
Naohiro Hondo Hitoshi Iba Yukinori Kakazu
Complex Systems Engineering Machine Inference Section, Complex Systems Engineering

Electrotechnical Lab. Division of Systems and Information
Engineering, Hokkaido University. 1- 1-4 Umezono, Tukuba Science Engineering, Hokkaido University.

N-13 W-8, Sapporo, City, Ibaraki, 305, Japan N-13 W-8, Sapporo,
Hokkaido 060, Japan Iba@etl.go.jp Hokkaido 060, Japan

hondo@complex.hokudai.ac.j p kakazu@complex.hokudai.ac.jp

Division of Systems and Information

Abstract This paper presents a new approach to Genetic
Programming (i.e., GP). The aim of this study is to indicate
an approach to make GP fit for practical use. The objective
of our study originates in the fact that the program by
human tends to be divided into some subroutines and to
reuse the subroutines frequently. In a traditional GP, the
program is structured by one sequence. Moreover there is
no room to reuse the subroutines in a traditional GP. For
sake of the division the program to some subroutines, there
have been a few techniques proposed, which attempt to
discover certain subroutines. However, the reusability of
GP have never been discussed so far. In this paper, we
propose an approach for reusability. The proposed method
has a library for keeping some subroutines in order to share
and reuse them. We make use of the Wall Following
Problem to indicate the efficiency experimentally.

I. Introduction
This paper introduces a new approach to automatic
discovery of functions for Genetic Programming (i.e.,
GP). The objective of our study is derived from the fact
that a program is often decomposable into certain
subroutines. Moreover, the subroutines is often reused at
any point of the program. For a practical use, a program
by GP should be divided into some subroutines. So our
goal of this study is to generate an effective subroutine
and reuse them.

In order to realize the above, we propose a new
system based on an ADF (i.e., Automatic Defining
function) [I] . GP system with ADF defines functions (or
subroutines) automatically. The objective of the ADF is
derived from the fact that a program is often
decomposable into certain subroutines. An effective
subroutine is expected to work as a building block for
searching a solution effectively. As a result, ADF makes
it possible to improve learning efficiency and reduce
computational effort[2].

However, so far the reusability and robustness of GP
have never been discussed using ADF. We aim at the

acquisition of a generalized knowledge or subroutine and
realizing the above improvements. A generalized
knowledge refers to a rule which can be applied in
various situations, giving the system flexible behavior.

In order to realize this facility, we introduce a new
method based ADF. Our proposal extends an ADF so as
to establish a library for acquiring effective subroutines
with each generation. As the generations proceed, the
subroutines are shared among the population, whereby
any individual can use this generalized knowledge by
referring to the library. Moreover, to apply to
generalization operator, the knowledge is refined upon.
As a result, through these shared subroutines, our
proposal gives robustness to the system.

The rest of this paper is structured as follows.
Section I1 describes the related work as to the automatic
discovery of functions in GP. Section I11 presents our
proposal method. Section IV describes some
experimental results, by which the effectiveness of our
proposal is shown. Section V discusses these results and
the feasibility of our approach. Section VI denotes the
related work. Section VI1 concludes.

II. Automatic Discovery of Functions in GP
Traditional techniques for discovering functions
automatically are mostly aimed at improving the
efficiency of the GP search. They select andlor make a
certain subroutine automatically, which can then be used
as a useful building-block for searching a solution.

ADF [I] developed by Koza works with conventional
GP, and is called ADF-GP here. ADF-GP offers
alternative populations which work as subroutines. That
is, ADF-GP contains material which turns into
subroutines in advance, as another population. An
individual in the main population can refer to an
individual in the alternative populations as a subroutine,
and the reproduction of the population applies crossover
and mutation operations such those found in the main
populations. Effective subroutines in the population are

0-7803-2902-3/96/$4.00 0 1996 IEEE 565

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:19:50 UTC from IEEE Xplore. Restrictions apply.

mailto:Iba@etl.go.jp
mailto:kakazu@complex.hokudai.ac.jp

made by interaction with an object. ADF-GP gives a
remarkable performance in limited domains needing
subroutines. However, some problems remain unsolved:
The large amount of computational effort needed and
how to set up the number of the population.

