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Abstract: 
This paper proposes a mixed integer-programming model 

for order planning of iron-steel enterprise. Because this 
problem is a kind NP-hard problem and the size of this 
problem is bigger, the genetic algorithm based on repeatable 
natural scale code and 3-mutation operator is presented to 
solve the model. For ensuring the quality of copy strategy of 
the genetic algorithm, this paper develops an improving 
selection function for copying. Finally, this paper uses the 
order planning of Shanghai Baoshan iron-steel enterprise as 
an example to test the model and the algorithm. The 
numerical analysis shows that the model comes up to the 
production process, the solutions obtained by this algorithm 
are superior to those obtained by the human-machine system. 
So, the model and the algorithm are valid.  
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1. Introduction 

The production planning system of steel plants 
includes year-planning, month-planning, order planning and 
day scheduling. The order planning arranges production of 
orders according to the requirement of customers and 
capacity of machines with the result of year-planning, then 
day-scheduling schedules the production concretely 
according to the results of the order planning and 
considering the technical rules of the production. The main 
task of order planning is to plan the production period of an 
order according to the delivery of the order and the capacity 
of every machine. When the route of an order has been 
determined, the order planning will determine the 
production time of the order on every working procedure. 

 Many researchers have done much research about 

programming the order planning. C.N.Redwine applied the 
mixed integer-programming model and Bender Partitioning 
algorithm to find minimum total tardiness for order 
planning [1]. They introduced into the tardiness penalty list. 
The penalty list can show the important degree of the orders. 
Teng Xue analyzed the production process of the hot 
milling set of the steel tube plant [2]. He took the month as 
the minimum time unit and developed the order assignment 
model and carried on the optimization analysis and test.  

This paper presents a mathematical model and 
algorithm of the order planning. The research work has 
character as follows: (1) Taking five-day as the smallest 
time unit, minimizing the total earliness (i.e., ahead of due 
date) penalty and tardiness penalty of the orders, an mixed 
integer programming model of the order planning is 
presented. (2) The model is solved using the genetic 
algorithm based on the repeatable natural number code and 
the 3-mutation operator. (3) The model and algorithm are 
tested through experiments using practical data. The result 
analysis shows the model and algorithm are valid. 

2. Mathematical Model of Order Planning 

2.1. Description of the Order Planning 

The order planning can be described as follows 
mathematically. Suppose that there are N orders and M 
working procedures for the steel plant production. The 
weight, due date and production route (i.e., the working 
procedures and the optional machines of every working 
procedure) of every order is known. The aggregated 
working procedures passed by every order are the same, but 
the machine passed by each order on one working 
procedure may be different. The capacity of every machine 
is known. Each order must pass all procedures. Each order 
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can be processed by one and only one machine in one 
working procedure. Each machine can simultaneously 
process only one order at most. The OP will decide the 
machine passed by each order in every procedure and the 
time each order passes every working procedure while 
satisfying capacity constraint and precedence relation 
between procedures, so that to minimize the total earliness 
penalty and tardiness penalty of the orders.  

From the point of view of planning and scheduling 
theory: If the machine of the working procedure passed by 
every order is determinate, this is a general Flow Shop (FS) 
problem.  If there is more than one machine that can be 
chosen by one order in one working procedure this is a 
Flexible Flow Shop (FFS) problem. The FS problem is 
relatively simpler. The FFS problem is much more 
complicated than the FS problem. The FFS problem is an 
extension of the traditional FS problem and exists generally 
in the steel-iron industry and petrochemical industry. It is 
first defined by Salvador based on findings from 
petrochemical industry [3]. In this paper we treat the order 
planning as FFS problem. The order planning plans the time 
segment (i.e., unit) each order is processed, but does not 
arrange the sequence of the orders in each time segment. 

2.2. Mathematical Model 

 The mathematical model is presented on the 
assumptions as follows: 

(a) Take the five-days as the time unit for the due date 
and processing time. 

(b) The total usable machine-hour of each machine set 
of each procedure in every time segment (five-days) is 
known. 

