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Abstract:

This paper proposes a mixed integer-programming model
for order planning of iron-steel enterprise. Because this
problem is a kind NP-hard problem and the size of this
problem is bigger, the genetic algorithm based on repeatable
natural scale code and 3-mutation operator is presented to
solve the model. For ensuring the quality of copy strategy of
the genetic algorithm, this paper develops an improving
selection function for copying. Finally, this paper uses the
order planning of Shanghai Baoshan iron-steel enterprise as
an example to test the model and the algorithm. The
numerical analysis shows that the model comes up to the
production process, the solutions obtained by this algorithm
are superior to those obtained by the human-machine system.
So, the model and the algorithm are valid.
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1. Introduction

The production planning system of steel plants
includes year-planning, month-planning, order planning and
day scheduling. The order planning arranges production of
orders according to the requirement of customers and
capacity of machines with the result of year-planning, then
day-scheduling schedules the production concretely
according to the results of the order planning and
considering the technical rules of the production. The main
task of order planning is to plan the production period of an
order according to the delivery of the order and the capacity
of every machine. When the route of an order has been
determined, the order planning will determine the
production time of the order on every working procedure.

Many researchers have done much research about
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programming the order planning. C.N.Redwine applied the
mixed integer-programming model and Bender Partitioning
algorithm to find minimum total tardiness for order
planning [1]. They introduced into the tardiness penalty list.
The penalty list can show the important degree of the orders.
Teng Xue analyzed the production process of the hot
milling set of the steel tube plant [2]. He took the month as
the minimum time unit and developed the order assignment
model and carried on the optimization analysis and test.

This paper presents a mathematical model and
algorithm of the order planning. The research work has
character as follows: (1) Taking five-day as the smallest
time unit, minimizing the total earliness (i.e., ahead of due
date) penalty and tardiness penalty of the orders, an mixed
integer programming model of the order planning is
presented. (2) The model is solved using the genetic
algorithm based on the repeatable natural number code and
the 3-mutation operator. (3) The model and algorithm are
tested through experiments using practical data. The result
analysis shows the model and algorithm are valid.

2. Mathematical Model of Order Planning
2.1. Description of the Order Planning

The order planning can be described as follows
mathematically. Suppose that there are N orders and M
working procedures for the steel plant production. The
weight, due date and production route (i.e., the working
procedures and the optional machines of every working
procedure) of every order is known. The aggregated
working procedures passed by every order are the same, but
the machine passed by each order on one working
procedure may be different. The capacity of every machine
is known. Each order must pass all procedures. Each order
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can be processed by one and only one machine in one
working procedure. Each machine can simultaneously
process only one order at most. The OP will decide the
machine passed by each order in every procedure and the
time each order passes every working procedure while
satisfying capacity constraint and precedence relation
between procedures, so that to minimize the total earliness
penalty and tardiness penalty of the orders.

From the point of view of planning and scheduling
theory: If the machine of the working procedure passed by
every order is determinate, this is a general Flow Shop (FS)
problem. If there is more than one machine that can be
chosen by one order in one working procedure this is a
Flexible Flow Shop (FFS) problem. The FS problem is
relatively simpler. The FFS problem is much more
complicated than the FS problem. The FFS problem is an
extension of the traditional FS problem and exists generally
in the steel-iron industry and petrochemical industry. It is
first defined by Salvador based on findings from
petrochemical industry [3]. In this paper we treat the order
planning as FFS problem. The order planning plans the time
segment (i.e., unit) each order is processed, but does not
arrange the sequence of the orders in each time segment.

2.2. Mathematical Model

The mathematical model is
assumptions as follows:

(a) Take the five-days as the time unit for the due date
and processing time.

(b) The total usable machine-hour of each machine set
of each procedure in every time segment (five-days) is
known.

(c) For different machine in the same working
procedure, the expended capacity for the same order is
different.