III. Sharing subroutines for an acquisition of
knowledge

A. Our Objective
The goal of this paper is the scaling up of GP in terms of
reusability of acquired knowledge.

For the sake of improving the reusability, the system
should have the follows. In the first place, the system
must find a knowledge with high generality as a
subroutine. For the sake of this, it needs the additional
operation to generalize to refine the knowledge. Second,
to make sure the reusability, it is necessary to preserve
the knowledge. So as to realize it, we take into
consideration of introduction of a library. The
knowledge in the library is shared among a population.
In other word, each individual can refer the knowledge
through the library. Therefore, the library helps to reuse
the subroutines generated by ADF. In addition, the
system is able to cope with the changeable problem to
arrange the subroutines or reuse them.

In this paper, from above considerations, we propose
an approach to the automatic discovery of functions
based on ADF with a library. In the next section, we
denote the algorithm.

B. Sharing ADF
Our proposal method, namely a Sharing ADFGP is
structured in two main parts: The former part generates
the main solutions and subroutines based on the ADF-GP.
The latter part stores effective subroutines acquired by
the ADF. In this paper, this latter part is called the
library. The subroutines acquired by ADF are drawn into
the library according to a rule. The subroutine in the
library (called SR here) may be referred to by any
individual in the main GP.

In the first place, we describe the description GP.
The terminal set and function set of the GP is defined as
follows:

T G p = { t l > t 2 ~ - - - ~ f n } > (1)

FGp = { f Y 1 , f F 2 ,..., f?"}. (2)
where m and n are the number of used terminals or
functions and depend on the object. argm is the number
of arguments of each function. Secondly, we describe
the description ADF-GP. The function set of the ADF-
GP takes the additional form of that of GP. That is,

F m F G p = [f,""' >. > f m argm,adfiUB1,...,adf~argp} (3)

where p is the number of adfs. The role of these
additional functions is to refer to these adfs. The
terminal set is the same that for the GP.

In the adf population, the terminal set and function set
are as follows.

TA,, ={tl't2' . . .J"}. (4)

T4, = { f l , . -. , t, ,arg,, . . . , q4),
Fdf = [f?' , f,""' ,. . . , f?"'} .

(5)

(6)
Then the Sharing-ADFGP with the library is formulated
as follows.

body, adf,?' -.. adfpyp SRw
(7)

Moreover the function set of the Sharing-ADFGP has
additional functions to refer SRi in the library.

F s h n n g - m F G p = adflarg' ,..., adfpargP

TShanng-ADFGP = { f 1 ' * . . 4 . (9)

i f f L a x > fLij then drawing into library (10)

(8)

The terminal set of the Sharing-ADFGP is as follows.

The subroutine the drawing operation to the library
would be executed under the following condition.

where fia is the maximum fitness value in generation t .
Then, the SR, in the library is discarded based on each
SRi fitness. The SRi fitness is defined as following
equation.

C jitness,
fitnesssRr = (1 1)

ref SR,

where fitness, is the fitness value of individual k which
refers to SR, and ref, is the total number of referred
SRi. The SRi with the lowest fitness may be discarded
and replaced with a new subroutine acquired by ADFGP.

In the library, toward to SR, which has the salient
number of refsR, a generalization operation may be
implemented. The aim of generalization here is to own
wholly stable mean for each subroutine so as to exclude
any argument. Therefore, for some subroutine, the
argument, argr may be changed to other terminals
stochastically. The condition for whether orlnot the
operation executes is as follows.

i f refsR, = Othen operate to Generalization (12)
Figure 1 shows a diagram of Sharing-ADFGP. The

next section describes experimental results for the wall

566

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:19:50 UTC from IEEE Xplore. Restrictions apply.

following problem.

body ad@ adfn

II_,
drawing
-+

reference)
evaluation -
generalizai t

+
+
d

-
0
0

Figure 1: Diagram of Sharing-ADFGP.

IV. Experiments
In this section, we experimentally examine our proposal
method mentioned above. The main parameters are
population size M = 700, number of generations G = 60,
selection by tournament strategy. Other GP parameters
have typical values as reported in [3]. We shows some
experimental results of GP, ADF-GP and Sharing-
ADFGP for fluctuating objects so as to verify the
robustness and reusability.

