ICROS-SICE International Joint Conference 2009
August 18-21, 2009, Fukuoka International Congress Center, Japan

Robust Genetic Network Programming Using SARSA Learning

for Autonomous Robots
Sung Gil Park, Shingo Mabu and Kotaro Hirasawa

Graduate School of Information, Production and Systems, Waseda University
2-7 Hibikino, Wakamatsu-ku, Kitakushu, Fukuoka 808-0135, Japan
(E-mail: sgrhermes@ruri.waseda.jp, mabu@aoni.waseda.jp, hirasawa@waseda.jp)

Abstract: Adaptive and robust control has attracted increasing attention in the field of artificial intelligence. Adaptive
controller makes use of some adaptation mechanisms which are designed to learn explicitly the unknown parameters of
the system and the uncertain situation under control. An evolutionary algorithm called ”Genetic Network Programming,
GNP’ has been already proposed to control intelligence systems. In conventional GNP, when they have a certain problems
such as the hardware or software of the system, the nodes and connections of GNP may not work well. In this paper, GNP

with SARSA Learning is applied to construct the robust GNP for autonomous robots.

Keywords: Genetic Network Programming, Evolutionary Computation, Reinforce Learning, KHEPERA robot

1. INTRODUCTION

Interest in autonomous robotics is increased in the in-
dustries such as space exploration robots in the high-tech
industry or home cleaning robots in the housing indus-
try. The autonomous robotics and robust systems are
necessary studies for intelligence robotics. Adaptive con-
troller makes use of some adaptation mechanisms which
are designed to learn explicitly the unknown parameters
of the system and uncertain situations. An evolutionary
algorithm called ”Genetic Network Programming, GNP”
has been proposed to control intelligent systems. GNP
represents its solutions as graph structures, which can
improve the expression ability and performances [1-2].
GNP showed the efficient results in autonomous robotics.
GNP can determine an action by not only the current, but
also the past information. The graph structure of GNP
has an implicit memory function and the ability to re-use
nodes, where compact structures are obtained. On the
other hand, GNP combined with Reinforcement Lean-
ing [3] (GNP-RL) [4-5] has been also studied. GNP-RL
can search for better solutions during every judgment and
processing in task execution, besides the evolutional op-
erations executed after the task. And it also takes the ad-
vantage of the sophisticated diversified search ability of
evolution and the intensified search ability of learning.
However, it is hard to reuse the function in a certain cir-
cumstance like hardware and software problems in test-
ing field.

In this paper, in order to find more robust structures of
GNP for dealing with such problems, Robust GNP with
SARSA Learning is proposed. The Robust GNP aims
at designing controllers that lead the system to a desired
performance despite the presence of uncertainties.
Robust GNP with SARSA Learning is applied to the
KHEPERA robot and compared to the conventional
method of GNP.

Authorized licensed use limited to: Wikipedia. Downloaded on glg%z_z,zom at 15:19:08 UTC from IEEE Xp'Pﬁo&?ﬁ}’éﬁﬁ?@éGBEUsza ¥400 © 2009 SICE

2. ROBUST GNP WITH SARSA
LEARNING

2.1 Basic Structure of GNP-SARSA

Robust GNP-SARSA has a number of judgment nodes
and processing nodes. Fig. 1 is the@graph structure of
Robust GNP-SARSA.

Judgment nodes have conditional branch decision
functions. Each judgment node returns a judgment result
and determines the next node to be executed. Processing
nodes determine the agent’s actions / processings in order
to achieve the task. Processing nodes have no conditional
branch.

Each node has a number of sub nodes which have its
own function. In each node, one of the sub nodes is se-
lected by SARSA-Learning based on Q values.

In Robust GNP-SARSA, when some problems occur
in the nodes, the function (sub node) to be executed in
the node is changed to another function to overcome the
problems by SARSA-Learning and to improve the ro-
bustness of GNP.