(c) For different machine in the same working 
procedure, the expended capacity for the same order is 
different. 

(d) At each working procedure, the processing time of 
each order is less than five days. Following the production 
route, several working procedures of one order can be 
processed in the same time segment (five-days). 

(e) The middle stock isn’t considered, because it has 
been considered into every working procedure. 

Notations: 
N  denotes total quantity of the orders. 
M  denotes quantity of procedures. 

jM  denotes quantity of parallel machine in working 
procedure j . 

T  denotes planning period. 
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the earliness penalty coefficient iα  
ihe order , and iβ  denotes the tardiness penalty 

coefficient of the order The goal is to minimize the total 
earliness penalty and tardiness penalty of all orders. The 
constraint (2) ensures that each order must pass every 
working procedure and each order must and can only be 
processed by one machine in each working procedure. The 

i . 

constraint (3) ensures that the total quantity of the orders 

denotes 
of t
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processed by one machine cannot exceed the capacity of 
this machine in every five-day. The equation (4) shows 
what ic  is. The equation (5) shows that the time when the 
order i  is processed in working procedure j . The 
constraint (6) ensures that the time when the order i  is 
proces  in working procedure j  does not earlier than 
the time when this order is processed in working procedure 

1−j . The formula (7) denotes the domain of the decision 
variables. 
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design a special selection function for copying. Define that 
the infeasible distance lID  of each chromosome about the 
constraint (3) denotes e unfeasibility degree of the 
chromosome l . 
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segment,  denotes the small 

segment. According to the mutation probability ， the 
2-exchange mutation is executed among the genes of every 

 of the chromosome. The detailed process is illustrated 
as follows: 

},...,,{ 21 jijMijijij aaaS =

Mj < 1+= jj

,...,,,...,,..., 211111 1 MMM aaa

N< 1+= ii

2mP
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(a) To this chromosome, suppose the small segment is 
. 1
(b) A decimal fraction whose scale is from 0 to 1 is 

produced randomly. If this decimal fraction isn’t bigger 
than , the chromosome will be mutated, turn to (c). 
Otherwise, turn to (d). 

2mP

(c) The nonzero values are put on other  
positions respectively, and the best exchange is selected. If 
the fitness of the new chromosome obtained by the best 
exchange is bigger than the fitness of the original 
chromosome, the original chromosome is replaced with the 
new chromosome. Otherwise, the new chromosome is not 
accepted. Then, turn to (d). 

1−j

(d) If , then , turn to (b). Otherwise, 
end. 

Mutation 3: mutation in the big segments 

(a) To this chromosome, suppose the big segment is 
. 1
(b) A decimal fraction whose scale is from 0 to 1 is 

produced randomly. If this decimal fraction isn’t bigger 
than , the chromosome will be mutated, turn to (c). 
Otherwise, turn to (d). 

3mP

(c) First, an integer whose scale is from 1 to  is 
produced randomly again as the value of the element . 

Then, an integer whose scale is from  to T  is 

produced randomly as the value of the element . In 
the same way, the other small segments of the big segment 

 are produced. 
If the fitness of the new chromosome obtained by this way 
is bigger than the fitness of the original chromosome, the 
original chromosome is replaced with the new chromosome. 
Otherwise, the new chromosome is not accepted. Then, turn 
to (d). 

dt

1ia

dt

2ik

1ik

11 ikia

}
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(d) If i , then , turn to (b). Otherwise, 
end. 

3.6. Character and Procedure of the Algorithm 

In conclusion, this algorithm improved the traditional 

genetic algorithm in the following aspects: 
(a) A type of the repeatable natural scale code is 

produced, and the constraint (2) and (4) are satisfied. 
(b) The 3-mutation operator proposed in this algorithm 

can complete the whole mutation process effectively. 
(c) The whole process of this algorithm ensures the 

feasibility of the constraint (2) and (4). 
(d) For satisfying the computational demand, the 

function for copying and the fitness function for evaluating 
are different. To the different population, the value  is a 
variable with formula (8). No matter what the chromosomes 
change, the formula (8) can represent the different quality 
among the chromosomes. So, it ensures effective copying 
function. 