The wall following problem is a typical robot
navigation problem in GP [4]. The aim of this problem is
to acquire a program which can navigate a robot to
follow a closed wall within a map.

A problem space is represented by a field which is
divided into grids and surrounded by wall. Some tiles
are set along this wall. The robot can obtain a reward if it
goes through a tile. However, there are some obstacles
near the wall and the tile are set along those obstacles.

The robot can move within the space with no effect
on the grid. The robot can select from the following
actions: MoveForward, MoveBack, and rotating left or
right at (LeftTurn, RightTurn). Moreover the robot has
eight sensors(from 12 o'clock by counter clock,) and
can measure its distance from the wall. The robot
consumes its energy (E) through its movement and
sensing. The energy decreases E-1 units if it moves on a
tile, E-2 units if it moves on the field and E-1 units if it
senses. If E=O, the robot stops. The evaluation of the
program which navigates the robot is given as the
number of passed tiles (i.e. rewards).

The terminal set and function set of GP, ADF-GP,

and the Sharing-ADFGP which are used in these
experiments are as follows.

TumRight, TumLeft, MoveFonvard , MoveBack,

so, 31,. . ., s7
TGP =

t 13)
(14) F~~ = (IFLTE, ,P~O~~,}

TumRight, TurnLfl,

so, 31,. . . , s7, arg, 9 "g, t arg,

FmF.Gp =(IFLT4,Prog2,,adf 2 , w f 3,) (16)
TumRight, TumLeft,

qhrmng-ADFGp = MoveForward, MoveBack,

so, sl,. .-,s7,~gO,arg,, =g,

S R ~ ~ ~ ~ , . . , , S R ; ~

IFLTE4,Prog2,,adf 2,,adf 3,
I

The library size W, which is the peculiar parameter of
the Sharing-ADFGP, is 7. The experiments make use of
2 different types of conditions:
ex.: The robot starts from a random point facing in a
random initial direction as in Figure 2. ex.: The robot learns 2 maps which change every 5
generations in Figure 3 and Figure 4.

In ex (I) , as the action sequence must change at each
generation, the robot needs a generalized strategy to
follow. Moreover, in order to read the difference in the
map, it needs to preserve some of the acquired
knowledge. Figure 5 and Figure 6 present the
improvements to the standardized fitness (best of
generation) of ex. 1 and ex. 2 respectively. Figure 7
shows a typical trajectory which is derived from an
acquired subroutine (ex. 1). Figure 8, Figure 9 and
Figure 10 are the program generated by using ADFGP,
GP and the Sharing-ADFGP respectively. Figure 11, 12
are a typical trajectory of the standard GP in ex. 2.
Figure 13, 14 are a typical trajectory of Sharing-ADFGP
in ex. 2 . All the experimental results are calculated as
over 10 trials.

Figure 2: Map of ex. 2.

567

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:19:50 UTC from IEEE Xplore. Restrictions apply.

Figure 4: Map of ex. 2

5- 0 - -
W d v , v)

-
(U

+ -
generation

Figure 5 : Improvement of fitness in ex. 1.

5 -

0 -
\o

4

Pi m ';f In
d

I -
generation

Figure 6 : Improvement of fitness in ex. 2.

I
I
I
1
I
I

..,

I

..,
.. I ' .

I : .
I -.. I I

wall

.:.:.:.. _?.. .x.:
y.:. .:.:.: .;...

sensor
I
Figure 7: Typical trajectory of subroutine.