(d) At each working procedure, the processing time of
each order is less than five days. Following the production
route, several working procedures of one order can be
processed in the same time segment (five-days).

(e) The middle stock isn’t considered, because it has
been considered into every working procedure.

Notations:

N denotes total quantity of the orders.

M denotes quantity of procedures.

M ; denotes quantity of parallel machine in working

presented on the

procedure j .
T denotes planning period.

[d; —u;,d; +v;] denotes delivery due date window

oforder i (known), where d; is due date.

t; denotes the processing time of the order ion the
working procedure ;.

e; denotes the actual weight of the order i (known).

e; denotes the expended capacity of the order i on
the machine % of the working procedure ; (known).

¢; denotes the completion time of order i, i.e., the

time segment that the order i passes the last working
procedure.

E;, denotes the total usable machine-hour of the
machine k of the working procedure ; in the time

segment ¢ (known).

1, orderiis processed on the machine k of

the procedure j in the time segment t
0, otherwize

Xijt =

Where, x;;, is decision variable.
i denotes the order quantity, j denotes the working

procedure quantity, k£ denotes the machine quantity, ¢

denotes time segment.
i=1..,N j=L. .M

k=l..M; t=1..T

The mathematical model is stated as follows:

N
min) e (o max 0,d; —u; —¢;} + fmax P,c; —d; —v;}) (1)
i=l

S.t.

TM/
Zng/kfl

t=1k=1 ()

N

2 (xzjkt e )< Ejkt (3)

i=1

¢ =liy 4)
M,

ty = Xxye =1, t=12,.,T} ®)
k=1

i Sty j=2,.. M (6)

xijkt € {Oal} s (7)

Where, «; denotes the earliness penalty coefficient
of the order i, and f; denotes the tardiness penalty

coefficient of the order 7. The goal is to minimize the total
earliness penalty and tardiness penalty of all orders. The
constraint (2) ensures that each order must pass every
working procedure and each order must and can only be
processed by one machine in each working procedure. The
constraint (3) ensures that the total quantity of the orders
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processed by one machine cannot exceed the capacity of
this machine in every five-day. The equation (4) shows
what ¢; is. The equation (5) shows that the time when the

order i is processed in working procedure j . The

constraint (6) ensures that the time when the order i is
processed in working procedure ;j does not earlier than

the time when this order is processed in working procedure
j—1. The formula (7) denotes the domain of the decision

variables.
3. Design of the Algorithm

Our order-planning model is a non-linear mixed
integer-programming model. For the variable dimension is
so many and the goal function is non-linear, the calculation
complexity is increased. There are hundreds of orders
requiring to be planned in our problem, so it is difficult to
be solved by the accurate algorithm. It had been proved that
FFS problem is a kind of NP-hard problem even if there are
two working procedures in this problem and there are
parallel machines on one of them and the goal function is to
minimize makespan [4]. FFS problem is difficult to be
solved to get the optimal solution by the accurate algorithm
in a reasonable time [5]. The genetic algorithm has been
used for the combination optimum problems, e.g., TSP and
flow-shop, etc [6]. It can obtain the global optimum search
using the genetic operations, e.g., selection and crossover
and mutation etc. The genetic algorithm doesn’t decrease
the search space, but it can search bigger space in shorter
time for the parallel colony search. So, the genetic
algorithm will be used to solve the order-planning model in
this paper.

3.1. Encoding of Chromosome

In this paper, a type of the repeatable natural number
code is used to design the gene  a; of the chromosome.

