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Abstract—Peptide-binding proteins play significant roles in various applications such as gene expression,metabolism, signal

transmission, DNA (Deoxyribose Nucleic Acid) repair, and replication. Investigating the binding residues in protein-peptide complexes,

especially from their sequence only, is challenging experimentally and computationally. Although several computational approaches have

been introduced to determine and predict these binding residues, there is still ample room to improve the prediction performance. In this

work, we introduce a novel ensemblemachine learning-based approach called SPPPred (Sequence-based Protein-Peptide binding

residue Prediction) to predict protein-peptide binding residues. First, we extract relevant sequential information and employ genetic

programming algorithm for feature construction to findmore distinctive features.We then, in the next step, build an ensemble-based

machine learning classifier to predict binding residues. The proposedmethod shows consistent and comparable performance on both ten-

fold cross-validation and independent test set. Furthermore, SPPPred yields F-Measure (F-M), Accuracy(ACC), andMatthews’ Correlation

Coefficient (MCC) of 0.310, 0.949, and 0.230 on the independent test set, respectively, which outperforms other competingmethods by

approximately up to 9%on the independent test set. SPPPred is publicly available.https://github.com/GTaherzadeh/SPPPred.git.

Index Terms—Binding residue prediction, ensemble learning, genetic programming, protein-peptide interaction, sequence-based

Ç

1 INTRODUCTION

NUCLEIC acids, proteins, carbohydrates, lipids, and pepti-
des are usually identified as vital molecules and have

various functions upon interaction [1], [2]. The interactions
between proteins and peptides play critical roles in several
applications such as biological functions, cancer treatment,
signal cascades, regulatory networks, immune responses,
and enzyme inhibition [1], [2], [3]. These interactions are often
identified using various experimental approaches. However,
experimental approaches are limited due to the small peptide
sizes, short separated binding motifs, weak binding affinity,
internal protein labeling, and expensive, laborious, and time-
consuming analysis of the obtained spectra [2], [4], [5], [8]. In
this way, computational approaches, including template-,
machine learning-, and deep learning-based, are employed
on the sequence or structure of proteins to assist experimental
approaches. Traditionally, structural templates were known
to be effective because of limitations such as the transient
nature of protein-peptide interactions and peptide flexibility.
Several template-based methods, such as PDBinder [4],
SPOT-peptide [5], and GalaxyPepDock [6], were built to

predict protein-peptide binding sites. Inter Pep [7], employed
sequence information, structural templatematches, hierarchi-
cal clustering, and the Random Forest (RF) algorithm to iden-
tify peptide-binding sites. Taherzadeh et al. [8] proposed a
novel structure-based approach to predict peptide-binding
interactions by applying the RF classifier and a clustering
algorithm, respectively. Moreover, Shafiee and Fathi [9], con-
firmed a Genetic Programming(GP) feature construction,
Support Vector Machine (SVM) classifier, and Ordering
Points To Identify the Clustering Structure (OPTICS)cluster-
ing by employing predicted structure and sequence-based
information. Although the prediction performance of struc-
ture-based methods is more accurate, they are limited to pre-
dicting the binding sites of structurally known complexes
only. In 2016, the first sequence-based method was intro-
duced by Taherzadeh et al. [10] for the prediction of protein-
peptide residue-level interactions. In other studies, [11], [12],
various machine learning-based techniques (the SVM classi-
fier as well as the Extra Tree (ET) classifier and Bagging Clas-
sifier (BC)) for predicting protein-peptide binding residues
by employing predicted structure- and sequence-based infor-
mation were adopted. For the prediction of peptide-binding
residues, a consensus-based (combination of sequence and
two RF template-based) method was proposed [13]. Besides,
machine-learning methods can be categorized as individual-
and ensemble-based. RF was adopted as the ensemble-based
framework to predict binding residues in both bound and
unbound structures [14]. The stacking-based method with
two-tier learning [15] and the ensemble-based method con-
sisting of distinct learning algorithms [16] to detect residue-
based patterns by sequence information was proposed. In the
last few years, the deep learning (DL) computing paradigm
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has been adopted as an effective technique in the machine
learning (ML) community. For instance, Convolutional Neu-
ral Networks (CNNs) [17], [18] are widely applied in
Sharma’s s innovations. His team proposed CNN based on
the transformation of non-image data to image ones. Their
proposed frameworkswere adopted by employing RNA-Seq,
vowels, text, and artificial [17] as well as high-dimensional
omics data and effective sets of genes [18]. In this way, a mul-
tiple-task deep learning approach [19] as well as, the deep-
based predictors [20], [21], [22] were established to predict the
protein-peptide interactions and protein-peptide binding
regions in terms of sites and residues. Other deep learning-
based models [23], [24] were developed for the prediction of
peptide-binding regions using both the sequence and struc-
ture of proteins. However, the prediction performance of
these deep learning algorithms highly depends on the num-
ber of very limited complexes.

