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Abstract This paper presents a new approach to Genetic 
Programming (i.e., GP). The aim of  this study is to indicate 
an approach to make GP fit for practical use. The objective 
of our study originates in the fact that the program by 
human tends to be divided into some subroutines and to 
reuse the subroutines frequently. In a traditional GP, the 
program is structured by one sequence. Moreover there is 
no room to reuse the subroutines in a traditional GP. For 
sake of the division the program to some subroutines, there 
have been a few techniques proposed, which attempt to 
discover certain subroutines. However, the reusability of 
GP have never been discussed so far. In this paper, we 
propose an approach for reusability. The proposed method 
has a library for keeping some subroutines in order to share 
and reuse them. We make use of the Wall Following 
Problem to indicate the efficiency experimentally. 

I. Introduction 
This paper introduces a new approach to automatic 
discovery of functions for Genetic Programming (i.e., 
GP). The objective of our study is derived from the fact 
that a program is often decomposable into certain 
subroutines. Moreover, the subroutines is often reused at 
any point of the program. For a practical use, a program 
by GP should be divided into some subroutines. So our 
goal of this study is to generate an effective subroutine 
and reuse them. 

In order to realize the above, we propose a new 
system based on an ADF (i.e., Automatic Defining 
function) [ I ] .  GP system with ADF defines functions (or 
subroutines) automatically. The objective of the ADF is 
derived from the fact that a program is often 
decomposable into certain subroutines. An effective 
subroutine is expected to work as a building block for 
searching a solution effectively. As a result, ADF makes 
it possible to improve learning efficiency and reduce 
computational effort[2]. 

However, so far the reusability and robustness of GP 
have never been discussed using ADF. We aim at the 

acquisition of a generalized knowledge or subroutine and 
realizing the above improvements. A generalized 
knowledge refers to a rule which can be applied in 
various situations, giving the system flexible behavior. 

In order to realize this facility, we introduce a new 
method based ADF. Our proposal extends an ADF so as 
to establish a library for acquiring effective subroutines 
with each generation. As the generations proceed, the 
subroutines are shared among the population, whereby 
any individual can use this generalized knowledge by 
referring to the library. Moreover, to apply to 
generalization operator, the knowledge is refined upon. 
As a result, through these shared subroutines, our 
proposal gives robustness to the system. 

The rest of this paper is structured as follows. 
Section I1 describes the related work as to the automatic 
discovery of functions in GP. Section I11 presents our 
proposal method. Section IV describes some 
experimental results, by which the effectiveness of our 
proposal is shown. Section V discusses these results and 
the feasibility of our approach. Section VI denotes the 
related work. Section VI1 concludes. 

II. Automatic Discovery of Functions in GP 
Traditional techniques for discovering functions 
automatically are mostly aimed at improving the 
efficiency of the GP search. They select andlor make a 
certain subroutine automatically, which can then be used 
as a useful building-block for searching a solution. 

ADF [ I ]  developed by Koza works with conventional 
GP, and is called ADF-GP here. ADF-GP offers 
alternative populations which work as subroutines. That 
is, ADF-GP contains material which turns into 
subroutines in advance, as another population. An 
individual in the main population can refer to an 
individual in the alternative populations as a subroutine, 
and the reproduction of the population applies crossover 
and mutation operations such those found in the main 
populations. Effective subroutines in the population are 
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made by interaction with an object. ADF-GP gives a 
remarkable performance in limited domains needing 
subroutines. However, some problems remain unsolved: 
The large amount of computational effort needed and 
how to set up the number of the population. 

III. Sharing subroutines for an acquisition of 
knowledge 

A. Our Objective 
The goal of this paper is the scaling up of GP in terms of 
reusability of acquired knowledge. 

For the sake of improving the reusability, the system 
should have the follows. In the first place, the system 
must find a knowledge with high generality as a 
subroutine. For the sake of this, it needs the additional 
operation to generalize to refine the knowledge. Second, 
to make sure the reusability, it is necessary to preserve 
the knowledge. So as to realize it, we take into 
consideration of introduction of a library. The 
knowledge in the library is shared among a population. 
In other word, each individual can refer the knowledge 
through the library. Therefore, the library helps to reuse 
the subroutines generated by ADF. In addition, the 
system is able to cope with the changeable problem to 
arrange the subroutines or reuse them. 