A = {aijk} ’
Where, i=1..,N,

a;; denotes the time segment when the order i

jElewM | k=1 M.

passes the machine & in the working procedure ;.
The chromosome A4 can be expanded as follows:
{0111,‘11125--»“111\/11 e QM1 QMM >+ A NMM,, §
Where, we call the
{aill’ailz""5ai1M1 s Aip 15 Aipg 25 Aipvg } as a big

segment, and call the {a;,a;,,..a;, } as a small
J

segment. There is only one nonzero gene in every small
segment. (If the gene is zero, this machine does not process
the corresponding order.) This kind of code ensures the
constraint (2) is satisfied. The nonzero gene is a time value
(the time when the order i passes the machine £ of the
procedure ;). In one big segment, the scale of the value of
every nonzero gene is a natural number which scale from 1
to (T+t;) and the values between every two small
segments must satisfy the constraint (4). In different big
segments, the value can be repeatable. The completion time

C; is the value of the nonzero gene of the M th small

segment {1, s, dippy,, } Of the i th big segment.

3.2. Initial population

According to the demand of the chromosome code, the
initial population P(t), that is consist of L chromosomes, is
produced by stochastic method.

First, produce a stochastic integer k;; whose scale is
from 1 to M, and take k;; as the number of the nonzero
element. Then, a stochastic integer whose scale is from 1 to
T +1, is produced as the value of the element a;; . In
this way, the first small segment is produced. Then a
stochastic integer k;, whose scale is from 1 to M, is
produced as the number of the element that is nonzero.
Again, a stochastic integer whose scale is from a;, ~to
T +1, is produced as the value of the element a5, . In
this way, the second small segment is produced. In the same
way, other small segments of the big segment
{41115 @112 505 11pg, 5ees Qg1 Qg2 s Qiagng,, § - @€ produced.
(Here, ¢, is an assistant integer.)

Repeat (1) till other big segments of this chromosome
are produced. In this way, a chromosome is produced.

Repeat (1) and (2) till other L -1 chromosomes are
produced.

3.3. Copy strategy

The goal function of the /th chromosome of the
population is:

N

Fp =3 e;(a; max{0,d; —u; —c;} + ff; max{0,c; —d,; —v;})
i=1

(3

For limiting the quantity of the chromosomes that do
not satisfy the constraint (3) in the new population, we
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design a special selection function for copying. Define that
the infeasible distance ID; of each chromosome about the

constraint (3) denotes the unfeasibility degree of the
chromosome /.

MM;T N
ID; =% % > max{(} X e —E 4,),0} ©
J=lk=1r=1 i=1

Then, the selection function f; for copying is:

Ji1=C—F,—iD, (10)
Where
MM;T N
C=max{F; +y > > max{(}, Ximei —E )04+ A
leQ j=lk=ls=1 i=1
(11)

0={,2,..,L} denotes the set of the chromosome in

the population.

L denotes population size.

7 denotes unfeasible penalty coefficient about the
constraint (3).

A denotes an appropriate positive integer.

In this algorithm, the roulette method is used for
copying. The selection probability for copying can be

obtained according to the formula (12) as follows.
P, :LL 1=12,..,L (12)
2/
a=1

If the value of C is only taken as a bigger constant,
the value of f; obtained will cover up the quality
difference among the chromosomes when the goal values of
the chromosomes are not big and there is greater difference
among them. So, the value of C is obtained by the
formula (11) in the course of copying.

3.4. Crossover operator

According to the crossover probability P., the Part

Segment Crossover (PSC) is adopted for crossover. The
big segments between two stochastic positions of two
chromosomes are exchanged. (Crossover only exchanges
the values that are nonzero of the corresponding small
segments, but does not change the positions of the nonzero
values.)

3.5. Mutation operator

Because there are big segments and small segments in
every chromosome, the mutation course cannot be
completed by a common mutation operator. For ensuring
the global search and satisfying the constraint (2) and (4),

the 3-mutation operator (include mutation among the big
segments, mutation in the small segments, mutation in the
big segments) is produced in this algorithm. The 3-mutation
operator changes the positions and values of the nonzero
genes of the chromosomes, where the mutation 2 achieves
the position change while the mutation 1 and 3 achieve
value change. At the same time, the course of selecting
better chromosome of the new chromosomes obtained by
mutation is completed according to the fitness function as
follows.