As a result, our explicit objectives based on motivating
questions are the following.

1. Are the constructed features more meaningful and
distinctive high-level? How?

2. How is the effect of the GP-based feature construc-
tion techniques on the performance of the types of
machine-learning-based classifiers including indi-
vidual and ensemble-based?

3. Is the robustness of the proposed predictor justified
in protein-peptide binding residue detection?

4. Is an interdisciplinary evaluation of the given bioin-
formatics case study?

Eventually, this paper is organized into the following sec-
tions. Section 2 provided the Materials and methods. In
Section 3, experimental results and discussion are elab-
orated. Finally, Section 4 presents conclusions and
future direction.

2 MATERIALS AND METHODS

2.1 The Proposed Method

The focus of our Sequence-based Protein-Peptide binding
residue Prediction (or SPPPred) method relies on a novel

two-level framework including feature construction and
ensemble-based classification. In other words, feature con-
struction generates discriminative and new high-level fea-
tures as well as discovering the hidden relations of
constructing new high-level and low-level features [25], [26]
which improves the prediction performance. Although the
training phase of GP is time-consuming, it increases the
accuracy of the classifier while significantly reducing the
feature space dimension. Moreover, we are dealing with
imbalanced data for the prediction of peptide-binding resi-
dues in proteins. In the protein sequence, the number of
non-peptide-binding residues is about 17 times more than
the number of peptide-binding residues which leads to a
biased prediction. To address this problem, an ensemble
learning approach is adopted. Therefore, the proposed
method is the fusion of a bagging-based classifier along
with GP-based feature construction for predicting the class
of residues in a given protein sequence that binds with pep-
tides. Fig. 1 illustrates the overall framework of SPPPred.
According to it, at first, we extract the basic feature groups
namely Half Sphere Exposure Feature Group (G-HSE), Sec-
ondary Structure Group (G-SS), Accessible Surface Area
Group (G-ASA), Position-Specific Scoring Matrix Group (G-
PSSM), Sequence Group (G-SEQ), and physicochemical
properties from input protein sequences. Next, the GP-
based feature enhancement technique is applied for feature
construction based on all feasible combinations of basic
(unenhanced) features. Furthermore, dataset transformation
with constructed (or enhanced) features is converted into
new datasets (or transformed datasets) including trans-
formed independent tests and transformed training sets.
Finally, the ensemble-based classification is trained by using
the transformed features of the training set without balanc-
ing binding and non-binding residues.

In the test phase, basic (or primary) features such as G-
HSE, G-SS, G-ASA, G-PSSM, G-SEQ, and physicochemical
properties are extracted from the input protein sequence.
Next, enhanced features are obtained through the proposed
GP-based feature enhancement and then the ensemble-
based binary prediction (binding or non-binding residues)
is employed.

Fig. 1. The proposed architecture of SPPPred.

2030 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGYAND BIOINFORMATICS, VOL. 20, NO. 3, MAY/JUNE 2023

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:21:14 UTC from IEEE Xplore.  Restrictions apply. 



2.2 Basic Features Extraction

Since the structures of several proteins for our dataset are
not yet solved. According to our investigation, sequence
evolution, as well as predicted structural information was
extracted. Subsequently, various discriminative features are
categorized into six groups based on their characteristics
from the protein sequence.

2.2.1 G-HSE

Solvent exposure of amino acid residues presented signifi-
cant information for investigating and predicting protein
function, interactions, and structure [27]. G-HSE is a mea-
sure of protein solvent exposure that describes how buried
amino acid residues are in the protein. Half-sphere expo-
sure [27] is calculated using the Contact Numbers (CN) in
upward and downward hemispheres along with a pseudo-
Cb-Ca vector. Cb-Ca vector is calculated by dividing the
contact number sphere into two halves using the perpendic-
ular plane to the Cb-Ca vector. This division of the contact
number sphere produces HSE-up and HSE-down [27]. In
this study, SPIDER3 [28] is used to obtain this feature group.

2.2.2 G-SS

The Secondary Structure (SS) represents the three-dimen-
sional conformation of local segments of the protein [10].
Predicted SS values are SS probabilities for the type of clas-
ses such as a-helix, b-sheet, and coil. These predicted values
are obtained using SPIDER 2.0 [29].