In this paper, from above considerations, we propose 
an approach to the automatic discovery of functions 
based on ADF with a library. In the next section, we 
denote the algorithm. 

B. Sharing ADF 
Our proposal method, namely a Sharing ADFGP is 
structured in two main parts: The former part generates 
the main solutions and subroutines based on the ADF-GP. 
The latter part stores effective subroutines acquired by 
the ADF. In this paper, this latter part is called the 
library. The subroutines acquired by ADF are drawn into 
the library according to a rule. The subroutine in the 
library (called SR here) may be referred to by any 
individual in the main GP. 

In the first place, we describe the description GP. 
The terminal set and function set of the GP is defined as 
follows: 

T G p  = { t l > t 2 ~ - - - ~ f n } >  (1) 

FGp = { f Y 1 , f F 2  ,..., f?"}. ( 2 )  
where m and n are the number of used terminals or 
functions and depend on the object. argm is the number 
of arguments of each function. Secondly, we describe 
the description ADF-GP. The function set of the ADF- 
GP takes the additional form of that of GP. That is, 

F m F G p  = [ f,""' >. > f m  argm,adfiUB1,...,adf~argp} (3) 

where p is the number of adfs. The role of these 
additional functions is to refer to these adfs. The 
terminal set is the same that for the GP. 

In the adf population, the terminal set and function set 
are as follows. 

TA,, ={tl't2' . . .J"}.  (4) 

T4, = { f l , .  -. , t, ,arg,, . . . , q4), 
Fdf = [ f?' , f,""' ,. . . , f?"'} . 

( 5 )  

( 6 )  
Then the Sharing-ADFGP with the library is formulated 
as follows. 

body, adf,?' -.. adfpyp  SRw 
(7) 

Moreover the function set of the Sharing-ADFGP has 
additional functions to refer SRi in the library. 

F s h n n g - m F G p  = adflarg' ,..., adfpargP 

TShanng-ADFGP = { f 1 ' * . . 4 .  (9) 

i f  f L a x  > fLij then drawing into library (10) 

(8) 

The terminal set of the Sharing-ADFGP is as follows. 

The subroutine the drawing operation to the library 
would be executed under the following condition. 

where fia is the maximum fitness value in generation t .  
Then, the SR, in the library is discarded based on each 
SRi fitness. The SRi fitness is defined as following 
equation. 

C jitness, 
fitnesssRr = (1 1) 

ref SR, 

where fitness, is the fitness value of individual k which 
refers to SR, and ref, is the total number of referred 
SRi. The SRi with the lowest fitness may be discarded 
and replaced with a new subroutine acquired by ADFGP. 

In the library, toward to SR, which has the salient 
number of refsR, a generalization operation may be 
implemented. The aim of generalization here is to own 
wholly stable mean for each subroutine so as to exclude 
any argument. Therefore, for some subroutine, the 
argument, argr may be changed to other terminals 
stochastically. The condition for whether orlnot the 
operation executes is as follows. 

i f  refsR, = Othen operate to Generalization (12) 
Figure 1 shows a diagram of Sharing-ADFGP. The 

next section describes experimental results for the wall 

566 

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:19:50 UTC from IEEE Xplore.  Restrictions apply. 



following problem. 
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Figure 1: Diagram of Sharing-ADFGP. 

IV. Experiments 
In this section, we experimentally examine our proposal 
method mentioned above. The main parameters are 
population size M = 700, number of generations G = 60, 
selection by tournament strategy. Other GP parameters 
have typical values as reported in [3]. We shows some 
experimental results of GP, ADF-GP and Sharing- 
ADFGP for fluctuating objects so as to verify the 
robustness and reusability. 

