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ABSTRACT

In our earlier papers, we introduced our adaptive program called “STROGANOFEF’ (i.e.
STructured Representation On Genetic Algorithms for NOn-linear Function Fitting), which in-
tegrated a multiple regression analysis method and a GA-based search strategy. The effectiveness
of STROGANOFF was demonstrated by solving several system identification problems. This
paper proposes an “adaptive recombination” mechanism for STROGANOFF. Our intention is
to exploit already built structures by “adaptive recombination”, in which GP recombination

is guided by a certain measure.
iment in predicting a chaotic time series.
STROGANOFF to computer vision.

1. Introduction

In traditional GP (i.e. Genetic Programming),
recombination can cause frequent disruption of
building-blocks or mutation can cause abrupt
changes in the semantics. To overcome these
difficulties, in our earlier paper [Iba93, 94,
95a] we introduced our adaptive program called
“STROGANOFF’ (i.e. STructured Representation
On Genetic Algorithms for NOn-linear Function
Fitting)!, which integrated a multiple regression
analysis method and a GA-based search strategy.
The effectiveness of STROGANOFF was demon-
strated by solving several system identification
problems. A tree structure used in STROGANOFF
is called a “GMDH?” tree, in which terminal nodes
are the input (dependent) variables, and non-
terminal nodes represent simple polynomial rela-
tionships between two descendant (lower) nodes.
STROGANOFTF consists of two adaptive processes;
a) Evolving structured representations using a tra-
ditional genetic algorithm, b) Fitting parameters of
the nodes with a multiple regression analysis. The
advantages of STROGANOFF are summarized as
follows:-

1. Analog (i.e. polynomial) expressions com-
plemented the digital (symbolic) seman-
tics.  Therefore the representational prob-
lem of standard GP does not arise for

ISTROGANOFF is mainly aimed at solving numerical
problems, such as patter recognitions or time series predic-

tions. Thus, we call STROGANOFF a numerical GP.
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The effectiveness of our approach is shown by the exper-
Thereafter we describe real-world applications of

STROGANOFF.

2. MDL-based fitness evaluation works well for
tree structures in STROGANOFF, which con-
trols GP-based tree search.

This paper studies another advantage, i.e. the
adaptive recombination mechanism of
STROGANOFF. That is,

3. Multiple-regressions tuned the node coefli-
cients so as to guide GP recombination effec-
tively.

Our intention is to exploit already built structures
by “adaptive recombination”, in which GP recom-
bination is guided by a certain measure. By “adap-
tive recombination”, we mean controlling the ap-
plication of recombination operators (i.e. mutation
or crossover) over the generations, for the sake of
improvement of search efficiency, which has been
studied by many researchers in string-based GA
[Schaffer87,Back91,92,93]. The effectiveness of our
approach is shown by the experiment in predicting
a chaotic time series. Thereafter we describe real-
world applications of STROGANOFF to computer
vision.

2. MDL-based guidance for a numeri-
cal GP

We propose an adaptive recombination for a nu-
merical GP, based on our system-identification ap-
proach. For this purpose, we use an MDL (Mini-
mum Description Length)-based fitness evaluation.
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The MDL fitness definition for a tree is defined as
follows [Tenorio90}:-

MDL = 0.5NlogS% + 0.5klogN (1)

where N is the number of data pairs, S% is the
mean square €rror, i.e.

2 1 al —_ 2
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and k is the number of parameters of the tree
(see [Iba93] for details). An MDL value involves
a tradeoff between certain details of the tree, and
the errors. In general, the smaller the MDL value,
the better the fitness. Therefore, in order to allow
adaptive recombination, we calculate MDL values
for all subtrees in a GMDH tree. When applying
GP operations, we use these MDL values to decide
which subtree will be chosen (i.e. to which subtree a
GP operator is applied). We show the effectiveness
of this approach with experiments which predict
Mackey-Glass time series.

Mackey-Glass time series is generated by inte-
grating the following delay differential equation and
is used as a standard benchmark for prediction al-
gorithms.

de(t)  ax(t—T)
TR s e R Ul (3)

with a=0.2, b= 0.1 and 7=17, the trajectory
is chaotic and lies on an approximately 2.1-
dimensional strange attractor. Following Hart-
man [Hartman91|, we experimented in predicting
z(t+85) given z(t), (t —6), z(¢—12) and =(t —18)
as inputs, and used 500 training and 500 testing
patterns.

The STROGANOEFF parameters used are shown
in Table 1. Fig.l illustrates an exemplar GMDH
tree for this problem, in which the error of fitness
ratios (i.e. mean square error, MSE) and MDL val-
ues are shown for all subtrees. As can be seen from
the figure, the MSE values monotonically decrease
towards the root node in a given tree. Thus the
root node has the lowest (i.e. best) MSE value.
However, the MDL values do not monotonically
change. Fig.2 shows the averages of subtree depths
whose MDL values are best (i.e. lowest) and worst
(i.e. highest). These averages were calculated for
10% randomly generated trees. The horizontal axis
is the maximum depth of the random trees. The
nodes of the worst MDL values are relatively lower,
whereas the nodes of the best MDL values are po-
sitioned higher. The subtree whose MDL value is
lowest is expected to give the best performance of
all subtrees. Therefore, it can work as a building-
block for crossover operations.