2.2.3 G-ASA

The Accessible Surface Area (ASA) refers to the surface area
of a residue within a protein that is accessible to a solvent.
The ASA values are obtained by SPIDER 2.0 [29] and trans-
formed into the relative ASA (or rASA) values [10]. Then,
the average rASA of adjacent amino acid residues is calcu-
lated within window sizes ranging from one to the optimal
window size value (or rASA-avg) [10].

2.2.4 G-PSSM

The Position-Specific Scoring Matrix (PSSM) is the type of
evolutionary-based information scheme that is commonly
employed for the pattern representation of proteins. This
representation is captured based on a category of sequences
formerly aligned by using sequence or structural similarity
[30]. PSSM is a matrix of L � 20 dimensions, where L is the
protein length.

Protein pssm ¼
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.

Ei! 1
..
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. . .
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Columns indicate the 20 standard amino acid types (k ¼
1. . ..20) and each row in PSSM represents an amino acid in
the given protein sequence. The sequence profiles are
obtained using PSI-BLAST [31] by setting the cut-off E-value
to 0.001 with three iterations [32].

2.2.5 G-SEQ

A 20-dimensional binary vector represents the position of
each amino acid in the protein sequence by encoding the
amino acid to 1 or 0. The type of amino acid residue at the
sequence position is encoded by 1 otherwise 0 [33].

2.2.6 Physicochemical Properties

Each amino acid type has different physicochemical charac-
teristics. In this study, steric parameters, hydrophobicity,
volume, polarizability, isoelectric point, helix, and sheet
probability physicochemical properties are used [10] and
extracted by using the DisPredict2 [34]. We would like to
note that, all feature groups are normalized using

x0 ¼ ðx�min xð ÞÞ =ðmax xð Þ �min xð ÞÞ (1)

Where, x and x’ are defined as the original and normal-
ized values of the basic feature, respectively.

2.3 GP-Based Feature Construction

Recently, Evolutionary Computation (EC), like GP, has been
extensively employed in feature construction [35] to con-
struct new high-level features [36] as well as generate com-
plex pattern representations such as trees, mathematical
models with different operators, and functions automati-
cally [37]. Likewise, the GP’s procedure is depicted in Algo-
rithm 1. Subsequently, this procedure contains generating
an initial population of programs, evaluating computer pro-
grams, selecting, and evolving [38]. The proposed feature
construction system (Fig. 2) is illustrated by constructing
more meaning according to the hidden relations of low-
level features as well as performing a more accurate classifi-
cation task (Refer to Tables 5 and 6).

2.4 Ensemble Learning-Based Classification

Ensemble learning is one of the well-known approaches to
controlling the imbalanced dataset [39], allowing a set of
models to vote, achieving better performance and enhanc-
ing the predictive model, and reducing variance to improve
generalization [40], [41].

In this study, bagging [42], is employed as an ensemble
learning-based classification to predict peptide-binding resi-
dues (See Algorithm 2). Consequently, Fig. 3 also describes
the bagging’s steps that involve such as 1) bootstrapping
feature randomize, which contains generating multiple
datasets through random sampling with replacement. 2)
prediction based on parallel training, which contains con-
structing multiple learning-based models (or classifiers) in
parallel. Each Prediction Modeli (PMi), is trained by using a
related Subset Data Setl (SDSl). 3) aggregation, which con-
tains majority-voting outputs. The class with the majority
votes is identified as the final predicted binding residue.

3 EXPERIMENTAL RESULTS AND DISCUSSION

3.1 Dataset

To train and evaluate the proposed method, the initial pro-
tein-peptide dataset was extracted from BioLip [43] with the
following conditions [20]: 1) Peptides are identified as
chains with less than thirty amino acid residues. 2) Proteins
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with more than 30% similarity are excluded using Blastclust
[44]. Subsequently, the final dataset [8], [20] consists of 1241
protein-peptide complexes with 16678 binding amino acid
residues, and 280920 non-binding amino acid residues out
of a total of 297598 amino acid residues. We randomly con-
sidered 10% of protein complexes as a test set and 90% as a
training set for independent evaluation as performed in [8],
[20]. The training set contains 1116 proteins including 14959
binding amino acid residues and 251769 non-binding amino
acid residues out of a total of 266728 amino acid residues.
The independent test set contains 125 proteins including
1719 binding amino acid residues and 29151 non-binding
amino acid residues out of a total of 30870 amino acid resi-
dues. We also evaluated the proposed model using the
ten-fold cross-validation to prove the robustness and consis-
tency of SPPPred performance. To further understand, we
analyzed the percentage of actual amino acids and the num-
ber of different actual residues types (actual binding or non-
binding residues) for each amino acid on both the ten-fold
cross-validation and independent test datasets. The experi-
mental results are revealed in Fig. 4. Besides, Fig. 4a. shows
the percentage of actual amino acids in both the indepen-
dent test set and ten-fold cross-validation datasets which
prove enrichment in amino acids including Alanine (A),

