decrease 
towards the root node in a given tree. Thus the 
root node has the lowest (Le. best) MSE value. 
However, the MDL values do not monotonically 
change. Fig.2 shows the averages of subtree depths 
whose MDL values are best (i.e. lowest) and worst 
(i.e. highest). These averages were calculated for 
lo5 randomly generated trees. The horizontal axis 
is the maximum depth of the random trees. The 
nodes of the worst MDL values are relatively lower, 
whereas the nodes of the best MDL values are po- 
sitioned higher. The subtree whose MDL value is 
lowest is expected to give the best performance of 
all subtrees. Therefore, i t  can work as a building- 
block for crossover operations. 

Fig.3 shows the results of experiments in predict- 
ing the Mackey-Glass equation. This figure shows 

MSE : 0.0205 
MDL : -0.0897 

cNiDi3 \ MSE : 0.0213 
x (t-6) ,' MDL : -0.0925 

Fig.l:An Exemplar Tree 

the best MSE's by generation. For the sake of com- 
parison, STROGANOFF was run under the follow- 
ing conditions:. 

1. MDL-based crossover guidance (solid lines). 
When applying crossover operators to  two par- 
ents Pl and P2, execute the followinq ,eps. 

(a) Let Wl and Wz be the subtrets with the 
worst MDL values of 2'1 and Pz. 

(b) Let B1 and B2 be the subtrees with the 

(c) A new child C1 is a copy of PI, in which 

(d) A new child C2 is a copy of Pz, in which 

best MDL values of PI and Pz. 

W, is replaced by B z .  

Wz is replaced by B1. 
2. Usual crossover (dotted lines). 

Crossover points are randomly chosen. 

Stars and triangles represent MSE values for train- 
ing da ta  and test da ta  respectively. This figure 
clearly shows the improvement of search by means 
of crossover guidance not only for training and but 
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discussed in [Iba94b]. 

3.1. Predicting a Face Image 

This experiment is to  predict the center pixel of 

__-- /.-; pixels. The reason for predicting the centeir is 

/--. 
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Fig.3:Prediction of Mackey-Glass Equation 

also for test data.  Thus we have confirmed the 
effectiveness of crossover guidance based on MDL 
values . 

With the above experimental results, we propose 
a type of adaptive recombination based on MDL 
values. For this purpose, in applying crossover or 
mutation operators, we follow the rules described 
below:- 

els). Fig.5(b), (d) and (f)  show images predicted 
from 8 surrounding pixels a t  generations of 0, 10 
and 58 respectively. Fig.S(c), (e) and (g) are those 
errors. As can be seen, the prediction is becom- 
ing more precise over the generations. Since the 
reconstructed images tend to be indistinguishable 
to  human observers, we think the performance of 
our STROGANOFF is relatively high compared to 
traditional vision approaches. 

(256 gray scale) J 

Table 2 STROGANOFF Parameters 
(Predicting central pixels) 

3.2. Classification of Window Patterns 
1. Apply a mutation operator t o  a subtree whose The second experiment involves recognition of more 

complex patterns. We chose the STROGANOFF 
parameters shown in Table 3.  Terminal nodes are 2. Apply a crossover operator t o  a subtree whose 

filtering operators commonly used in computer vi- 
3' When is get a whose MDL sion. For instance, z3 returns a pixel value of 

the resultant image filtered by the Sobel operator 
[Duda73]. We used a "Hursley House" picture of 
512 x 512 pixels (see Fig.6(a)). Fig.6(b) and ( C >  

show positive da ta  (i.e. front door image, 25 x 60 
pixels) and negative da t a  (130 x 60 pixels). The 
goal of this problem is t o  classify window and door 
patterns. The reason for classifying these patterns 

The other is that  STROGANOFF will form a causal nonlinear 
two-dimensional filter, which might be regarded as 

MDL value is larger. 

MDL value is larger. 

value is smaller from another parent. 

3. Applications to Computer Vision 

To show the effectiveness of our approach, we have 
made real-world applications of STROGANOFF to  
computer vision. Because of the limitation of space, 
we briefly describe two experiments. 
applications, such as recognition of simple textures 
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y = f ( X l , X 2 ,  ... , x8) ? 

x8 x l  x2 
~~ 

x7 y x3 
r 
- 

Fig .4 :3~3  Region 

Fig.5(b):Prediction (Generation 0) 

Fig.5( a):Source 

Fig.5(c):Error (Generation 0) 

Fig.5(d):Prediction (Generation 10) Fig.5(e):Error (Generation 10) 

Fig.5(f):Prediction (Generation 58) 

^ ,  

% 

Fig.Ft(g):Error (Generation 58) 
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a “window function” or a “door function”. This is - 
because doors and windows have many character- 
istics (i.e. geometric invariants) in common. For 
instance, as can be seen in Fig.G(a), small black 
squares are regularly lined for window areas as well 
as the front door area. Fig.G(d) shows the result of 
the experiment. The black pixels are classified as 
positive examples (i.e. windows and doors). This 
figure was post-processed through a smoothing fil- 
ter for the purpose of noise reduction. The ac- 
quired tree recognized 19 window areas out of about 
34 windows and doors. Although further post- 
processing is required for more precise recognition, 
we can regard the acquired tree as a sort of “window 
function”. Therefore, we think this approach leads 
to  the realization of a learning vision system, which 
combines various vision operators adaptively for the 
sake of pattern segmentation. 