C

(e) In the formula (13), which denotes the fitness 
function, the objective function of the model and the 
infeasible distance about the constraint (3) are considered. 
Selecting better solution is to select the solution with 
smaller objective function value and smaller infeasible 
distance, but doesn’t refuse the solution whose infeasible 
distance is nonzero to enter the new population. This search 
method includes the interior-point method (IPM) and the 
outer-point method (OPM). The IPM searches from the 
infeasible solution to the feasible solution while the OPM 
searches from the feasible solution with worse quality to the 
feasible solution with better quality. This hybrid search 
method ensures the global property of searching. 

4. Experimental Results 

This paper takes the order planning of ShangHai 
Baoshan iron-steel enterprise as an example to test our 
algorithm.  

 In the practical production, the planner will plan the 
orders that must be finished in two months, so T =12. This 
paper uses the examples with 51, 138 and 

249 respectively to test our model and algorithm. The 
algorithm is programmed in C++ and runs on a personal 
computer, where , , , the 
biggest generation MAXGEN is 100, the population size is 
20, , , , , and the 
infeasibility penalty coefficient 

=N

2 =M

3. P
10=

=

3M

3

N

.0

=N

3=M

3.0=

11 =M

02 =m 3m

5=

3.0=cP 1mP P =
γ . Table 1 shows the 

computational results. 
Table 1. Experimental results 

VGA  n VMM

Bf  Wf  Mf  
nE nT t

min

51 12800 3475  4100 3725 3 0 3
138 32500 10800  12350 11300 8 2 8
249 100800 31470  36210 33570 19 5 26
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Where,  denotes order quantity,  denotes the 
goal value obtained by man–machine method,  denotes 
the best value,  denotes the worst value,  denotes 
the average value,  denotes the goal value obtained 
by the genetic algorithm,  denotes quantity of the 
earliness orders in ,  denotes quantity of the 
tardiness orders in , 

n VMM
Bf
MfWf

VGA

Bf
Bf

nE

nT
t  denotes computation time. 

From Table 1, the best solution obtained by our 
algorithm is superior to the solution obtained by the 
man-machine method. The earliness and tardiness order 
quantity is smaller. For example, the test result of 51 orders 
shows that the earliness order quantity is 3 and the earliness 
time is all five days, the tardiness order quantity is 0. 

For showing the variety of the goal value and the 
unfeasibility penalty, we take the 51 orders as the example. 
Figure 1 shows the graph of the objective (F) and the 
unfeasibility penalty (B) of the best solution. When B=0, 
the solution is feasible solution. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Graph of the objective (F) and the 
unfeasibility penalty (B) (γ =10) 

Figure 1 shows that the convergent speed of B is very 
high and B reaches 0 at the 13th generation, i.e. the feasible 
solution is obtained at the 13th generation. The convergent 
speed of F is lower than the convergent speed of B, F is 
near to the best value at the 25th generation, and F reaches 
the best at the 34th generation and doesn’t change clearly 
any longer. 

5. Conclusion 

Taking the five-day as the smallest time unit, 
minimizing the total earliness penalty and tardiness penalty 
of the orders as the target, we develop a mixed integer 

programming mathematical model of the order planning. 
The genetic algorithm based on repeatable natural 

scale code and 3-mutation operator is presented. Adopting 
the search method including IPM and OPM, we solve the 
problem successfully. 

The computational results show that: the best solution 
obtained by the algorithm is superior to the solution 
obtained by the man-machine method; the relative 
difference between the worst value and the best value does 
not exceed 20%; the relative difference between the average 
value and the best value does not exceed 8%; the earliness 
and tardiness order quantity is very small and the 
computational speed is very fast. Thus, our algorithm is 
proven to be effective. 

Through the experimental analysis, this paper 
recommends the infeasible penalty coefficient 15~8=γ . 
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