Leucine (L), Valine(V), and Glutamic Acid(E). Figs. 4b and
4c depict non-binding residues enriched in A, L, V, and E
for both mentioned datasets. As a result, all bar plots can
confirm a class ratio of approximately 1:17 and subse-
quently the urgency of the ensemble learning-based tech-
nique for addressing the used imbalanced dataset.

3.2 Performance Evaluation Metrics

In Table 1, different metrics were adopted to evaluate the
performance of SPPPred as well as to compare it with the
competing methods. F-M is presented as a tradeoff between
True Positive Rate (TPR) and precision. Therefore, Preci-
sion-Recall (PR) based criteria give a more informative view
of a model’s performance when there exist imbalanced
datasets [45]. In highly imbalanced problems, PR-based
metrics normalize the number of false positives concerning
the number of true negatives whereas precision-based met-
rics normalize it according to the number of true positives.
Specificity (SPE) and Sensitivity (SEN) explain the Accuracy
(ACC) of a test set mathematically that describes the
absence or presence of a condition compared to a definition.
SEN is related to how well the actual binding residues are
noticed as binding residues [46]. Mathew’s Correlation
Coefficient (MCC) is the type of statistical rate that

Fig. 3. The general block diagram of the bagging-based classifier.

Fig. 2. The demonstration of GP-based feature construction.
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Fig. 4. By considering the defined class rate on, (a) the percentage of the population distribution of actual amino acid binding and non-binding
residues according to residue types on (b) the independent test set, and (c) the ten-fold cross-validation.

TABLE 1
Name and Definition of the Evaluation Criteria

Metric Description

False Negative(FN) Incorrectly predicted non-peptide binding
False Positive (FP) Incorrectly predicted peptide binding residues
True Negative (TN) Correctly predicted non-peptide binding
True Positive (TP) Correctly predicted peptide binding residues
Area Under Curve(AUC) The area under the receiver operating characteristics (ROC) curve
Receiver operating characteristics (ROC) A curve is created by plotting the true positive rate (TPR) against the false

positive rate (FPR)

Accuracy (ACC) ðTPþ TNÞ=ðTPþ FPþ TNþ FNÞ
Sensitivity ðSEN) or True Positive Rate (TPR) TP=ðTPþ FNÞ
SpecificityðSPE)) or True Negative Rate (TNR) TN=ðFPþ TNÞ
False Positive Rate (FPR) FP=ðFPþ TNÞ
F�Measure(F-M) or (Harmonic mean of precision
and recall)

2�TP=ð2�TPþ FPþ FNÞ
Mathew’s Correlation Coefficient(MCC)

ðTP � TNÞ � ðFP � FNÞ
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FPÞ � ðTPþ FNÞ
�ðTNþ FPÞ � ðTN þ FNÞ

r
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generates a computed score that relies on prediction when
the impact of non-binding residues is as significant as bind-
ing residues [47].

Algorithm 1. The Framework of the Proposed GP

Input: The terminal set, arithmetic operation, and parameter
setting

Output: Return the best chromosome as solutions (feature con-
struction functions)

Begin
1. Generate an initial random population P at iteration zero

by using the Ramped half-and-half method;
2. P 0
3. g 0
4. While (P < the maximum number of generations and

random chromosome Ci is not a member of the initial
population P) do

5. For each GP tree:
6. Get the Subtrees of GP
7. Convert datasets
8. Evaluate the converted datasets based on SVM with

RBF kernel
9. Assign the fitness Value
10. End while
11. For i:1 to N do
12. If (Ci is not a member of the initial population P)

then P the union of chromosome set P and random
Chromosome Ci in the unique collection

13. End for
14. EP Compute fitness of P
15. G 1
16. While ((maximum fitness) and (final generation)) do
17. Conduct selection to choose chromosomes
18. Conduct crossover, mutation, and reproduction

operations based on the selected chromosomes
19. Update population somehow to get C new genes
20. EP Compute fitness of P
21. G G þ l
22. End while
23. Return the best chromosome with the best-so-far fitness

value
End

The Area Under the Curve (AUC) is the measure of the
capability of the classifier to identify between the positive
and negative classes [48], [49]. In general, AUC values are

existence in the interval of [0, [1], when significant dispar-
ities are existing in the value of false positives vs. false nega-
tives. So, minimizing one classification error such as a false
negative is the critical item [49], [50]. ACC is a type of metric
that shows the proportion of true outcomes amongst the
whole number of instances tested. It is an effective classifi-
cation metric for binary classification problems [47], [51].