The wall following problem is a typical robot 
navigation problem in GP [4]. The aim of this problem is 
to acquire a program which can navigate a robot to 
follow a closed wall within a map. 

A problem space is represented by a field which is 
divided into grids and surrounded by wall. Some tiles 
are set along this wall. The robot can obtain a reward if it 
goes through a tile. However, there are some obstacles 
near the wall and the tile are set along those obstacles. 

The robot can move within the space with no effect 
on the grid. The robot can select from the following 
actions: MoveForward, MoveBack, and rotating left or 
right at (LeftTurn, RightTurn). Moreover the robot has 
eight sensors(from 12 o'clock by counter clock, ) and 
can measure its distance from the wall. The robot 
consumes its energy (E) through its movement and 
sensing. The energy decreases E-1 units if it moves on a 
tile, E-2 units if it moves on the field and E-1 units if it 
senses. If E=O, the robot stops. The evaluation of the 
program which navigates the robot is given as the 
number of passed tiles (i.e. rewards). 

The terminal set and function set of GP, ADF-GP, 

and the Sharing-ADFGP which are used in these 
experiments are as follows. 

TumRight, TumLeft, MoveFonvard , MoveBack, 

so, 31,. . ., s7 
TGP = 

t 13) 
(14) F~~ = ( IFLTE, ,P~O~~,}  

TumRight, TurnLfl, 

so, 31,. . . , s7, arg, 9 "g, t arg, 

FmF.Gp =(IFLT4,Prog2,,adf 2 , w f  3,) (16) 
TumRight, TumLeft, 

qhrmng-ADFGp = MoveForward, MoveBack, 

so, sl,. .-,s7,~gO,arg,, =g, 

S R ~ ~ ~ ~ , . . , , S R ; ~  

IFLTE4,Prog2,,adf 2,,adf 3, 
I 

The library size W, which is the peculiar parameter of 
the Sharing-ADFGP, is 7.  The experiments make use of 
2 different types of conditions: 
ex.: The robot starts from a random point facing in a 
random initial direction as in Figure 2. ex.: The robot learns 2 maps which change every 5 
generations in Figure 3 and Figure 4. 

In ex (I) ,  as the action sequence must change at each 
generation, the robot needs a generalized strategy to 
follow. Moreover, in order to read the difference in the 
map, it needs to preserve some of the acquired 
knowledge. Figure 5 and Figure 6 present the 
improvements to the standardized fitness (best of 
generation) of ex. 1 and ex. 2 respectively. Figure 7 
shows a typical trajectory which is derived from an 
acquired subroutine (ex. 1). Figure 8, Figure 9 and 
Figure 10 are the program generated by using ADFGP, 
GP and the Sharing-ADFGP respectively. Figure 11, 12 
are a typical trajectory of the standard GP in ex. 2. 
Figure 13, 14 are a typical trajectory of Sharing-ADFGP 
in ex. 2 .  All the experimental results are calculated as 
over 10 trials. 

Figure 2: Map of ex. 2. 
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Figure 4: Map of ex. 2 
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Figure 5 :  Improvement of fitness in ex. 1. 
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Figure 6 :  Improvement of fitness in ex. 2. 
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Figure 7: Typical trajectory of subroutine. 