Fig.3 shows the results of experiments in predict-
ing the Mackey-Glass equation. This figure shows

| Population Size 120
Crossover Prob. 60%
Mutation Prob. 3.3%

Selection Method Tournament
Target Variable z(t + 85)

{z(t), =(t - 6),

z(t — 12), z(t — 18)}
{au + a1z1 + a2
+aszizs + asz) + aszi}
# of Training Data 500
# of Testing Data 500

r Terminal Nodes

Non-terminal Nodes

Table 1 STROGANOFF Parameters
(Predicting the Mackey-Glass equation)
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Fig.1:An Exemplar Tree

the best MSE’s by generation. For the sake of com-
parison, STROGANOFF was run under the follow-
ing conditions:-

1. MDL-based crossover guidance (solid lines).
‘When applying crossover operators to two par-
ents P, and P,, execute the following .ieps.

(a) Let W, and W, be the subtrees with the
worst MDL values of P; and P,.

(b) Let By and B; be the subtrees with the
best MDL values of P; and P,.

(c) A new child (7 is a copy of Py, in which
W 1s replaced by Bs.

(d) A new child C; is a copy of P, in which
W, is replaced by Bj.

2. Usual crossover (dotted lines).
Crossover points are randomly chosen.

Stars and triangles represent MSE values for train-
ing data and test data respectively. This figure
clearly shows the improvement of search by means
of crossover guidance not only for training and but
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Fig.2:Average Depths of Node of Best and
Worst MDL values

7" Crossover by MDL

0.0215 “ Random Crossover
| A Test dara
0.021 [Srd Training data

0 2000 4000 6000 8000

Fig.3:Prediction of Mackey-Glass Equation

also for test data. Thus we have confirmed the
effectiveness of crossover guidance based on MDL
values.

With the above experimental results, we propose
a type of adaptive recombination based on MDL
values. For this purpose, in applying crossover or
mutation operators, we follow the rules described
below:-

1. Apply a mutation operator to a subtree whose
MDL value is larger.

2. Apply a crossover operator to a subtree whose
MDL value is larger.

3. When 2 is done, get a subtree whose MDL
value is smaller from another parent.

3. Applications to Computer Vision

To show the effectiveness of our approach, we have
made real-world applications of STROGANOFF to
computer vision. Because of the limitation of space,
we briefly describe two experiments. The other
applications, such as recognition of simple textures

and more complex patterns, have been reported and
discussed in [Ibad4b].

3.1. Predicting a Face Image

This experiment is to predict the center pixel of
a 3 x 3 region given the values of the other 8
pixels. The reason for predicting the center is
that STROGANOFF will form a causal nonlinear
two-dimensional filter. This experiment is related
to the previous research [Sanger91], in which four
128 x 128 8 bit images of human faces under similar
lighting conditions were used and radial basis func-
tions were trained and tested for approximation.

We used the parameters shown in Table 2. The
terminal variables are eight pixel values (normalized
range between 0 and 1) around the center pixel
(output variable, i.e. y) (see Fig.4). Fig.5(a) shows
a face image used for training data (100 x 100 pix-
els). Fig.5(b), (d) and (f) show images predicted
from 8 surrounding pixels at generations of 0, 10
and 58 respectively. Fig.5(c), (e) and (g) are those
errors. As can be seen, the prediction is becom-
ing more precise over the generations. Since the
reconstructed images tend to be indistinguishable
to human observers, we think the performance of
our STROGANOFF is relatively high compared to
traditional vision approaches.

[ Population Size 120
Crossover Prob. 60%
Mutation Prob. 3.3%
Selection Method Tournament
Target Variable Center Pixel of 3 x 3 Region
Terminal Nodes {z1,@2, -, 28}

{ao +a121 +azz
+aszizs + aszi + az23 }
100 x 100 pixels
(256 gray scale)

Non-terminal Nodes

F# of Training Data

Table 2 STROGANOFF Parameters
(Predicting central pixels)

3.2. Classification of Window Patterns

The second experiment involves recognition of more
complex patterns. We chose the STROGANOFF
parameters shown in Table 3. Terminal nodes are
filtering operators commonly used in computer vi-
sion. For instance, =3 returns a pixel value of
the resultant image filtered by the Sobel operator
[Duda73]. We used a “Hursley House” picture of
512 x 512 pixels (see Fig.6(a)). Fig.6(b) and (c)
show positive data (i.e. front door image, 25 x 60
pixels) and negative data (130 x 60 pixels). The
goal of this problem is to classify window and door
patterns. The reason for classifying these patterns
is that STROGANOFF will form a causal nonlinear
two-dimensional filter, which might be regarded as

99

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:19:10 UTC from IEEE Xplore. Restrictions apply.



| x8 x1  x2
Px7 Y | X3
‘x6 ;XS x4

Fig.4:3x3 Region

Fig.5(a):Source

Fig.5(b):Prediction (Generation 0) Fig.5(c):Error (Generation 0)