3.3 Parameters Setting and Evaluation

The proposed GP-based feature construction employed
mathematical operators and various executive parameters
are described in Tables 2 and 3.

Note, to select the optimal kernel function, various kernel
functions, including [49] Linear, Poly, and Radial Basis
Function (RBF) were evaluated. The obtained results con-
firmed [9] the optimality of the RBF kernel that is deter-
mined in equation 2.

kðx; x0Þ ¼ exp
� x1� x2j jj j2

2s2

 !
(2)

jjx1� x2jj2can be identified as the squared Euclidean dis-
tance between the two feature vectors in each dimensional
space and s is a free parameter.

TABLE 2
The Details of the Proposed Genetic Programming Algorithm According to Applied Mathematical Operations

Name of operator Description Name of operator Description

SQRT The square root of a value EQA Operator a
A tan The arctangent of a value ABS Absolute operator
EXP Exponential a value HAT Hat function of operator a
SIN Sine operator in radians Max Maximum
COS Cosine operator in radians A cos Arc cosine of a value
SOFT PLUS 0.2 log1.0 þ exp a A sin Arcsine of a value
SQUARE Power tow of a value CONST Constant value output
MUL Multiplication operator LOG Logarithm
DIV Division operator NEG Negative
CUBE The third power of the operator ADD Addition operator
Quo Quotient SUB Subtraction operator

TABLE 3
Parameter Settings for the Proposed Genetic Programming

Name of parameters Description

Number of generations 500
Population Size 500
Cross Over Strategy Uniform
Cross Over Rate 0. 800
Mutation Strategy Mutation
Mutation Rate 0.300
Selection Strategy Tournament
Size of Tournament 9
Max Tree Depth 12
Competition size 8
Reproduction Rate 0.109
Minimum initial tree size 5
Maximum initial tree size 10
Terminal condition Max generation
Constants Leave Probability 0.100

2034 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGYAND BIOINFORMATICS, VOL. 20, NO. 3, MAY/JUNE 2023

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:21:14 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 2. The Framework of Bagging

Input:
1. Using correct labels ai 2 u ¼ fa1; . . . ;aCg representing K

classes of the problem for training data SDSn
2. Using weak machine learning-based algorithms as weak

classifiers
3. Considering L as the number of iterations
4. Generating bootstrapped training data based on percent P

Output:
1. Composite model

Method:
Train phase:
For t ¼ 1, . . ., L, do

1. Take a bootstrapped sample SDS from the dataset, by
using randomly drawing the P percent of SDS

2. Call weak learn using SDSl and capture the hypothesis
(classifier) bl.

3. Considering E as the ensemble via appending bl to it
End For
End Train phase
Evaluation phase:
Begin

1. Evaluate the ensemble E ¼ fb1; . . . ; bLg on Y j j Y as
given unlabeled instances Y

2. LetMV ttttttt:g ¼
�
0; otherwise
1; if bl picks class ai

Assign the vote given to the class ai by using classifier bl.
3. Receive the whole vote received by using every class

MV g ¼
PLLLLLLL

l MV l:g; g ¼ 1; . . . ; K
4. Terminal classification is obtained via the class with the

highest whole vote
End
End Evaluation phase
End Method

According to the number of peptide-binding residues is
significantly lower than the number of non-peptide-binding
residues, the standard deviation (or StdDev) of ten trials
was also calculated (See Table 4). In this way, to evaluate

the proposed predictor called the bagging framework, five
different machine learning algorithms (SVM [52], RF [53],
K-Nearest Neighbor (KNN [54]), Naive Bayes (NB) [55],
and Linear Regression (LR) [56]) were evaluated by using
the ten-cross-validation and the independent test set.

The obtained results in Tables 4 and 5 show that SVM
performed better than the other classifiers (KNN, LR, NB,
and RF) on the independent test set and obtained the best
performance with optimal StdDev by the ten-fold cross-vali-
dation. Next, we applied a grid search to determine the opti-
mized number of residues around a target residue (window
size), which can moderate the interaction between protein
and peptide and establish an effective predictor. Subse-
quently, five machine learning algorithms (SVM, KNN, RF,
NB, and LR classifiers) with five different window sizes (1,
3, 5, 7, and 9) were adopted.