..
j Body:
: (IFLTE (IFLTE (ADFI MoveBack S2 S6) (ADFI T d g h t :
: TurnRight MoveForward)(ADFl S6 SO (ADFI MoveBack :
j MoveForward S6)) (PROG2 (PROG2 S6 TurnLeft) (ADFO j
: MoveBackS 4))) (ADFI (IFLTE (ADFI MoveBack (ADFI i
j MoveBack MoveForward S6) SO) (ADFI (ADFS MoveBack ;
: MoveForward S6) SO S2) (ADF1 MoveBack MoveForward S6) :
: (PROG2 S4 T d e f t)) TurnLeft MoveFomard) (ADF1 S2 j
: MoveForward S2) (ADF1 S4 S4 S7))
: ADFO:
i
: MoveForward S 5) MoveForward (IFLTE TurnLefi SO S5 S2)
: (IFLTE Argl MoveFomard Tunrfttght S3))
: ADFI:
: (PROG2 (IFLTE (IFLTE TurnRight Argo MoveBack S 5) ; I (IFLTE MoveBack MoveBack TurnRight S2) (PROG2
: MoveBack MoveBack) (IFLTE S2 (IFLTE S3 TurnRight :
j MoveBack S2) (IFLTE SI TurnRight TurnRight S2) TurnRight));
: (IFLTE (IFLE TurnRight MoveBack MoveBack S2) S2 :
: (PROG2 MoveBack (IFLTE MoveBack Argo (IFLTE
I MoveBack Argo MoveBack Argo) S3)) Arg2))

(IFLTE (IFLTE (IFLTE Argo (PROG2 S3 S3) S7 Argl) Argl i
:

..

.. Figure 8: Typical program of ADF-GP in ex. 2.
: (IFLTE (PROGZ (IFLTE (PROGZ MoveForward S6) (PROGZ
: MoveForward MoveForward) (IFLTE S6 TurnLeR S6 S5) (IFLTE 54 :
' TurnLeft S6 S 5)) (IFLTE S4 TurnLeft (PROGZ MoveForward : I MoveForward) S3)) (IFLTE (IFLTE MoveFonvard S7 MoveForward :
: MoveForward) (IFLTE (PROGZ MoveFonvard TurnLeft) (IFLTE I
: (PROGZ MoveFonvard S6) (PROGS MoveForward MoveForward) ;
: (lFLTE S4 TurnLe!? S6 S 5) MoveForward) (IFLTE S3 MoveFonvard :
: TurnRight TumLeR) S7) TumLeft MoveForward) (IFLTE S1 TurnLeft :
: S6 MoveForward) (IFLTE (IFLTE (IFLTE (PROGZ MoveForward :
: MoveForward) (IFLTE MoveForward SO MoveForward MoveFonvard) :
: (IFLTE MoveForward TurnLeft S5 MovcForward) (IFLTE TurnLeft ;
: MoveForward S6 S7)) (IFLTE MovcForward S4 MoveForward :
: MoveForward) (IFLTE TurnRight S5 S6 S 5) (IFLTE S7(PROG2 : i MoveForward TurnLeft) (IFLTE MoveForward MoveForward :
: MoveForward S4) (IFLTE S4 MoveFonvard MoveForward S4))) 1
: (PROGZ (IFLTE (PROGZ MoveForward S6) (PROGZ MoveForward :
: MoveForward) (PROGZ MoveFoMgrd TumLeft) (PROGZ MoveFonvard ;
: TurnLe!?)) (IFLTE S6 TumLeft S6 S3)) (IFLTE (PROGZ MoveFoward :
: (PROGZ MoveForward TurnLeft)) (PROGZ MoveForward :
~ MoveForward) (IFLTE S4 TurnLeft S6 (PROGZ MoveForward ~

~ MoveForward)) S6) (IFLTE S5fIFLTE (PROG2 MoveForward S6) :
: (PROGZ MoveForward MoveForward) (IFLTE S4 TurnLett S6 S5) :
I (IFLTE S4 TurnLeft S6 S5)) S5 (IFLTE S4 TurnLe!? S6 S5))))
...

Figure 9: Typical program by GP in ex. 2.

568

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:19:50 UTC from IEEE Xplore. Restrictions apply.

. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . . _ . . . _ _ . _ _ _ _ _ _ _ . _ _ _ _ _ _ . . _ . . . _ _ _ _ _ _ _ _ _ _ .
' Body:
; (IFLTE (SR[5] S7 SO SO) (ADFO S2 S3 (SR[O] (SR[2] (SR(Z] TumLeff :
~ S4 S5) S4 MoveBack) (IFLTE S6 MoveBack S3 (IFLTE MoveBack ;
: MoveBack S3 S4)) (SR[5] MoveBack TurnLeft MoveForward))) S4 ~

: (SR[3] ((SR[4] 56 MoveForward MoveFonvard) TumLeff MoveBack)) ~

: ADFO:
: (PROG2 (IFLTE (PROG2 (PROG2 (PROG2 Argl TurnLeft)(IFLTE
: Arg2 Arg2 Arg2 MovcForward)) (IFLTE Arg2 Arg2 Arg2 ;
: MoveFoward)) (PROGZ (PROG2 Argl TurnLeft) (IFLTE Arg2 Arg2 :
' Arg2 MoveForward)) Arg2 MoveForward) (IFLTE ArgZ Arg2 (PROG2 :
; Arg2 @FLTE Arg2 Arg2 Arg2 MoveFonvard)) MoveForward))
' ADF1:

(IFLTEGFLTE S2 MoveBack SO TurnLeft) (IFLTE S3 (PROG2 S4 :
TumRight) S1 TurnLett) (TFLTE SO S7 S1 MoveBack) (IFLTE 1 SO S7 :
S 1 MoveBack))
SR[O]:
(PROGZ (IFLTF, (PROG2 (PROG2 (PROG2 Argl TurnLeft) Arg2)
(IFLTE Arg2 Arg2 Arg2 MoveForward)) (PROG2 (PROG2 j
MoveFonvard TurnLeft) (IFLTE Arg2 Arg2 Arg2 S 3)) Arg2 Arg2) :
(IFLTF, AI@ ArgZ Arg2 MoveFonvard))
SR[1]:
(IFLTE (TFLTE SO S7 SI TumRight) (TFLTE S3 (FROG2 S4 TurnRight)
S1 TumLeft) (IFLTE S3 S7 S1 (IFLTE S l SI MoveBack Sl)) (IFLTE S2
MoveBack (IFLTE S3 (IFLTE S3 S7 S2 S2) (PROGZ MoveBack
TumRight) (TFLTE MoveBack S2 S3 TurnLeft)) TurnLeft))
SR[2]:
(IFLTE S2 MoveBack (IFLTE (IFLTE SO S7 MoveBack TurnLeft)
(IFLTE S3 SO SI S3) (IFLTE TumRight S7 S1 TurnRight) (IFLTE S3
MoveBack S1 TumLeff)) TurnLeft)
SR[3]:
(PROGZ (PROG2 TurnLeft Arg2) (IFLTE SI (PROG2 Argl ArgO)
(PROG2 (PROG2 (PROG2 Argo Arg2) (PROG2 Argl ArgO)) (PRoG2
Argl ArgO)) (PROG2 Arg2 (PRO32
SR[4]:
(IFLTE Argo TurnRight Argl TurnRight)
SR[5]:
(IFLTE (IFLTE SO S7 S I TurnRight) (IFLTE S3 (PROG2 Argl ~

TumRight) S1 TurnLeft) TurnRight (IFLTE TurnLeft MoveBack S3 j

SR[6]:
(IFLTE (TFLTE SO S7 S1 TumRight) (ELT!? S3 (PRCGZ S4 TurnRight)
S1 TumLeft)TumRight (IFLTE TumLeft MoveBack S3 TurnLeft))

(PROG2 Argo Argl) S3))))

A d))

: . . . _ . . _ . . _ . _ _ _ _ _ _ _ _ _ _ _ .
igurel0: Typical program by Sharing-ADFGP in ex. 2 .

Figure1 1: Trajectory of the standard GP in ex.2 (1).

Firmre 12: Traiectorv of standard GP in ex.2 (2). "

Figure 1 x.2

Figure 14: Trajectory of Sharing-ADFGP in ex.2 (2)

In Figure 10, the bold characters correspond to the
trajectory in Figure 7.

V. Discussion
The previous section was shown how the Sharing-
ADFGP worked under various conditions.

In ex 1, the improvement of the Sharing-ADFGP is
almost the same as that of ADF-GP. That is, because of
the random stating point, the evaluation of each
individual changes at each generation even if the same

569

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:19:50 UTC from IEEE Xplore. Restrictions apply.

program executed so the SR in the library is often
replaced. Finally, the fitness of the individual referred to
the SR becomes low, and as a result, the SR isn’t referred
and there isn’t much difference between them.