2.2 Gene Structure of GNP-SARSA

Human has a chromosome and it has a lot of informa-
tion called gene. Similarly, the structure of GNP-SARSA
is determined by the combination of the genes. Fig. 2
is a basic gene structure of GNP-SARSA. The gene has
the node number which is i (0<i<n-1, n is the total num-
ber of nodes). The first part of the gene is the node gene.
K; represents the node type. There are three types of
nodes, start node, judgment node and processing node.
K;=1 means judgment node and K;=2 means processing
node. ID; is a code number of the judgment or process-
ing, and it is represented as a unique number shown in
the LABRARY. GNP-SARSA has time delays. The time
delay of GNP-SARSA spent on judgment or processing
is represented by d;,,,. And df‘m, dﬁn are the ones spent
on the transition from node i to the next nodes. The su-
perscripts A, B,- - - represent the judgment results, for ex-
ample, dﬁ shows the time delay when the judgment re-
sult is ”A”. m shows the sub node number. A judgment

Processing node

Fig. 1 Basic graph of Robust GNP-SARSA
Node gene

[K 1Dy Q d
A

D, Q|

Connectlon gene

[c* a* Torarl o) db fes dl

Fig. 2 Basic graph of Robust GNP-SARSA

node has some sub nodes which have their own judgment
functions, and one of them is selected by SARSA. In this
paper, for simplicity, % , d2 are set at zero time unit,
d;m of each judgment node and processing node are set
at one time unit. The one step is defined in such a way
that one step ends when an agent uses 10 time units or
more time units. ();,, shows the Q value of sub node im.
C#A , OB show the node number of the next node from

sub node im.

2.3 Judgment Node

As a human can analyze the information to take an
action, a judgment node has a function to judge environ-
ments to take an action. Fig. 3 shows a judgment node
of Robust GNP-SARSA. Here, the proposed method is
applied to the KHEPERA robot which has 8 sensors.
The information comes from the sensors to the judgment
node. Each judgment node has several judgment func-
tions (J1, Ja, ---) in the node, and one of them are selected
by e-greedy policy[3]. That is, with the probability of 1-
€, the sub node with the maximum Q value is selected,
and with the Q value is selected, and with the probability
of ¢, the sub node is randomly selected. Suppose the sub
node with ;1 is selected and its function is J; (judge sen-
sor 1), the following procedure is executed. If the value
x1 of sensor 1 is equal or larger than threshold a, the next
node becomes node C7}. Otherwise it becomes C5.

2.4 Processing Node

Agents take actions when the current node is a pro-
cessing node. Fig. 4 shows the processing node of Robust
GNP-SARSA. In the processing node, some robot actions
are prepared as sub nodes. And one of the actions is se-
lected based on the Q values. The KHEPERA robot has
two wheels which are the left one and the right one. The
actions represent left and right wheel speed. The speed

Next node

Cu'npuc xa" with the threshold ™"

N
\)= ¥-~~->

Ou / ~~~~~~~~~~~

Yy gt

Fig. 3 Judgment Node i of Robust GNP-SARSA

-4

Next node

Fig. 4 Processing Node i of Robust GNP-SARSA

of the KHEPERA robot can take the range from -10 to
+10. The plus value means going forward and the minus
means going backward. Each processing node has sev-
eral processing functions (P;, Ps, - - -), and one of them
are selected by e-greedy policy. For example, if the sub
node P;; is selected, the next node is C’,ﬁ.

2.5 Evolution Phase

Fig. 5 shows the whole flowchart of GNP-SARSA.
An, initial population of randomly generated candidate
solutions comprises the first generation. The fitness func-
tion is applied to the candidate solutions. Parents for the
genetic operations are chosen by tournament selection,
and the offspring is generated by crossover and mutation.

2.5.1 Crossover

1. Select two parents using tournament selection.

2. Each node is selected as a crossover node with the
probability of P..

3. Two parents exchange the genes of the correspond-
ing crossover nodes.

4. Generated new individuals become the new ones in
the next generation.

2.5.2 Mutation
1. Select one individual using tournament selection.
2. Mutation operator.

2-1. connection: Each branch becomes connected to
other node randomly with the probability P,,.

2-2. sensor number: Each function of sub nodes in
judgment nodes is changed to other one randomly with
the probability P,,.

2-3. speed value: Each function of sub nodes in pro-
cessing nodes is changed to other one randomly with the
probability P,,.

3. Generated new individual becomes the new one in
the next generation.

Authorized licensed use limited to: Wikipedia. Downloaded on ‘Jlg‘f42_2,2024 at 15:19:08 UTC from IEEE Xplore. Restrictions apply.

T| initiaize a population |

|
| 4__’1 SARSA Learning

I\

Training

[Evolution

No

[Yes

Testing TEST z' SARSA Learning

Fig. 5 Flow Chart

| Experimental Environment |

© Sensor (8) ﬂ Wheel (L, R}

Fig. 6 Experiment Environment

2.6 Learning Phase

The SARSA Learning updates Q value based on the
following equation.