. . MM;T
fi=C —F =y > > max{(Q Xye —E )00 (13)
J=lk=li=1

Where, C' is an adequately big constant.
Mutation 1: mutation among the big segments

Taking the big segment as the unit, the 2-exchange
mutation is accomplished among the big segments B; of

the chromosome A'={B,,B,,..,By} according to the
mutation probability P, .

(a) For the first chromosome of the population,
suppose a=1.

(b) A stochastic decimal fraction whose scale is from 0
to 1 is produced randomly. If this decimal fraction isn’t
bigger than P, , then the chromosome will be mutated,

turn to (c). Otherwise, turn to (d).

(c) Every two big segments are exchanged respectively
(The corresponding values that are nonzero are exchanged
only, but the positions of the values are not exchanged.) and
the best exchange that gets a new chromosome with the
bigger fitness is selected. If the fitness of the new
chromosome obtained by this best exchange is bigger than
the fitness of the original chromosome, the original
chromosome is replaced with the new chromosome.
Otherwise, the new chromosome is not accepted. Then, the
mutation in the small segments (mutation 2) and the
mutation in the big segments (mutation 3) begin to proceed.
Then turn to (d).

(d) If a<L, then a=a+1, turn to (b). Otherwise,
end.

Mutation 2: mutation in the small segments

Suppose chromosome A'={B,,B,,...,By}=4.

Where, B = {@ji1ses Qjipg, oeeos ing 1> Ging 205 diaarg,, b 18
the i th big segment.

Suppose  B; ={S;1,Si2 > Sipr }

denotes the big
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segment, Sy»:{am,a,-jz,...,a”Mj} denotes the small

segment. According to the mutation probability P,,, the

2-exchange mutation is executed among the genes of every

S; of the chromosome. The detailed process is illustrated

as follows:

(a) To this chromosome, suppose the small segment is
j=1.

(b) A decimal fraction whose scale is from 0 to 1 is
produced randomly. If this decimal fraction isn’t bigger
than P,,, the chromosome will be mutated, turn to (c).

Otherwise, turn to (d).
(c) The nonzero values are put on other M; —1

positions respectively, and the best exchange is selected. If
the fitness of the new chromosome obtained by the best
exchange is bigger than the fitness of the original
chromosome, the original chromosome is replaced with the
new chromosome. Otherwise, the new chromosome is not
accepted. Then, turn to (d).

(d) If j<M,then j=j+1, turn to (b). Otherwise,
end.

Mutation 3: mutation in the big segments

(a) To this chromosome, suppose the big segment is
i=1

(b) A decimal fraction whose scale is from 0 to 1 is
produced randomly. If this decimal fraction isn’t bigger
than P, the chromosome will be mutated, turn to (c).
Otherwise, turn to (d).

(c) First, an integer whose scale is from 1 to 7 +¢, is

produced randomly again as the value of the element a;;;, .

il

Then, an integer whose scale is from a;;;

i

to T+¢,; is
produced randomly as the value of the element a;,, . In

the same way, the other small segments of the big segment

{a1115 @112 55 Q1 1pg, 5ees Q1ag1> A1pg2 50 Giany,, § - AT€ produced.

If the fitness of the new chromosome obtained by this way
is bigger than the fitness of the original chromosome, the

original chromosome is replaced with the new chromosome.

Otherwise, the new chromosome is not accepted. Then, turn
to (d).

(d) If i<N, then i=i+1, turn to (b). Otherwise,
end.

3.6. Character and Procedure of the Algorithm

In conclusion, this algorithm improved the traditional

genetic algorithm in the following aspects:

(a) A type of the repeatable natural scale code is
produced, and the constraint (2) and (4) are satisfied.

(b) The 3-mutation operator proposed in this algorithm
can complete the whole mutation process effectively.

(c) The whole process of this algorithm ensures the
feasibility of the constraint (2) and (4).

