
Symbolic Regression via Genetic Programming

Douglas A. Augusto and Helio J.C. Barbosa
Laboratbrio Nacional de Computa$io Cientifica

Petr6polis - RJ, Brasil
C.P. 95 1 13 CEP: 2565 1-070

e-mail: hcbm@lncc . br

Abstract

In this work we present an implementation of symbolic
regression which is based on genetic programming (GP).
Unfortunately, standard implementations of GP in com-
piled languages are not usually the most eficient ones. The
present approach employs a simple representation for tree-
like structures by making use of Read’s linear code, leading
to more simplicity and better per$ormance when compared
with traditional GP implementations. Creation, crossover
and mutation of individuals are formalized. An extension al-
lowing for the creation of random coeficients is presented.
The eficiency of the proposed implementation was con-
jirmed in computational experiments which are summarized
in this papel:

1. Introduction

Given a class of functions and a set of experimental ob-
servations, the problem of searching for the element in this
class that best fits the given data is known as regression.
In its more usual form, the structure of the function is pre-
defined by the analyst and one is left with the problem of
determining certain coefficients of that function. A certain
measure of the distance between the response predicted by
the function/model and the data available is then minimized
by a suitable optimization procedure. The case where the
structure of the function is not “a priori” defined and thus
must be found together with all its parameters is known as
symbolic regression.

This is a problem that can be approached by ge-
netic programming (GP)[2] which is a specialized genetic
algorithm[11 where a population of strings which encode
algebraic expressions is evolved mimicking the biological
evolutionary process.

In this paper, the algebraic expressions are written as
rooted trees which are then encoded using a specialized

scheme which employs an adaptation of Read’s linear code
for genetic programming[5]

The remainder of the paper is organized as follows. Sec-
tion 2 describes Read’s linear code adapted for GP, Sec-
tion 3 presents the proposed implementation for symbolic
regression, Section 4 summarizes some numerical experi-
ments and Section 5 draws some conclusions, outlines the
research in progress and suggests future works.

2. Read’s linear code for GP

Given a tree T = T(V7 E) , formed by a set of vertices
V and a set of edges E (see Figure l), Read’s linear code
is an alternative way of representing it by a vector of non-
negative integers (a l , a2, . . . a p) which is efficiently ma-
nipulated by compiled languages.

Figure 1. An example of a tree T = T(V, E) .

The code is generated by recursively traversing the tree
beginning in the root and then visiting the left child fol-
lowed by the right child, as exemplified in Figure 2, in what
is known as pre-order.

Finally, Figure 3 exemplifies how a simple tree is coded
beginning with the initial configuration (diagram A), as-
signing to each vertex a value corresponding to the number
of childs (diagram B) and ending with a vector of integers
at root (diagram C) which represents the whole tree.

1522-4899/00 $10.00 0 2000 IEEE
173

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:22:35 UTC from IEEE Xplore. Restrictions apply.

1

4

2

Figure 2. Traversing a tree.

A B C

Figure 3. Linear code representation of a tree.

2(200)200

Omut

J

. _ . . _ _ .

2(20200)200

A B C
Figure 4. An example of mutation.

174

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:22:35 UTC from IEEE Xplore. Restrictions apply.

2200(2300010)
n

r - 4

A

I
B

I
2(2300010)200

A’

Figure 5. An example of the crossover operation.

Using the linear code, a mutation operation can be de-
fined by randomly choosing a point (sub-tree) and substitut-
ing it for a new sub-tree randomly generated as exemplified
in Figure 4.

A crossover operator can be defined by exchanging two
randomly selected sub-trees belonging to each parent, gen-
erating two new individuals as exemplified in Figure 5.

It is important to note that when using the original linear
code for symbolic regression[5], real coefficients must be
evolved from elements of the terminal set operated upon by
elements of the function set. In this paper an extension of
the linear code is proposed in order to allow for the inclu-
sion of real multiplicative coefficients.

3. The proposed implementation

In the proposed GP implementation for symbolic regres-
sion the candidate solutions can be represented in one of
two ways: (i) with the finite set of functions and termi-
nals without allowing for randomly generated coefficients
or (ii) in a new extended form of the linear code capable of
accommodating real numbers as multiplicative coefficients
applied to the corresponding function or terminal. Fig-
ure 6 exemplifies the extended chromosome (diagram A),
the original tree (diagram B) and the final represented tree
(diagram C) for a situation where only terminals and one-
argument functions have a corresponding coefficient.