Q(st,a1) +— Q(se,ae) +
afry +vQ(si41, ar41) — Q(8¢,a¢)] (1)

where,

s¢ : current state(node) at time step ¢

a; : function of node selected at state s;
ry @ reward at time step ¢

a :learning rate(0<a<l1)

v :discount rate(0<y<1)

2.6.1 The procedure of SARSA Learning

1. At time t, GNP refers to QQ;1, Q;2, - - - of the node i
and select one of them based on the Q values.

2. GNP executes the function of the sub node with the
selected Q value.

3. At time 7+ 1, the current node is changed to the next
node j and GNP selects one Q value in the same way as
step 1.

4. Q value is updated as equation (1).

S.t—t+1,i+].

6. Steps 2 5 are repeated until the final step.

2.6.2 The function of SARSA Learning

SARSA Learning is concerned with how an agent
ought to take actions in the environment directly from the
experiences without a model environment. The method

Table 1 Simulation Condition

Generation 1000
Individual 300
Best Individual 1
Judgment nodes 8
Processing nodes 2
Crossover Rate 0.1
Mutation Rate 0.01
Learning Rate 0.7
Discount Rate 0.3

Table 2 Nodes Functions

Symbol ID Content

J1, - ,Js 1,---.8 Judge the value of the sensor 1,- - -,8
Py 1 Determine the speed of the right wheel
P 2 Determine the speed of the left wheel

updates Q values based on other learned estimates, with-
out waiting a final outcome. Even if an accident occurs,
the learning procedure is the same (stepl 5) to overcome
the accident. For example, when an accident occurs at
sub node i/ in Fig. 3, that is, sensor 1 is broken, GNP
still executes the function of the sub node with the se-
lected Q value and Q value is updated based on equation
(1). So, the Q value of the selected sub node is getting
decreased because of the accident, that is, the robot could
not work because of the accident. When the Q value be-
comes smaller than the Q values of other sub nodes, the
sub node to be selected is changed to the appropriate one
based on the Q values. Finally, the robot can work again
adaptively.

3. SIMULATIONS

In order to evaluate the ability of the proposed method,
it is applied to the controller of the KHEPERA robot.

3.1 Settings of the KHEPERA

Fig. 6 shows the experiment environment of the sim-
ulations. The simulated KHEPERA robot includes 8 in-
frared sensors allowing it to detect the proximity of ob-
jects in front of it, behind it and to the right and left side
of it by reflection. Each sensor returns a value ranging be-
tween zero and 1023. 1023 means that an obstacle (wall)
is very close to the sensor, while zero means that no ob-
stacle is perceived. Intermediate values may give an ap-
proximate idea of the distance between the sensors and
obstacle. Two motors turn the right and left wheels of
the robot, respectively, and they can take the speed value
ranging between -10 and +10.

3.2 Settings of GNP-SARSA

Table.1 shows the simulation conditions. There are
300 individuals and the generation is 1000 to get the best
individual for the robot. 8 judgment nodes, 2 processing
nodes and 1 start node are prepared. The parameters of
evolution such as crossover rate and mutation rate are set

Authorized licensed use limited to: Wikipedia. Downloaded on ‘_]lgf52_2,2024 at 15:19:08 UTC from IEEE Xplore. Restrictions apply.

Fithess 1

-~
'\
- s
Best individuo!

- -
s
[
. ~
» anr A o »n R

Generation

Fig. 7 Fitness curve in the training

-1~
¢ \
! 1
-y |
LI B 1] on an ~ =

Time

Fig. 8 Change of rewards obtained by Robust GNP-
Sarsa

Reward(t)

Exploration —
Search

at 0.1, 0.01, respectively. At the end of each generation,
170 new individuals are generated by crossover, 120 new
individuals are generated by mutation, and 10 elite indi-
viduals are selected to the next population.

Table.2 shows the nodes functions. There are eight
kinds of judgment nodes which judge the eight sensors,
respectively. There are two kinds of processing nodes
which control the speed of the right wheel and the left
wheel, respectively.

3.3 Reward and Fitness Functions

A reward function defines the goal for the robust GNP-
SARSA. The sole objective of the agent is to maximize
the total reward it receives in the running period. In this
paper, the KHEPERA robot is to do the as Wall-following
behavior. In this simulation, one step includes 10 time
units, each judgment node spends one time unit, and pro-
cessing node spends five time units. In each step, GNP
judges the values of the sensors and determines the speed
of the wheels based on Q values. The total step is 1000
and then fitness is calculated. Robot learns the wall-
following behavior to maximize the fitness. The reward
function is the following.