Fig.5(d):Prediction (Generation 10) Fig.5(e):Error (Generation 10)

T

Fig.5(f):Prediction (Generation 58) Fig.5(g):Error (Generation 58)
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a “window function” or a “door function”. This is
because doors and windows have many character-
istics (i.e. geometric invariants) in common. For
instance, as can be seen in Fig.6(a), small black
squares are regularly lined for window areas as well
as the front door area. Fig.6(d) shows the result of
the experiment. The black pixels are classified as
positive examples (i.e. windows and doors). This
figure was post-processed through a smoothing fil-
ter for the purpose of noise reduction. The ac-
quired tree recognized 19 window areas out of about
34 windows and doors. Although further post-
processing is required for more precise recognition,
we can regard the acquired tree as a sort of “window
function”. Therefore, we think this approach leads
to the realization of a learning vision system, which
combines various vision operators adaptively for the
sake of pattern segmentation.

Fig.6(a):Hursley House Image(Source)
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Fig.6(b):Positive Example

Fig.6(c):Negative Example
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Fig.6(d):Result

Population Size 120
Crossover Prob. 60%
Mutation Prob. 3.3%
Selection Method Tournament

Target Variable 0 Negative Example

1 Positive Example
Terminal Nodes @ | Pixel Value (256 gray scale)
T4 First Differential,

3 X 3 region

z2 | Laplacian (total differential),
3 X 3 region

T3 Sobel (total differential),

3 X 3 region

T4 Maximum of Pixel Values,
5 X 5 region

Ts Minimum of Pixel Values,
5 x 5 region

T Average of Pixel Values,
5 X 5 region

7 Std. of Pixel Value,

5 x 5 region

{ao +aiz; +azx2
2 2
+azz12z + aszi +aszy }

Non-terminal Nodes

# of Training Data Negative Example
(30 x 30 pixels)
Positive Example

(30 X 30 pixels)

# of Testing Data 256 x 256 pixels

(256 gray scale)

Table 3 STROGANOFF Parameters
(Classification)

4. Discussions

4.1. Recombination Guidance for GP

This paper proposed recombination ruidance mech-
anism for a numerical GP and showed the effective-
ness by experiments. We think that GP is to he
studied in the same point of view of the previous
study on GA-search improvement. Qur gr. = was to
exploit already built structures by “adapt’ve recom-
bination”, in which GP recombination was guided
by a measure called MDL.

Our proposed concept is similar to the block fit-
ness function proposed by [Rosca94]. Rosca used
this measure to discover a useful building block by
his system AR-GP. When AR-GP solved a parity
problem, he defined the block fitness function to be
the same as the usual fitness function (i.e. hits),
except that hits were evaluated on a subset of the
set of fitness cases, determined by fixing the values
of variables not used in the block to arbitrary val-
ues. This is equivalent to taking simpler (shorter)
parity examples.

We believe that our approach can also realize
an efficient search strategy for traditional GP (i.e.
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symbolic problems), provided that a certain form
of MDL-like value is well-defined for GP trees. Our
recent results have shown the effectiveness of this
method in various symbolic problems [Iba95b]. We
are currently working on this topic further.

4.2. Applications of STROGANOTF to Com-
puter Vision

We have shown the effectiveness of STROGANOFF
with applications to computer vision. We
have not yet conducted comparative studies of
STROGANOFF with other techniques. Since com-
parison with other computer vision methodsis a key
to elucidate the performance of STROGANOFF,
we are currently working on that topic. The im-
portant decision factors with the above applications
are as follows:-

1. the choice of negative examples
2. the choice of filters (terminal variables)
3. pre- and post-processing

Negative examples are usually chosen from the
background of the images. For instance, in the third
example, we chose the image of the ground for the
negative examples. But there are many alternatives
for the negative examples. In the extreme case, no
negative examples are given in the training phase.
It is well known that the classification performance
is dependent not only on positive data but also on
negative data. Therefore, the choice of negative
data from the training picture is very important.
We are now researching the influence of negative
examples on STROGANOFF performance.

We used 7 filters in the set of terminal variables
(see Table 3). These are well-known filters in the
computer vision literature. The choice of filters is
essential for classification. For instance, when clas-
sifying pixels belonging to the sky area from a pic-
ture, we found that the absolute coordinate values
(z,y) of the picture is most important. This is be-
cause the sky usually occupies the upper part of the
picture, i.e. the vertical coordinates are higher. We
believe the essential variables are selected through
the evolution of STROGANOFF trees.

Pre- and post-processing is usually required for
image processing. For instance, in the third experi-
ment, the final figure was post-processed through a
smoothing filter. However, processes are applied
heuristically at the moment. Therefore, we are
now trying to make an adaptive system, which in-
tegrates pre-processing, GP-based processing, and
post-processing.

5. Conclusion

This paper introduced an “adaptive recombination”
mechanism for numerical GP. Our goal was to ex-
ploit already built structures by “adaptive recombi-

nation”, in which GP recombination is guided by a
certain measure. The effectiveness of our approach
has been shown by the experiment in predicting a
chaotic time series, and real-world applications of
STROGANOFF to computer vision.
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