The crossover operator for the extended linear code can
be defined analogously to the case with no coefficients, as

B’

exemplified in Figure 7.
The mutation operation previously defined extends itself

trivially to the case where coefficients are present. Addi-
tionaly, a mutation operator which acts only upon the co-
efficients is introduced as given by Michalewicz[4]. The
basic idea consists in allowing larger perturbations in the
initial generations and gradually reducing them along the
evolutionary process.

The proposed GP implementation for symbolic regres-
sion uses a generational scheme with rank-based selection
and elitism (a user-prescribed number of individuals of the
elite of the population in a given generation is copied into
the next one without modifications).

4. Computational experiments

This section presents some results obtained with the pro-
posed algorithm which was coded in C, compiled with gcc
under Linux and run on an Intel Pentium MMX 200 MHz
personal computer.

In all examples the crossover probability was set to 0.96
and the elitism was applied to the individuals ranked in the
top 1/100th of the population.

4.1. Example 1

The first example[7] consists in finding the polynomial
f(z) = z4 + z3 + x2 + z from 17 pairs (xi,yi) where

175

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:22:35 UTC from IEEE Xplore. Restrictions apply.

- - - _ :- - _ _ _ 4 . 1 I..-+*@

B

Figure 6. Representation with coefficients.

C

+

1 A'
- -

+ j l n ix / C O S I X
1 1 -1

i-8.76 /0.03 16.81 /-2.81

B

B'

crossover operator. Figure 7. The

176

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:22:35 UTC from IEEE Xplore. Restrictions apply.

yi = f(zi) and the zi are uniformly distributed in [-5,5].
The function set and the terminal set are given respectively
by F = {+, -, *, /, J} and T = {z, 1.0,2.0,3.0}

A population of 600 individuals reached the exact solu-
tion in the generation 21 after 4 seconds of execution. The
maximum number of nodes in the trees was set to 25 and
the mutation probability was set to 0.25. The best individ-
ual found is equivalent to the polynomial sought:

4.2. Example 2

In the second example[6], the function
f(z) = e-(sin3z+2s) was used to generate 17
pairs (xi, yi) uniformly distributed in [-7r /2 ,~ /2] .
For this problem the function set was enlarged to
F = {+, -, *, /, ,f, sin, cos, exp} and the terminal set
remained the same: T = {E, 1.0,2.0,3.0}. The maximum
number of nodes in the trees was set to 20 and the mutation
probability was set to 0.20.

A population of 1000 individuals evolved the solution

exp(- (- (cos (+ (X, + (+ (exp (cos (2.0)) ,
+(sin(2.O) ,X)) ,X))) ,X) ,X))

after 116 generations and 40 seconds of execution. The ex-
pression corresponds to

and can be simplified to

[cos (3z+1.5688)-2~] g(x) = e

which is a very good approximation to f(z) since cos(3z +
1.5688) x cos(3z + ~ / 2) = - sin(3z).

4.3. Example 3

The third example[3] consists in finding the symbolic
expression for the data generated by the function f(z) =
2 . 7 1 8 ~ ~ + 3.14162 in [-T ,T] . Seventeen pairs (z i ,y i)
were used (with the zi uniformly distributed) and a pop-
ulation size of 600 was adopted. The function set is
F = { +, -, *, /, sin, cos} and the terminal set is T =
{z, 1.0,2.0,3.0}. In this example real multiplicative coef-
ficients are allowed to evolve by using the extended linear
code. The maximum number of nodes in the trees was set
to 20 and the mutation probability was set to 0.25. Also,
with probability 0.20, Michalewicz’s mutation operator is
applied to the extended part of the linear code and the fitness
of the mutated individual is computed. If no improvement

is observed the genetic code is restored to its pre-mutation
state.

