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Abstract 

In this work we present an implementation of symbolic 
regression which is based on genetic programming (GP). 
Unfortunately, standard implementations of GP in com- 
piled languages are not usually the most eficient ones. The 
present approach employs a simple representation for tree- 
like structures by making use of Read’s linear code, leading 
to more simplicity and better per$ormance when compared 
with traditional GP implementations. Creation, crossover 
and mutation of individuals are formalized. An extension al- 
lowing for  the creation of random coeficients is presented. 
The eficiency of the proposed implementation was con- 
jirmed in computational experiments which are summarized 
in this papel: 

1. Introduction 

Given a class of functions and a set of experimental ob- 
servations, the problem of searching for the element in this 
class that best fits the given data is known as regression. 
In its more usual form, the structure of the function is pre- 
defined by the analyst and one is left with the problem of 
determining certain coefficients of that function. A certain 
measure of the distance between the response predicted by 
the function/model and the data available is then minimized 
by a suitable optimization procedure. The case where the 
structure of the function is not “a priori” defined and thus 
must be found together with all its parameters is known as 
symbolic regression. 

This is a problem that can be approached by ge- 
netic programming (GP)[2] which is a specialized genetic 
algorithm[ 11 where a population of strings which encode 
algebraic expressions is evolved mimicking the biological 
evolutionary process. 

In this paper, the algebraic expressions are written as 
rooted trees which are then encoded using a specialized 

scheme which employs an adaptation of Read’s linear code 
for genetic programming[5] 

The remainder of the paper is organized as follows. Sec- 
tion 2 describes Read’s linear code adapted for GP, Sec- 
tion 3 presents the proposed implementation for symbolic 
regression, Section 4 summarizes some numerical experi- 
ments and Section 5 draws some conclusions, outlines the 
research in progress and suggests future works. 

2. Read’s linear code for GP 

Given a tree T = T(V7 E ) ,  formed by a set of vertices 
V and a set of edges E (see Figure l), Read’s linear code 
is an alternative way of representing it  by a vector of non- 
negative integers (a l ,  a2, . . . a p )  which is efficiently ma- 
nipulated by compiled languages. 

Figure 1. An example of a tree T = T(V, E) .  

The code is generated by recursively traversing the tree 
beginning in the root and then visiting the left child fol- 
lowed by the right child, as exemplified in Figure 2, in what 
is known as pre-order. 

Finally, Figure 3 exemplifies how a simple tree is coded 
beginning with the initial configuration (diagram A), as- 
signing to each vertex a value corresponding to the number 
of childs (diagram B) and ending with a vector of integers 
at root (diagram C) which represents the whole tree. 
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Figure 2. Traversing a tree. 
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Figure 3. Linear code representation of a tree. 
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Figure 4. An example of mutation. 
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Figure 5. An example of the crossover operation. 

Using the linear code, a mutation operation can be de- 
fined by randomly choosing a point (sub-tree) and substitut- 
ing it  for a new sub-tree randomly generated as exemplified 
in Figure 4. 

A crossover operator can be defined by exchanging two 
randomly selected sub-trees belonging to each parent, gen- 
erating two new individuals as exemplified in Figure 5. 

It is important to note that when using the original linear 
code for symbolic regression[5], real coefficients must be 
evolved from elements of the terminal set operated upon by 
elements of the function set. In this paper an extension of 
the linear code is proposed in order to allow for the inclu- 
sion of real multiplicative coefficients. 

3. The proposed implementation 

In the proposed GP implementation for symbolic regres- 
sion the candidate solutions can be represented in one of 
two ways: (i) with the finite set of functions and termi- 
nals without allowing for randomly generated coefficients 
or (ii) in a new extended form of the linear code capable of 
accommodating real numbers as multiplicative coefficients 
applied to the corresponding function or terminal. Fig- 
ure 6 exemplifies the extended chromosome (diagram A), 
the original tree (diagram B) and the final represented tree 
(diagram C) for a situation where only terminals and one- 
argument functions have a corresponding coefficient. 

The crossover operator for the extended linear code can 
be defined analogously to the case with no coefficients, as 

B’ 

exemplified in Figure 7. 
The mutation operation previously defined extends itself 

trivially to the case where coefficients are present. Addi- 
tionaly, a mutation operator which acts only upon the co- 
efficients is introduced as given by Michalewicz[4]. The 
basic idea consists in allowing larger perturbations in the 
initial generations and gradually reducing them along the 
evolutionary process. 