........................................................ 
j Body: 
: (IFLTE (IFLTE (ADFI MoveBack S2 S6) (ADFI T d g h t  : 
: TurnRight MoveForward)(ADFl S6 SO (ADFI MoveBack : 
j MoveForward S6))  (PROG2 (PROG2 S6 TurnLeft) (ADFO j 
: MoveBackS 4))) (ADFI (IFLTE (ADFI MoveBack (ADFI i 
j MoveBack MoveForward S6) SO) (ADFI (ADFS MoveBack ; 
: MoveForward S6) SO S2) (ADF1 MoveBack MoveForward S6) : 
: (PROG2 S4 T d e f t ) )  TurnLeft MoveFomard) (ADF1 S2 j 
: MoveForward S2) (ADF1 S4 S4 S7)) 
: ADFO: 
i 
: MoveForward S 5 )  MoveForward (IFLTE TurnLefi SO S5 S2) 
: (IFLTE Argl MoveFomard Tunrfttght S3)) 
: ADFI: 
: (PROG2 (IFLTE (IFLTE TurnRight Argo MoveBack S 5 )  ; I (IFLTE MoveBack MoveBack TurnRight S2) (PROG2 
: MoveBack MoveBack) (IFLTE S2 (IFLTE S3 TurnRight : 
j MoveBack S2) (IFLTE SI TurnRight TurnRight S2) TurnRight)); 
: (IFLTE ( IFLE TurnRight MoveBack MoveBack S2) S2 : 
: (PROG2 MoveBack (IFLTE MoveBack Argo (IFLTE 
I MoveBack Argo MoveBack Argo) S3)) Arg2)) 

(IFLTE (IFLTE (IFLTE Argo (PROG2 S3 S3) S7 Argl) Argl i 
: 

........................................................ 

........................................................ Figure 8: Typical program of ADF-GP in ex. 2. 
: (IFLTE (PROGZ (IFLTE (PROGZ MoveForward S6) (PROGZ 
: MoveForward MoveForward) (IFLTE S6 TurnLeR S6 S5) (IFLTE 54 : 
' TurnLeft S6 S 5 )  ) (IFLTE S4 TurnLeft (PROGZ MoveForward : I MoveForward) S3) ) (IFLTE (IFLTE MoveFonvard S7 MoveForward : 
: MoveForward) (IFLTE (PROGZ MoveFonvard TurnLeft) (IFLTE I 
: (PROGZ MoveFonvard S6) (PROGS MoveForward MoveForward) ; 
: (lFLTE S4 TurnLe!? S6 S 5 )  MoveForward) (IFLTE S3 MoveFonvard : 
: TurnRight TumLeR) S7) TumLeft MoveForward) (IFLTE S1 TurnLeft : 
: S6 MoveForward) (IFLTE (IFLTE (IFLTE (PROGZ MoveForward : 
: MoveForward) (IFLTE MoveForward SO MoveForward MoveFonvard) : 
: (IFLTE MoveForward TurnLeft S5 MovcForward) (IFLTE TurnLeft ; 
: MoveForward S6 S7) ) (IFLTE MovcForward S4 MoveForward : 
: MoveForward) (IFLTE TurnRight S5 S6 S 5 )  (IFLTE S7(PROG2 : i MoveForward TurnLeft) (IFLTE MoveForward MoveForward : 
: MoveForward S4) (IFLTE S4 MoveFonvard MoveForward S4) ) ) 1 
: (PROGZ (IFLTE (PROGZ MoveForward S6) (PROGZ MoveForward : 
: MoveForward) (PROGZ MoveFoMgrd TumLeft) (PROGZ MoveFonvard ; 
: TurnLe!?) ) (IFLTE S6 TumLeft S6 S3) ) (IFLTE (PROGZ MoveFoward : 
: (PROGZ MoveForward TurnLeft) ) (PROGZ MoveForward : 
~ MoveForward) (IFLTE S4 TurnLeft S6 (PROGZ MoveForward ~ 

~ MoveForward) ) S6) (IFLTE S5fIFLTE (PROG2 MoveForward S6) : 
: (PROGZ MoveForward MoveForward) (IFLTE S4 TurnLett S6 S5) : 
I (IFLTE S4 TurnLeft S6 S5) ) S5 (IFLTE S4 TurnLe!? S6 S5)))) 
......................................................... 