Fig.6(a):Hursley Mouse Image(Source) 

Fig. 6 (b):Positive Example 

Fig.B( c):Negative Example 

Population Size 
Crossover Prob. 
Mutation Prob. 

Selection Method 
Target Variable 0 

1 
Terminal Nodes xo 

1 1  

2 3  

2 6  

Non-terminal Nodes 

of Testing Data ‘“ 

i 120 
- 

- GO% 
3.3% 

Tournament 
Negative Example 
Positive Example 

Pixel Value (256 gray scale) 
First Differential, 

3 x 3 region 
Laplacian (total differentiail), 

- 
- 

3 x 3 region 
Sobel (total differential), 

3 x 3 region 
Maximum of Pixel Values, 

5 x 5 region 
Minimum of Pixel Values, 

5 x 5 region 
Average of Pixel Values, 

5 x 5 region 
Std. of Pixel Value, 

5 x 5 region 
(a0 + U l Z l  + a 2 2 2  

+asz1zz + a42,” + a5z2}  - 
Negative Example 

(30 x 30 pixels) 
Positivcr Example 
(30 x :io pixels) 
256 x 256 pixels 

- 

Table 3 STRQGANOFF Pa:,ameters 
(Classification) 

This paper proposed recombination :uidaiirr m ~ ! i  
ariism for a numerical G P  ant1 showc d t h c  c f f c r t i ~ (  
ness by experiments. We think th.it G P  is to  
studied in the same point of view of the previoub 
study on GA-search improvement. Our 
exploit already built structures by “adal 
bination”, in which G P  rrcombinat 1011 n i t s  guidcti 
by a measure called MDL. 

Our proposed concept is similar t / i  t h r  IJlock tit 
ness function proposed by [RoscaW]. Ftosca iisrd 
this measure to  discover a useful biiilding block by 
his system AR-GP. When AR-GP solved a parity 
problem, he defined the block fitness function to br 
the same as the usual fitness function (i.e. hits), 
except that  hits were evaluated on a subset of the 
set of fitness cases, determined by fixing the values 
of variables not used in the block to  arbitrary val- 
ues. This is equivalent to  taking simpler (shorter) 
parity examples. 

We believe that  our approach can also realize 
an efficient search strategy for traditional GP  (i.e. 
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symbolic problems), provided tha t  a certain form 
of MDL-like value is well-defined for G P  trees. Our 
recent results have shown the effectiveness of this 
method in various symbolic problems [Iba95b]. We 
are currently working on this topic further. 

4.2. Applications of STROGANOFF to Com- 
puter Vision 

We have shown the effectiveness of STROGANOFF 
with applications to  computer vision. We 
have not yet conducted comparative studies of 
STROGANOFF with other techniques. Since com- 
parison with other computer vision methods is a key 
to elucidate the performance of STROGAKOFF, 
we are currently working on tha t  topic. The im- 
portant decision factors with the above applications 
are as follows:- 

1. the choice of negative examples 
2. the choice of filters (terminal variables) 
3. pre- and post-processing 

Negative examples are usually chosen from the 
background of the images. For instance, in the third 
example, we chose the image of the ground for the 
negative examples. But  there are many alternatives 
for the negative examples. In the extreme case, no 
negative examples are given in the training phase. 
It is well known tha t  the classification performance 
is dependent not only on positive da ta  but also on 
negative data. Therefore, the choice of negative 
da ta  from the training picture is very important. 
We are now researching the influence of negative 
examples on STROGA4NOFF performance. 

We used 7 filters in the set of terminal variables 
(see Table 3 ) .  These are well-known filters in the 
computer vision literature. The choice of filters is 
essential for classification. For instance. when clas- 
sifying pixels belonging to  the sky area from a pic- 
ture, we found tha t  the absolute coordinate values 
(z,y) of the picture is most important. This is be- 
cause the sky usually occupies the upper part of the 
picture, i.e. the vertical coordinates are higher. We 
believe the essential variables are selected through 
the evolution of STROGANOFF trees. 

Pre- and post-processing is usually required for 
image processing. For instance, in the third experi- 
ment, the final figure was post-processed through a 
smoothing filter. However, processes are applied 
heuristically at the moment. Therefore, we are 
now trying to  make an adaptive system, which in- 
tegrates pre-processing, GP-based processing, and 
post-processing. 

5 .  Conclusion 

This paper introduced an “adaptive recombination” 
mechanism for numerical GP. Our goal was to  ex- 
ploit already built structures by “adaptive recombi- 

nation“, in which G P  recombination is guided by a 
certain measure. The effectiveness of our approach 
has been shown by the experiment in predicting a 
chaotic time series, and real-world applications of 
STROGANOFF to  computer vision. 
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