Vr(t) + Vi(t) o
20

(1_ /|VR(t);(_)VL<t)|)XC)

Vr(t) :right wheel speed at time step ¢

Vi(t) :left wheel speed at time step ¢

C' =1 : all the sensor values are less than 1000,
and at least one of them is more than 100

C =0 :otherwise

Reward(t) =

where,

Reward(t)

—]

on n ”~ =0

Stop
Time

Fig. 9 Change of rewards obtained by GNP without
Sarsa

Work Agoin
by SARSA Learning
7

Reward(t)

Error is occur €|

Fig. 10 Change of rewards obtained by Robust GNP-
Sarsa when the accident occurs

A fitness function is a particular type of objective func-
tion that quantifies the optimality of a solution in GNP-
SARSA.

Fitness(k) = 1% | Reward(t) 3)
where,

K : total time step

3.4 Training and Testing Results

Fig. 7 shows the fitness curve in the training simula-
tion where the individuals to be used in the testing simu-
lation one evolved. The fitness value is very low at the be-
ginning of the generations, but the individuals are evolved
by the genetic operations during evolution. So, the fitness
improves as the generation goes on.

Fig. 8 shows the testing result using the best individ-
ual which is obtained by evolution. Using this individual,
the robot works well in the environment. During the test-
ing sometimes the rewards were small because SARSA-
Leaning has an exploration function to explore unknown
environments to find better actions.

Fig. 9 shows the testing result without SARSA when
the accident occurs. The accident is that one of the sen-
sors is broken by the accident, so the sensor returns incor-
rect information to the judgment node. If the front sensor
is broken, the robot tries to go forward even if there is an
obstacle. At the time t=10 in Fig. 9, robot can not move
because of the accident.

Fig. 10 shows the testing result when the accident
occurs, but SARSA-Learning overcomes the accident.
When the accident occurs, the robot can not move as

Authorized licensed use limited to: Wikipedia. Downloaded on ‘Jlg‘f62_2,2024 at 15:19:08 UTC from IEEE Xplore. Restrictions apply.

usual for a while after the accident. Since the reward of
the sub node related to the accident is getting smaller, the
node transition is changed to the appropriate sub node to
overcome the accident by SARSA-Learning. Finally, the
robot moves again step by step.

4. CONCLUSIONS

In this paper, Robust Genetic Network Programming
with SARSA-Learning (Roust GNP-SARSA) is pro-
posed. SARSA Learning is concerned with how an agent
ought to take actions in environments directly from expe-
riences without a model, so, GNP can change the node
transition in order to control the robot well in accidents.
The proposed method can get a good result, when the sys-
tem is damaged and the correct sensor information can
not be obtained. Henceforth, the generalization ability of
Robust GNP-SARSA is studied in more detail and it is
executed in more complicated environments.

REFERENCES

[1] S. Mabu, K. Hirasawa and J. Hu, ”A Graph-based
Evolution Algorithm: Genetic Network Program-
ming (GNP) and Its Extension Using Reinforcement
Learning”, Evolutionary Computation, MIT Press,
Vol. 15, No. 3, pp. 369-398, 2007.

[2] H. Katagiri, K. Hirasawa and J. Hu, ”Ge-
netic network programming-application to intelligent
agents”, in Proc. of the IEEE International Confer-
ence on System, Man and Cybernetics, pp. 3829-
3834, 2000.

[3] R. S. Sutton and A. G. Barto, "Reinforcement Lear-
ing”, MIT Press Cambridge, Massachusetts, London,
England, 1998.

[4] S. Mabu, K. Hirasawa and J. Hu, “Genetic Net-
work Programming with Learning and Evolution for
Adapting to Dynamical Environments,” In Proc. of
the Congress on Evolutionary Computation, pp.67-
76, 2003.

[5] S. Mabu, K. Hirasawa and J.Hu, ”Genetic Network
Programming with Reinforcement Learnging and its
Performance Evaluation,” in Proc. of the Genetic and
Evolutionary Computation Conference, part 2, pp.
710-711, 2004.

Authorized licensed use limited to: Wikipedia. Downloaded on gw_z,zom at 15:19:08 UTC from IEEE Xplore. Restrictions apply.

