
843

2023 IEEE 23rd International Conference on Software Quality, Reliability, and Security Companion (QRS-C)

2693-9371/23/$31.00 ©2023 IEEE
DOI 10.1109/QRS-C60940.2023.00062

20
23

 IE
EE

 2
3r

d
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 S
of

tw
ar

e
Q

ua
lit

y,
 R

el
ia

bi
lit

y,
 a

nd
 S

ec
ur

ity
 C

om
pa

ni
on

 (Q
RS

-C
) |

 9
79

-8
-3

50
3-

59
39

-8
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
Q

RS
-C

60
94

0.
20

23
.0

00
62

2023 IEEE 23rd International Conference on Software Quality, Reliability, and Security Companion (QRS-C)

Uncertainty-Wise Model Evolution with Genetic Programming

Man Zhang1 , Shauk:at Ali2•3, and Tao Yue2
1 Kristiania University College, Oslo, Norway
2Simula Research Laboratory, Oslo, Norway
30slo Metropolitan University, Oslo, Norway

man.zhang@kristiania.no, shaukat@ simula.no, tao@ simula.no

Abstract-Model-based Testing (MBT) of a Cyber-Physical
System (CPS) under uncertain environments relies on test
models manually built based on testers' limited knowledge
about the CPS and its operating environment, thereby requir­
ing their continuous evolution. To this end, we propose an
uncertainty-wise model evolution approach (UNCERPLORE) to
systematically evolve these models with a novel exploration
strategy using Genetic Programming while also incorporating
CPS execution information. With a preliminary study with a
CPS use case, UNCERPLORE manages to evolve models and
explore, on average 28.6% new uncertainties in 10 repetitions.

Keywords-model evolution; genetic programming;

1 . INTRODUCTION

In a Cyber-physical System (CPS)'s operation, uncertainty
exists everywhere, e.g., due to its unpredictable environment.
Such uncertainty must be considered during CPS testing. To
enable CPS uncertainty-wise testing, we proposed a set of
approaches [1] , [2], [3], [4], [5] with model and search­
based techniques. Among them, UNCERTUM [3] is a modeling
framework having UML Uncertainty Profile (UUP) and model
libraries to create test models (called Belief Models (BMs))
with explicit uncertainty information. A tester creates such
models manually based on their understanding of the CPS and
its environment. These models require continuous evolution.
An example model in UNCERTUM is Belief State Machine
(BSM) annotated with uncertainty-related model elements
modeling uncertain CPS behaviors. An uncertain behavior
is observed when triggering the same event from a source
state, which could lead to more than one known or unknown
state. We propose UNCERPLORE that enables the adaptive
exploration of CPS behaviors and supports the evolution of
the BM models through direct interactions with the CPS with
Genetic Programming (GP).

2. UNCERPLORE

Figure 1 presents UNCERPLORE having three main compo­
nents, i.e., Model Execution, Model Evolution, and Exploration
Strategy Evolution, forming an iterative evolution process.
UNCERPLORE takes BSMs as inputs. We define Exploration
Strategy (ES), which decides how to explore models, e.g.,
selecting a transition to execute. Guided by ES, Model Ex­
ecution performs the BSM execution with direct communi­
cations with the System Under Test (SUT), i.e., the CPS.
The model execution enables transitions (e.g., involving an

2693-9371/23/$31 .00 ©2023 IEEE
DOI 10. 1 1 09/QRS-C60940.2023 .00062

843

SUT operation) and evaluates the state invariant of the target
state based on the SUT status. Based on execution results,
Model Evolution evolves states, transitions, uncertainties, and
uncertainty measurements in the BSM. Exploration Strategy
Evolution evolves ES for maximizing model coverage and
exploring SUT behaviors with GP. The evolved BSM and ES
are regarded as inputs of the next iteration of the evolution.
Problem Reformulation. We reformulate ES as a program to
guide model execution and allow model evolution by inferring
execution information. Figure 1 shows that the ES is modeled
as a decision tree with two kinds of nodes: action (see A in
Figure 1) and condition (see C in Figure 1), and it determines
how to explore BSMs under certain conditions. All ES leaves
are action node. Each action selects the next step to process
the model execution, e.g., selecting a transition. Internal nodes
define conditions regarding model execution and evolution: 1)
the current arrived state in the BSM; 2) the candidates of the
outbound transitions; 3) the achieved model coverage; and 4)
the achieved uncertainty occurrence coverage.
Model Execution. To enable the BM execution, we defined
executable belief state machines (ExBSMs). ExBSMs map
model elements with variables and accessible SUT test APis
for supporting state invariant evaluation and state transition
handling and collect execution information (e.g., model exe­
cution coverage) at run-time. To support adaptive exploration
with model execution, the execution of ExBSMs is guided by
the specified execution strategy, i.e., ES. The metamodel of
ExBSMs is online available1 .
Model Evolution. The model evolves when the current SUT
state does not conform to the specified target state after
triggering a transition/introducing an indeterminacy source.
For instance, as shown in Figure 1 , assume that the current
state is 80, after triggering the transition T1 (selected by ES),
the SUT does not reach the state 81 , i.e., the state invariant
of 81 being evaluated as false. To identify the new state
and uncertainty, we propose Algorithm 1 that derives satis­
fied constraints based on actual values of potentially related
variables of the source target. To infer the state invariant, we
define constraint weakening rules specific to Object Constraint
Language (OCL) and define collection and numeric operators,
i.�, forAl l, one, include sAl l, excludesAl l, =, >,
and < . In addition, we calculate uncertainty measurement
based on the frequency of the occurrence of uncertainty.
Exploration Strategy Evolution with GP. To evolve, UN-

1 https://github.com/man-zhang/uncerplore

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:29:30 UTC from IEEE Xplore. Restrictions apply.