(d) For satisfying the computational demand, the
function for copying and the fitness function for evaluating

are different. To the different population, the value C isa
variable with formula (8). No matter what the chromosomes
change, the formula (8) can represent the different quality
among the chromosomes. So, it ensures effective copying
function.

(e) In the formula (13), which denotes the fitness
function, the objective function of the model and the
infeasible distance about the constraint (3) are considered.
Selecting better solution is to select the solution with
smaller objective function value and smaller infeasible
distance, but doesn’t refuse the solution whose infeasible
distance is nonzero to enter the new population. This search
method includes the interior-point method (IPM) and the
outer-point method (OPM). The IPM searches from the
infeasible solution to the feasible solution while the OPM
searches from the feasible solution with worse quality to the
feasible solution with better quality. This hybrid search
method ensures the global property of searching.

4. Experimental Results

This paper takes the order planning of ShangHai
Baoshan iron-steel enterprise as an example to test our
algorithm.

In the practical production, the planner will plan the
orders that must be finished in two months, so 7 =12. This
paper uses the examples with N =51, N= 138 and
N =249 respectively to test our model and algorithm. The
algorithm is programmed in C++ and runs on a personal
computer, where M =3, M, =M, =1, M;=5, the
biggest generation MAXGEN is 100, the population size is
20, P=03,P,=03,P,=03,P,;=03, and the
infeasibility penalty coefficient ¥ =10. Table 1 shows the
computational results.

Table 1. Experimental results

n VMM VGA E, T,
51 12800 3475 4100 3725 3 0

138 32500 10800 12350 11300 8 2 8

249 100800 31470 36210 33570 19 5 26
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Where, n denotes order quantity, VMM denotes the
goal value obtained by man—machine method, Bf denotes

the best value, Wf denotes the worst value, Mf denotes

the average value, V'GA denotes the goal value obtained
by the genetic algorithm, £, denotes quantity of the

earliness orders in Bf , T, denotes quantity of the

tardiness orders in Bf, ¢ denotes computation time.

From Table 1, the best solution obtained by our
algorithm is superior to the solution obtained by the
man-machine method. The earliness and tardiness order
quantity is smaller. For example, the test result of 51 orders
shows that the earliness order quantity is 3 and the earliness
time is all five days, the tardiness order quantity is 0.

For showing the variety of the goal value and the
unfeasibility penalty, we take the 51 orders as the example.
Figure 1 shows the graph of the objective (F) and the
unfeasibility penalty (B) of the best solution. When B=0,
the solution is feasible solution.

800000
600000
400000
200000

25000
20000
15000
10000

5000

—F
—B

6 9 121518 21 24 27 30 33 36

generation

Figure 1. Graph of the objective (F) and the
unfeasibility penalty (B) (¥ =10)

Figure 1 shows that the convergent speed of B is very
high and B reaches 0 at the 13th generation, i.e. the feasible
solution is obtained at the 13th generation. The convergent
speed of F is lower than the convergent speed of B, F is
near to the best value at the 25th generation, and F reaches
the best at the 34th generation and doesn’t change clearly
any longer.

5. Conclusion
Taking the five-day as the smallest time unit,

minimizing the total earliness penalty and tardiness penalty
of the orders as the target, we develop a mixed integer

programming mathematical model of the order planning.

The genetic algorithm based on repeatable natural
scale code and 3-mutation operator is presented. Adopting
the search method including IPM and OPM, we solve the
problem successfully.

The computational results show that: the best solution
obtained by the algorithm is superior to the solution
obtained by the man-machine method; the relative
difference between the worst value and the best value does
not exceed 20%; the relative difference between the average
value and the best value does not exceed 8%; the earliness
and tardiness order quantity is very small and the
computational speed is very fast. Thus, our algorithm is
proven to be effective.

Through the experimental analysis, this paper
recommends the infeasible penalty coefficient y =8 ~15.
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