The window size for which the classifier yields the high-
est performance on the used dataset was selected as the best
window size for that classifier. In addition, Fig. 5 illustrates
the optimal window sizes 31,97, and 5 for SVM, KNN, RF,
NB, and LR on the independent test set, respectively. It
means that the optimal window size for different classifiers
is various which indicates the nature of employed classifiers
differs from one another.

To select the best combination, we examined the perfor-
mance of different combinations of single, triple, and
quintuplets of the base classifiers with their optimal win-
dow sizes. Based on the obtained results in Table 6, for the
single classifier, the SVM has higher performance on all
metrics compared to others. In addition, employing the
ensemble technique of SVM, KNN and RF (GPþ (SVM,
KNN, RF)) has the highest performance on all metrics on
the ten-fold cross-validation and independent test set.
Therefore, the combination of GPþ (SVM, KNN, RF) is
adopted as the final combination of the proposed method.
Furthermore, by comparing the performance of single clas-
sifiers along with the GP approach and the performance of
them without GP, shown in Tables 5 and 6, it is clear that
employing GP-based feature enhancement increase the per-
formance of all classifiers.

TABLE 4
Performance of Individual-Based Classifiers on the Ten-Fold Cross-Validation

Machine learning algorithm/ Metric MCC AUC F-M ACC SEN SPE

SVM 0.130�0.019 0.549�0.049 0.177�0.025 0.738�0.074 0.208�0.037 0.789�0.089
KNN 0.128�0.020 0.542�0.050 0.170�0.028 0.732�0.077 0.204�0.039 0.787�0.092
RF 0.124�0.023 0.540�0.055 0.168�0.030 0.731�0.080 0.201�0.042 0.786�0.093
NB 0.109�0.030 0.509�0.060 0.148�0.035 0.719�0.095 0.189�0.059 0.749�0.110
LR 0.100�0.033 0.504�0.060 0.146�0.037 0.718�0.097 0.188�0.060 0.743�0.112

TABLE 5
Performance of Individual-Based Classifiers on the

Independent Test Set

Machine learning
algorithm/Metric

MCC AUC F-M ACC SEN SPE

SVM [49] 0.149 0.560 0.199 0.756 0.220 0.800
KNN[51] 0.140 0.551 0.190 0.744 0.219 0.790
RF[50] 0.139 0.550 0.189 0.739 0.215 0.788
NB [52] 0.111 0.522 0.169 0.700 0.180 0.766
LR[53] 0.110 0.520 0.165 0.699 0.179 0.760 Fig. 5. Performance of optimal window sizes used in different classifiers

namely, SVM, KNN, RF, NB, and LR on the independent test.
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Furthermore, we compared the performance of the pro-
posed machine learning-based predictor, called SPPPred,
on the ten-fold cross-validation and independent test in
Table 7. As a result, the comparative analysis in Table 7
indicates that the prediction performance on the indepen-
dent test set is approximately 2% to 4.5% higher than the
prediction performance on the ten-fold cross-validation.
The small differences between the prediction performance
of SPPPred on the ten-fold cross-validation and indepen-
dent test set prove the robustness and generality of the pro-
posed method.

Moreover, the achieved AUC values of the SPPPred
method are 0.710 and 0.669 on the independent test set and
ten-fold cross-validation, respectively. Moreover, Fig. 6
shows the comparison of four ROC curves indicating the
performance of SPPPred, Visual [20], SVMþGP [9], and
SPRINT-Seq [10] on the independent test set which proves
the optimal consistency of SPPPred performance.

3.4 Comparison With Other Methods

Table 8 compares the performance of SPPPred and other
existing works including SPRINT-Seq [10], GPþSVM [9],
and Visual [20] on the independent test set of 125 proteins.

According to Table 8, the performance evaluations of the
SPPPred for MCC, AUC, F-M, ACC, SEN, and SPE metrics
are 0.230, 0.710, 0.310, 0.949, 0.315, and 0.959, respectively
on the independent test set. It can be concluded that the pro-
posed method can predict the type of class (binding or non-
binding residues) for every residue with the best F-M,
MCC, and ACC compared to competing approaches. Addi-
tionally, all performance evaluations are higher than the