In ex. 2, the Sharing-ADFGP shows remarkably
excellent result. ADF-GP can’t cope with multiple maps
because it converges quickly. As a result, ADF-GP
doesn’t give robustness and adaptability. On the other
hand, the Sharing-ADFGP indicates a stable behavior
between two maps, not to mention that it reuses an
acquired knowledge effectively.

The program generated by the Sharing-ADFGP
employs some subroutines efficiently (see the body
program in Figure 10). The body program refers to SR[2],
SR[3], SR[4] and SR[5]. Some of these subroutines are
generated by other individuals (or other ADFs) because
the ADFs (ADFO and ADF1) in the individual differ
from these SR. Besides, SR[6] is generated by using
generalization operator. So SR[6] doesn’t have no
argument.

In Figure 13, 14, the body tree in the program is very
small because it refers four subroutines. The subroutines
realize a characteristic trajectory shown in Figure 13, 14.
That is, (1) the robot moves to the wall. (2) the robot
perceives the distance to the wall with its sensors. (3) the
robot retraces its steps and turns left. (4) the robot
perceives the distance again. (5) the robot retraces its
steps and turns left again. The above action sequence is
repeated any number of times in Figure 13, 14., and can
be utilized whenever the robot meets the wall. Thus, the
robot can behave adaptable between two maps.

To conclude about the Sharing-ADFGP, our goal,
namely, to pursuit the realization of the reusability in GP,
was attained in our several experiments. The primary
factor of this attainment exists in preserving of some
effective subroutine which are acquired by ADF.

VI. Related Work

A. Module Acquisition
Module Acquisition (MA) [5] randomly selects a subtree
from an individual and extracts a part of it as a module.
Thus, the module is defined as a new function and is
preserved in a library. This module can then be referred
by other individuals, and works as a function with a
fixed meaning. The main feature of MA is that it protects
some effective subtrees against blind crossover
operations. However, it is reported in [5] that MA could
not improve learning efficiency or the acquisition of
knowledge because of the random selection.

B. Adaptive Representation GP
In Genetic Algorithms, schema theorem and building
block hvDothesis are regarded as the theoretical basis of

learning. GP tends to seek the same basis. Rosca brought
up a proposal where the schema in GA corresponded to a
subtree in GP. Based on this assertion, he proposed an
approach, named Adaptive Representation GP (AR-GP)
[6]. AR-GP selects an effective subtree (i.e. a schema)
based on an heuristic operation and adds that subtree as
a new function to the function set. AR-GP can improve
learning efficiency. However, the configuration of the
evaluation function which works to select an effective
subtree is not clear. And, moreover, it has been pointed
out that this selection process isn’t suited for general
purposes .

VII. Conclusion
This paper proposed the Sharing-ADFGP for scaling up
of GP from the point of view of its reusability for
generation of program for practical use. The
effectiveness of our proposal was shown by the wall
following problem experimentally. Especially, under the
fluctuating environment, the Sharing-ADFGP showed
stable performance because the library works efficiently
to reuse an acquired knowledge.

References
[l] Koza, J.: ‘Genetic Programming 11 : Automatic
Discovery of Reusable Subprograms ’: MIT Press, 1994.
[2] Koza, J.: ‘Scaleable Learning in Genetic
Programming using Automatic Function Definition: in
Genetic Programming”, K. E. Kinnear, Jr., Ed.
Cambridge, MA: MIT Press.
[3] Koza, J.: <Genetic Programming, On the
Programming of Computers by Means of Natural
Selection ”, MIT Press, 1992.
[4] Koza, J.: ‘Evolution of subsumption using genetic
programming”, Proc. of the First European Conference
on Artificial Life (ECAL 91), MIT Press, 1991.
[SI Kinnear, K.: Alternatives in Automatic Function
Definition: ‘2 Comparison of Performance in Advances
in Genetic Programming”, K. E. Kinnear, Jr., Ed.
Cambridge, MA: MIT Press.
[6] Justinian P. Rosca. and Dana H. Ballard.:
“Hierarchical Self-organization in Genetic
Programming’: Machine Learning, Proc. 1 lth
International Conference, p25 1-258, 1994.

570

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:19:50 UTC from IEEE Xplore. Restrictions apply.