The proposed GP implementation for symbolic regres- 
sion uses a generational scheme with rank-based selection 
and elitism (a user-prescribed number of individuals of the 
elite of the population in a given generation is copied into 
the next one without modifications). 

4. Computational experiments 

This section presents some results obtained with the pro- 
posed algorithm which was coded in C, compiled with gcc 
under Linux and run on an Intel Pentium MMX 200 MHz 
personal computer. 

In all examples the crossover probability was set to 0.96 
and the elitism was applied to the individuals ranked in the 
top 1/100th of the population. 

4.1. Example 1 

The first example[7] consists in finding the polynomial 
f(z) = z4 + z3 + x2 + z from 17 pairs (xi,yi) where 
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Figure 6. Representation with coefficients. 
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crossover operator. Figure 7. The 
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yi = f(zi) and the zi are uniformly distributed in [-5,5]. 
The function set and the terminal set are given respectively 
by F = {+, -, *, /, J} and T = {z, 1.0,2.0,3.0} 

A population of 600 individuals reached the exact solu- 
tion in the generation 21 after 4 seconds of execution. The 
maximum number of nodes in the trees was set to 25 and 
the mutation probability was set to 0.25. The best individ- 
ual found is equivalent to the polynomial sought: 

4.2. Example 2 

In the second example[6], the function 
f(z) = e-(sin3z+2s) was used to generate 17 
pairs (xi, yi) uniformly distributed in [ -7r /2 ,~ /2] .  
For this problem the function set was enlarged to 
F = {+, -, *, /, ,f, sin, cos, exp} and the terminal set 
remained the same: T = {E, 1.0,2.0,3.0}. The maximum 
number of nodes in the trees was set to 20 and the mutation 
probability was set to 0.20. 

A population of 1000 individuals evolved the solution 

exp(- ( -  (cos ( +  (X, + ( +  (exp (cos  (2.0) ) , 
+(sin(2.O) ,X)) ,X))) ,X) ,X)) 

after 116 generations and 40 seconds of execution. The ex- 
pression corresponds to 

and can be simplified to 

[cos (3z+1.5688)-2~] g(x) = e 

which is a very good approximation to f(z) since cos(3z + 
1.5688) x cos(3z + ~ / 2 )  = - sin(3z). 

4.3. Example 3 

The third example[3] consists in finding the symbolic 
expression for the data generated by the function f(z) = 
2 . 7 1 8 ~ ~  + 3.14162 in [ -T ,T] .  Seventeen pairs (z i ,y i )  
were used (with the zi uniformly distributed) and a pop- 
ulation size of 600 was adopted. The function set is 
F = { +, -, *, /, sin, cos} and the terminal set is T = 
{z, 1.0,2.0,3.0}. In this example real multiplicative coef- 
ficients are allowed to evolve by using the extended linear 
code. The maximum number of nodes in the trees was set 
to 20 and the mutation probability was set to 0.25. Also, 
with probability 0.20, Michalewicz’s mutation operator is 
applied to the extended part of the linear code and the fitness 
of the mutated individual is computed. If no improvement 

is observed the genetic code is restored to its pre-mutation 
state. 

After 300 generations (and 39.58 seconds of execution) 
the best solution was 

+(*(*(2.250208,X),*(1.208496,X)), 
*(*(2.250208,X),*(1.396278,1.0))) 

which can be simplified to 2 . 7 1 9 3 ~ ~  + 3.14192. 

each other and are thus not displayed here. 
When plotted, both curves are undistinguishable from 

4.4. Example 4 

Here[7] we will try to perform the symbolic regression 
of the data generated by the function f(z) = cos(2z) in 
the interval [ -T ,  T ]  excluding the function cosine from the 
function set: F = { +, -, *, /, J, sin}. The terminal set 
will be T = {z, 1.0,2.0,3.0} and 17 points, uniformly dis- 
tributed are used. The maximum number of nodes in the 
trees was set to 25 and the mutation probability was set to 
0.25. The population size was 500 and, after 15 generations, 
the following individual was found: 

sin(+ ( *  (2 .O,X) ,sqrt (sqrt ( *  (3.0,2 . O )  ) ) ) ) 

which can be simplified to sin(2x + m), where fl x 
1.5651 is an approximation for 7r/2 leading to an excellent 
fitting (the curves are undistinguishable within plotting ac- 
curacy) to the original function 

f(z) = cos(22) = sin(2z + ~ / 2 ) .  