Figure 9: Typical program by GP in ex. 2. 
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. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . . _ . . . _ _ . _ _ _ _ _ _ _ . _ _ _ _ _ _ . . _ . . . _ _ _ _ _ _ _ _ _ _ .  
' Body: 
; (IFLTE (SR[5] S7 SO SO) (ADFO S2 S3 (SR[O] (SR[2] (SR(Z] TumLeff : 
~ S4 S5) S4 MoveBack) (IFLTE S6 MoveBack S3 (IFLTE MoveBack ; 
: MoveBack S3 S4)) (SR[5] MoveBack TurnLeft MoveForward))) S4 ~ 

: (SR[3] ((SR[4] 56 MoveForward MoveFonvard) TumLeff MoveBack)) ~ 

: ADFO: 
: (PROG2 (IFLTE (PROG2 (PROG2 (PROG2 Argl TurnLeft)(IFLTE 
: Arg2 Arg2 Arg2 MovcForward))  ( IFLTE Arg2  Arg2 Arg2  ; 
: MoveFoward)) (PROGZ (PROG2 Argl TurnLeft) (IFLTE Arg2 Arg2 : 
' Arg2 MoveForward)) Arg2 MoveForward) (IFLTE ArgZ Arg2 (PROG2 : 
; Arg2 @FLTE Arg2 Arg2 Arg2 MoveFonvard)) MoveForward)) 
' ADF1: 

(IFLTEGFLTE S2 MoveBack SO TurnLeft) (IFLTE S3 (PROG2 S4 : 
TumRight) S1 TurnLett) (TFLTE SO S7 S1 MoveBack) (IFLTE 1 SO S7 : 
S 1 MoveBack)) 
SR[O]: 
(PROGZ (IFLTF, (PROG2 (PROG2 (PROG2 Argl TurnLeft) Arg2) 
(IFLTE Arg2 Arg2 Arg2 MoveForward))  (PROG2 (PROG2 j 
MoveFonvard TurnLeft) (IFLTE Arg2 Arg2 Arg2 S 3 ) )  Arg2 Arg2) : 
(IFLTF, AI@ ArgZ Arg2 MoveFonvard)) 
SR[1]: 
(IFLTE (TFLTE SO S7 SI TumRight) (TFLTE S3 (FROG2 S4 TurnRight) 
S1 TumLeft) (IFLTE S3 S7 S1 (IFLTE S l  SI MoveBack Sl)) (IFLTE S2 
MoveBack (IFLTE S3 (IFLTE S3 S7 S2 S2) (PROGZ MoveBack 
TumRight) (TFLTE MoveBack S2 S3 TurnLeft)) TurnLeft)) 
SR[2]: 
(IFLTE S2 MoveBack (IFLTE (IFLTE SO S7 MoveBack TurnLeft) 
(IFLTE S3 SO SI  S3) (IFLTE TumRight S7 S1 TurnRight) (IFLTE S3 
MoveBack S1 TumLeff)) TurnLeft) 
SR[3]: 
(PROGZ (PROG2 TurnLeft Arg2) (IFLTE SI (PROG2 Argl ArgO) 
(PROG2 (PROG2 (PROG2 Argo Arg2) (PROG2 Argl ArgO)) (PRoG2 
Argl ArgO)) (PROG2 Arg2 (PRO32 
SR[4]: 
(IFLTE Argo TurnRight Argl TurnRight) 
SR[5]: 
(IFLTE (IFLTE SO S7 S I  TurnRight) (IFLTE S3 (PROG2 Argl  ~ 

TumRight) S1 TurnLeft) TurnRight (IFLTE TurnLeft MoveBack S3 j 

SR[6]: 
(IFLTE (TFLTE SO S7 S1 TumRight) (ELT!? S3 (PRCGZ S4 TurnRight) 
S1 TumLeft)TumRight (IFLTE TumLeft MoveBack S3 TurnLeft)) 

(PROG2 Argo Argl) S3)))) 

A d ) )  

: . . . _ . . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . . _ . _ _ _ _ _ _ _ _ _ _ _ .  
igurel0: Typical program by Sharing-ADFGP in ex. 2 .  

Figure1 1: Trajectory of the standard GP in ex.2 (1). 