844

- sa
v
e�a

-
n
d-

r
ePt�Ce :

current
state V • T1

Belief State Machine (BSM)

UncerPiore

inputs BSM
<-_f�o_rD 5:?toJ�� _

e.g.,SO

uses /

Model Execution Engine
- State transition handling
- State invariants evaluation

'
,, uses

- Exploration Strategy (Program)

outputs
evolved BSM - - - - - - - - ->

prev1ous vers1on •
of BSM :

NTl Opl/lnd2 NS
Belief State Machine (BSM)
<- - data flow

« - - - - - - - - - - Fitness Function Operators

•- approach process
• - - model dependency
<:=::>- SUT communication
@ action node

outputs
modified ES

- Model coverage - Point mutation
- Exploration fitness - Subtree crossover
Algorithm
- Genetic Algorithm @ condition node

Figure 1. Overview of UncerPlore

Algorithm 1: Identify State and Uncertainty
Input : Specified Target State (tST), Source Target (sST), Triggerred

Transition (tT R)
Output: New State (nST), New Uncertainty (nUN)

nCons +- {}
vars +- getVar(tST)
for each variable var E vars do

cons +- getConstraints(var)
for each constraint con E cons do

if con.evaluate() then I nCons +- nCons U con
else

weans +- weak(ean)
for each weaken wcon E weans do

I if wcon.evaluate() then

I nCons +- nCons U wean
break

if lnCons == 0 then I nST +- createUkST()
else I nST +- createST(nCons)
nUN +- (sST, tTR, nST)

CERPLORE employs GP implemented in the MOEA frame­
work [6] with its default configurations, aiming to maximize
the execution and model exploration. Thus we define fitness
based on the coverage of model execution and the rate of new
states and uncertainties detected as Fitness = 0.2 x M EC +
0.8 x Nor(lnSTs l + lnUNs l) , where MEC is the model
execution coverage, nSTs is a set of newly derived states, nUNs
is a set of newly discovered uncertainty, lS I represents the size
of a set, and Nor is a normalization function [7].

3 . PRELIMINARY STUDY

We implemented seven kinds of conditions and 1 1 kinds of
actions for defining ES to be evolved by GP in UNCERPLORE.

We experimented with a preliminary study with one use case
of an automated warehouse system. The use case is originally
specified with seven uncertainties in its BSM. We set 100
fitness evaluations as GP's stopping criterion and repeated
the experiment 10 times. Results show that UNCERPLORE

identified on average 2 new uncertainties in the 10-times
repetition and evolved 28.6% (217) uncertainties.

ACKNOWLEDGMENT

This project is supported by the Co-evolver (286898/F20)
and Co-tester (3 14544) projects from the Research Council of
Norway. Man Zhang acknowledges the support from the EAST
project (grant agreement No. 864972) from the European
Research Council (ERC) under the European Union's Horizon
2020 research and innovation program.

REFERENCES

[1] M. Zhang, B. Selic, S. Ali, T. Yue, 0. Okariz, and
R. Norgren, "Understanding uncertainty in cyber-physical
systems: a conceptual model," in Modelling Foundations
and Applications: 12th European Conference, ECMFA
2016. Springer, 2016, pp. 247-264.

[2] M. Zhang, T. Yue, S. Ali, B. Selic, 0. Okariz, R. Norgre,
and K. Intxausti, "Specifying uncertainty in use case
models," Journal of Systems and Software, vol. 144, pp.
573-603, 2018 .

[3] M. Zhang, S. Ali, T. Yue, R. Norgren, and 0. Okariz,
"Uncertainty-wise cyber-physical system test modeling,"
Software & Systems Modeling, vol. 18, no. 2, pp. 1379-
1418, 2019.

[4] M. Zhang, S. Ali, T. Yue, and R. Norgre, "Uncertainty­
wise evolution of test ready models," Information and
Software Technology, vol. 87, pp. 140-159, 2017.

[5] M. Zhang, S. Ali, and T. Yue, "Uncertainty-wise test case
generation and minimization for cyber-physical systems,"
Journal of Systems and Software, vol. 153, pp. 1-21 , 2019.

[6] "MOEA Framework: A Free and Open Source
Java Framework for Multiobjective Optimization,"
http://moeaframework.org/, accessed: August 8th 2023.

[7] V. Vinay, I. J. Cox, N. Milic-Frayling, and K. Wood, "On
ranking the effectiveness of searches," in Proceedings of
the 29th annual international ACM SIGIR conference on
Research and development in information retrieval, 2006,
pp. 398-404.

844

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:29:30 UTC from IEEE Xplore. Restrictions apply.