After 300 generations (and 39.58 seconds of execution)
the best solution was

+(*(*(2.250208,X),*(1.208496,X)),
((2.250208,X),*(1.396278,1.0)))

which can be simplified to 2 . 7 1 9 3 ~ ~ + 3.14192.

each other and are thus not displayed here.
When plotted, both curves are undistinguishable from

4.4. Example 4

Here[7] we will try to perform the symbolic regression
of the data generated by the function f(z) = cos(2z) in
the interval [-T , T] excluding the function cosine from the
function set: F = { +, -, *, /, J, sin}. The terminal set
will be T = {z, 1.0,2.0,3.0} and 17 points, uniformly dis-
tributed are used. The maximum number of nodes in the
trees was set to 25 and the mutation probability was set to
0.25. The population size was 500 and, after 15 generations,
the following individual was found:

sin(+ (* (2 .O,X) ,sqrt (sqrt (* (3.0,2 . O)))))

which can be simplified to sin(2x + m), where fl x
1.5651 is an approximation for 7r/2 leading to an excellent
fitting (the curves are undistinguishable within plotting ac-
curacy) to the original function

f(z) = cos(22) = sin(2z + ~ / 2) .

4.5. Example 5

The last example[6] consists in finding the symbolic ex-
pression that best describes the relationship given by 33
pairs (xi, yi) uniformly distributed in (0,15) and defined
by y = f(z) = min{2/z,sin(z) + 1). The function
set is F = {+, -, *, / , s in , cos} and the terminal set is
T = {z, 1.0,2.0,3.0}.

The maximum number of nodes in the trees was set to 65
and the mutation probability was set to 0.15. The population
size was set to 600 and the best evolved individual g(z) was:

/ (+ (X,2 . O) , + (+ (- (2 .o, * (X, / (cos (2 . O) , / (*
(X, sin (sin (sin (2.0)))) , - (- (- (* (X, X) , /
(3 . 0 , + (+ (c o s (* (- (- (* (sin(sin(sin(2.0)))
,2.0),x),2.0),2.0~),2.0),c0s(c0s(3.0)))
)),2.0),-(2.0,/(2.0,+(cos(/(sin(+(X,X))
,2.0)),sin(X))))))))),l.O),sin(2.0)))

and was found after 3060 generations which consumed 50
minutes. Figure 8 displays the obtained solution together
with the original function.

177

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:22:35 UTC from IEEE Xplore. Restrictions apply.

2

1.5

1

0.5

0

.---
I 1 1

12 14 1 0 6 8 4 2

Figure 8. Original function y = f(z) = min{2/z, sin(z) + 1) and the solution g(z) found.

5. Conclusions and future work

In the present work we described an implementation for
solving symbolic regression problems within the genetic
programming paradigm. Moreover, we explained how to
represent a chromosome (rooted tree) under a linear code
extended here in order to accommodate real coefficients.
The results are positive and show substantial gains over us-
ing unsophisticated coding of trees based on pointers point-
ing to successive nodes (standard implementation). The
next steps in our research involve: (i) better tunning of the
coefficients, (ii) move to a full Object Oriented paradigm,
(iii) add new operators such as Edit mutation, Permuta-
tion mutation, and Shrink mutation, (iv) add an intelligent
crossover in order to preserve context and (v) add a cost to
each function and/or terminal, assigning greater chance of
reproduction to individuals with smaller cost.

References

[13 D. Goldberg. Genetic algorithms in search, optimization, and
machine learning. Addison-Wesley Reading, MA, 1989.

[2] J. Koza. Genetic Programming: On the Programming of
Computers by Means of Natural Selection. MIT Press Cam-
bridge, MA, 1992.

[3] J. R. Koza. Genetic programming: a paradigm for genetically
breeding populations of computer programs to solve prob-
lems. Technical Report CS-TR-90-1314, Stanford University,
Department of Computer Science, June 1990.

[4] Z. Michalewicz. Genetic Algorithms + Data Structures =
Evolution Programs. Springer-Verlag, 1992.

[5] M. Pelikan, V. Kvasnicka, and J. Pospichal. Read’s linear
codes and genetic programming. In J. R. Koza, K. Deb,
M. Dorigo, D. B. Fogel, M. Garzon, H. Iba, and R. L. Riolo,
editors, Genetic Programming 1997: Proceedings of the Sec-
ond Annual Conference, page 268, Stanford University, CA,
USA, 13-16 July 1997. Morgan Kaufmann.

[6] H. Poyhonen and D. Savic. Symbolic regression using object-
oriented genetic programming (in C++). Technical Report
96/04, Centre For Systems And Control Engineering School
of Engineering, University of Exeter, Exeter, United King-
dom, 1996.

[7] A. Salhi, H. Glaser, and D. De Roure. Parallel implementation
of a genetic-programming based tool for symbolic regression.
Information Processing Letters, 66(6):299-307, June 1998.

178

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:22:35 UTC from IEEE Xplore. Restrictions apply.