4.5. Example 5 

The last example[6] consists in finding the symbolic ex- 
pression that best describes the relationship given by 33 
pairs (xi, yi) uniformly distributed in (0,15) and defined 
by y = f(z) = min{2/z,sin(z) + 1). The function 
set is F = {+, -, *, / , s in ,  cos} and the terminal set is 
T = {z, 1.0,2.0,3.0}. 

The maximum number of nodes in the trees was set to 65 
and the mutation probability was set to 0.15. The population 
size was set to 600 and the best evolved individual g(z) was: 

/ ( +  (X,2 . O )  , + ( + ( -  (2 .o, * (X, / (cos  (2 . O )  , / ( *  
(X, sin (sin ( sin (2.0 ) ) ) ) , - ( - ( - ( * (X, X) , / 
( 3 . 0 ,  + ( + ( c o s  ( *  ( -  ( -  ( *  (sin(sin(sin(2.0) ) ) 
,2.0),x),2.0),2.0~),2.0),c0s(c0s(3.0))) 
)),2.0),-(2.0,/(2.0,+(cos(/(sin(+(X,X)) 
,2.0)),sin(X))))))))),l.O),sin(2.0))) 

and was found after 3060 generations which consumed 50 
minutes. Figure 8 displays the obtained solution together 
with the original function. 
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Figure 8. Original function y = f(z) = min{2/z, sin(z) + 1) and the solution g(z) found. 

5. Conclusions and future work 

In the present work we described an implementation for 
solving symbolic regression problems within the genetic 
programming paradigm. Moreover, we explained how to 
represent a chromosome (rooted tree) under a linear code 
extended here in order to accommodate real coefficients. 
The results are positive and show substantial gains over us- 
ing unsophisticated coding of trees based on pointers point- 
ing to successive nodes (standard implementation). The 
next steps in our research involve: (i) better tunning of the 
coefficients, (ii) move to a full Object Oriented paradigm, 
(iii) add new operators such as Edit mutation, Permuta- 
tion mutation, and Shrink mutation, (iv) add an intelligent 
crossover in order to preserve context and (v) add a cost to 
each function and/or terminal, assigning greater chance of 
reproduction to individuals with smaller cost. 

References 

[ 13 D. Goldberg. Genetic algorithms in search, optimization, and 
machine learning. Addison-Wesley Reading, MA, 1989. 

[2] J. Koza. Genetic Programming: On the Programming of 
Computers by Means of Natural Selection. MIT Press Cam- 
bridge, MA, 1992. 

[3] J. R. Koza. Genetic programming: a paradigm for genetically 
breeding populations of computer programs to solve prob- 
lems. Technical Report CS-TR-90-1314, Stanford University, 
Department of Computer Science, June 1990. 

[4] Z. Michalewicz. Genetic Algorithms + Data Structures = 
Evolution Programs. Springer-Verlag, 1992. 

[5] M. Pelikan, V. Kvasnicka, and J. Pospichal. Read’s linear 
codes and genetic programming. In J. R. Koza, K. Deb, 
M. Dorigo, D. B. Fogel, M. Garzon, H. Iba, and R. L. Riolo, 
editors, Genetic Programming 1997: Proceedings of the Sec- 
ond Annual Conference, page 268, Stanford University, CA, 
USA, 13-16 July 1997. Morgan Kaufmann. 

[6] H. Poyhonen and D. Savic. Symbolic regression using object- 
oriented genetic programming (in C++). Technical Report 
96/04, Centre For Systems And Control Engineering School 
of Engineering, University of Exeter, Exeter, United King- 
dom, 1996. 

[7] A. Salhi, H. Glaser, and D. De Roure. Parallel implementation 
of a genetic-programming based tool for symbolic regression. 
Information Processing Letters, 66(6):299-307, June 1998. 

178 

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:22:35 UTC from IEEE Xplore.  Restrictions apply. 