Firmre 12: Traiectorv of standard GP in ex.2 (2). " 

Figure 1 x.2 

Figure 14: Trajectory of Sharing-ADFGP in ex.2 (2) 

In Figure 10, the bold characters correspond to the 
trajectory in Figure 7.  

V. Discussion 
The previous section was shown how the Sharing- 
ADFGP worked under various conditions. 

In ex 1, the improvement of the Sharing-ADFGP is 
almost the same as that of ADF-GP. That is, because of 
the random stating point, the evaluation of each 
individual changes at each generation even if the same 
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program executed so the SR in the library is often 
replaced. Finally, the fitness of the individual referred to 
the SR becomes low, and as a result, the SR isn’t referred 
and there isn’t much difference between them. 

In ex. 2, the Sharing-ADFGP shows remarkably 
excellent result. ADF-GP can’t cope with multiple maps 
because it converges quickly. As a result, ADF-GP 
doesn’t give robustness and adaptability. On the other 
hand, the Sharing-ADFGP indicates a stable behavior 
between two maps, not to mention that it reuses an 
acquired knowledge effectively. 

The program generated by the Sharing-ADFGP 
employs some subroutines efficiently (see the body 
program in Figure 10). The body program refers to SR[2], 
SR[3], SR[4] and SR[5]. Some of these subroutines are 
generated by other individuals (or other ADFs) because 
the ADFs (ADFO and ADF1) in the individual differ 
from these SR. Besides, SR[6] is generated by using 
generalization operator. So SR[6] doesn’t have no 
argument. 

In Figure 13, 14, the body tree in the program is very 
small because it refers four subroutines. The subroutines 
realize a characteristic trajectory shown in Figure 13, 14. 
That is, (1) the robot moves to the wall. (2) the robot 
perceives the distance to the wall with its sensors. (3) the 
robot retraces its steps and turns left. (4) the robot 
perceives the distance again. (5) the robot retraces its 
steps and turns left again. The above action sequence is 
repeated any number of times in Figure 13, 14., and can 
be utilized whenever the robot meets the wall. Thus, the 
robot can behave adaptable between two maps. 

To conclude about the Sharing-ADFGP, our goal, 
namely, to pursuit the realization of the reusability in GP, 
was attained in our several experiments. The primary 
factor of this attainment exists in preserving of some 
effective subroutine which are acquired by ADF. 

VI. Related Work 

A. Module Acquisition 
Module Acquisition (MA) [5] randomly selects a subtree 
from an individual and extracts a part of it as a module. 
Thus, the module is defined as a new function and is 
preserved in a library. This module can then be referred 
by other individuals, and works as a function with a 
fixed meaning. The main feature of MA is that it protects 
some effective subtrees against blind crossover 
operations. However, it is reported in [5] that MA could 
not improve learning efficiency or the acquisition of 
knowledge because of the random selection. 

B. Adaptive Representation GP 
In Genetic Algorithms, schema theorem and building 
block hvDothesis are regarded as the theoretical basis of 

learning. GP tends to seek the same basis. Rosca brought 
up a proposal where the schema in GA corresponded to a 
subtree in GP. Based on this assertion, he proposed an 
approach, named Adaptive Representation GP (AR-GP) 
[6]. AR-GP selects an effective subtree (i.e. a schema) 
based on an heuristic operation and adds that subtree as 
a new function to the function set. AR-GP can improve 
learning efficiency. However, the configuration of the 
evaluation function which works to select an effective 
subtree is not clear. And, moreover, it has been pointed 
out that this selection process isn’t suited for general 
purposes . 

VII. Conclusion 
This paper proposed the Sharing-ADFGP for scaling up 
of GP from the point of view of its reusability for 
generation of program for practical use. The 
effectiveness of our proposal was shown by the wall 
following problem experimentally. Especially, under the 
fluctuating environment, the Sharing-ADFGP showed 
stable performance because the library works efficiently 
to reuse an acquired knowledge. 
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