previous study by Shafiee and Fathi [9], called GPþSVM,
with MCC ¼ 0.202, AUC ¼ 0.699, F-M ¼ 0.240, ACC ¼
0.930, SEN ¼ 0.279, and SPE ¼ 0.940. According to the
achieved SPE, 0.959 of actual non-binding residues are cor-
rectly classified as non-binding residues. The remaining
percentage (� 0.041) of actual non-binding residues is incor-
rectly classified as binding residues. Our method achieves
the SPE value of 0.959, which is higher than all other exist-
ing methods except SPRINT-Seq [10]. Moreover, the pro-
posed method achieves the SEN of 0.315 and the remaining
percentage (� 0.685) of actual binding residues is incorrectly
classified as non-binding residues. In Table 8 the Visual
method [20] achieves the highest SEN (0.670) on the inde-
pendent test set. However, non-binding residue prediction
is as important as binding residue prediction in our method.
Thus, we focus on the F-M, which is not reported by Visual
[20]. Table 8 also indicates high ACC for all mentioned
methods due to an imbalanced dataset. Due to the nature of
an imbalanced dataset, it is not surprising to achieve high
ACC by predicting each test observation as the majority
class. As explained, ACC cannot be considered a fair perfor-
mance evaluation metric for such a binary classification
problem.

However, SPPPred still achieves the best ACC of 0.949 on
the independent test set. Although SPPPred achieves a slightly
lower (�0.02) AUC value (0.710) compare to Visual ¼ 0.730,
but still close enough to be comparable. In this way, to visual-
based represent the output of SPPPred, we employed 1dpu,
chain A protein containing 69 residues with 11 actual binding
residues. As illustrated, the predicted protein-peptide binding

TABLE 6
The Comparison of SPPPred Performance on the Independent

Test Set Using Different Classifiers

Combination MCC AUC F-M ACC SEN SPE

GPþSVM 0.202 0.699 0.240 0.930 0.279 0.940
GPþKNN 0.191 0.680 0.231 0.890 0.260 0.928
GPþRF 0.187 0.669 0.229 0.879 0.256 0.909
GPþNB 0.146 0.632 0.210 0.840 0.209 0.890
GPþLR 0.141 0.630 0.208 0.835 0.200 0.888
GPþ(SVM,KNN,RF) 0.230 0.710 0.310 0.949 0.315 0.959

GPþ(SVM,KNN,NB) 0.220 0.708 0.305 0.936 0.297 0.948
GPþ(SVM,KNN,LR) 0.218 0.707 0.301 0.931 0.291 0.946
GPþ(SVM,RF,NB) 0.215 0.705 0.300 0.929 0.290 0.944
GPþ(SVM,RF,LR) 0.214 0.704 0.299 0.928 0.289 0.942
GPþ(KNN,RF,NB) 0.190 0.680 0.280 0.909 0.279 0.929
GPþ(KNN,RF,LR) 0.189 0.679 0.279 0.907 0.278 0.918
GPþ(KNN,NB,LR) 0.188 0.678 0.277 0.905 0.275 0.916
GPþ(RF,NB,LR) 0.169 0.669 0.259 0.889 0.269 0.899
GPþ(SVM,KNN,RF,NB,LR) 0.218 0.707 0.299 0.928 0.287 0.941

TABLE 7
The Comparison of SPPPred Performance on the Ten-Fold

Cross-Validation and the Independent Test Set

Dataset MCC AUC F-M ACC SEN SPE

Ten-fold cross-validation 0.190 0.669 0.289 0.929 0.279 0.925
Independent test set 0.230 0.710 0.310 0.949 0.315 0.959

Fig. 6. ROC curves to show and compare the performance of SPPPred
and other existing methods on the independent test set.

TABLE 8
Comparison of the Performance of SPPPred and Existing

Methods on the Independent Test Set

Methods/Metrics MCC AUC F-M ACC SEN SPE

SPRINT-Seq[10] 0.200 0.680 0.221 0.920 0.210 0.960
Visual[20] 0.170 0.730 - - 0.670 0.680
GPþSVM[9] 0.202 0.699 0.240 0.930 0.279 0.940
SPPPred (our method) 0.230 0.710 0.310 0.949 0.315 0.959
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residues by SPPPred (7. c) are very close to the actual ones
(7. b). In Fig. 7, we should emphasize that SPPPred can predict
10 residues (blue) correctly of 11 actual binding residues (red)
aswell as it can be comparedwith the actual state.

In addition, the protein-peptide binding residues pre-
dicted by SPPPred are comparable to state-of-art existing
methods (see Fig. 8).

To visual-based comparison of one-dimensional (sequence)-
based representationwas employed. Likewise, the comparison

results of SPPPred and other competing methods, including

experimental(actual) and computational states (GPþSVM, and

Visual), were compared. It means that the proposed method

can predict more true positive and fewer false positive rates. In

Fig. 8, actual and predicted binding residues are indicated in

red and blue colors, respectively. The proposed method can

predict 21 residues correctly out of 24 actual binding residues

out of 361 total residues and only has 5 false predicted binding

residues. The Visual method [20] can predict 17 residues cor-

rectly out of 24 actual binding residues and also predicted 17

false binding residues. The GPþSVM [9] method can predict

19 residues correctly out of 24 actual binding residues and pre-

dict 6 false binding residues. Therefore, according to the

comparison, SPPPred can predictmore actual binding residues
and has lower false binding residue prediction.

3.5 Computational Complexity Evaluation

The computational complexity is investigated to achieve a
deep understanding of the GP’s effect in reducing the
dimension of feature space, constructing features automati-
cally, as well as improving the F-M of the classifier. By com-
parison, SPPPred outperforms other competing approaches
(SVM [9], GPþSVM [9]), with the highest F-M value of 0.310
and 0.29 on the independent test set as well as the ten-fold
cross-validation, respectively. In the ten-fold cross-valida-
tion and the independent test set, SPPPred obtains a feature
space dimension of 10 which is better than the 12 and 33
achieved by GPþSVM [9], and SVM [9]. Likewise, the time
complexity of 799.872 ms, 38866.207 ms, and 91995.000 ms
on the ten-fold cross-validation, as well as the time com-
plexity of 777.871 ms, 34566.201 ms, and 89001.300 ms on
the independent test set are obtained respectively by com-
petition methods including SVM [9], GPþSVM [9], and
SPPPerd. According to Table 9, we further observe that
when F-M is increased then time complexity is decreased
by using the independent test set. Finally, it can be con-
cluded that the high time complexity of GP is paid off by
reducing and constructing powerful and effective features.
This high-time complexity occurs only once in the process
of building the feature space but results in a consistent and
higher performance of the final method.

3.6 Statistic-Based Evaluation

This paper addresses the application of two types of statisti-
cal tests through an evaluation question. Which can the
method be more significant when GP-based feature con-
struction was adopted? The statistic-based tests were
employed to confirm statistical significance. We calculated

Fig. 7. (a) Original protein structure, PDB id: 1dpu, chain A. (b) Actual
binding residues (red). (c) Predicted binding residues by SPPPred
(blue).

Fig. 8. The sequence-based schematic to the comparison of actual binding residues and predicted residues obtained by the proposed SPPPred
method along with GPþSVM [9] and Visual method [20] on 4l3o protein sequence chain A (PDB id: 4l3oA). These sequences have been divided into
sections (55-125, 126-196, 197-267268-338339-361) to fit the page. The upper row illustrates (a) the actual binding amino acid residues of the pro-
tein sequence highlighted with red color, while the lower rows illustrate the peptide-binding residues (Blue) as predicted by using competition
approaches, (b) the GPþSVM approach [9], (c) Visual approach [20], (d) SPPPred (our proposed approach).
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statistic-based evaluation and the occurred results are pre-
sented in Table 10.

In Table 10, statistical analyses were performed by apply-
ing a significance cutoff of 0.05. Accordingly, the p-value is
less than the defined threshold of 0.05 which can lead to a
conclusion with significant differences. These differences
exist between SPPPred and other competing methods
(SPRINT-Seq [10], Visual [20], and GPþ SVM [9]). The
above results show that SPPPred’s results are the most sig-
nificant over other mentioned methods.

4 CONCLUSION AND FUTURE DIRECTION

In a brief, the most significant highlights of this study are as
follows. (i)This work is the first application of GP-based fea-
ture construction in a bioinformatics case study, named pre-
diction of protein-peptide binding residue. (ii). The
proposed GP algorithm has been adopted to construct new
high-level and powerful features through mathematical
transformations according to the hidden relations of low-
level features. (iii). An impressive point relies on applying
an optimization-based fitness function in GP to attain all the
improved combinations of used features with various
natures. (iv). The potential of GP-feature construction along
with individual-based (GPþSVM) [9] and ensemble-based
(SPPPred) have been confirmed. (v) Consistent and robust
performance for SPPPred on both the ten-fold cross-valida-
tion and independent tests have been obtained by
sequence-based information. (vi) Interdisciplinary-based
evaluation was performed. (vii). Predicted results demon-
strated that the SPPPred surpasses other state-of-the-art
methods with F-M, ACC, and MCC of 0.310, 0.949, and
0.230, respectively. In future works, we will try to employ a
deep learning-based predictor by using three-dimensional
structures of proteins that are available in a public database,
named Alpha-Fold2 as well as biological information like
conservation, homology, and biological function.

Data availability and implementation: https://github.com/
GTaherzadeh/SPPPred.git

Contact: shafiee.shima@razi.ac.ir
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