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Abstract-Model-based Testing (MBT) of a Cyber-Physical 
System (CPS) under uncertain environments relies on test 
models manually built based on testers' limited knowledge 
about the CPS and its operating environment, thereby requir­
ing their continuous evolution. To this end, we propose an 
uncertainty-wise model evolution approach (UNCERPLORE) to 
systematically evolve these models with a novel exploration 
strategy using Genetic Programming while also incorporating 
CPS execution information. With a preliminary study with a 
CPS use case, UNCERPLORE manages to evolve models and 
explore, on average 28.6% new uncertainties in 10 repetitions. 
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1 .  INTRODUCTION 

In a Cyber-physical System (CPS)'s operation, uncertainty 
exists everywhere, e.g., due to its unpredictable environment. 
Such uncertainty must be considered during CPS testing. To 
enable CPS uncertainty-wise testing, we proposed a set of 
approaches [1] ,  [2], [3], [4], [5] with model and search­
based techniques. Among them, UNCERTUM [3] is a modeling 
framework having UML Uncertainty Profile (UUP) and model 
libraries to create test models (called Belief Models (BMs)) 
with explicit uncertainty information. A tester creates such 
models manually based on their understanding of the CPS and 
its environment. These models require continuous evolution. 
An example model in UNCERTUM is Belief State Machine 
(BSM) annotated with uncertainty-related model elements 
modeling uncertain CPS behaviors. An uncertain behavior 
is observed when triggering the same event from a source 
state, which could lead to more than one known or unknown 
state. We propose UNCERPLORE that enables the adaptive 
exploration of CPS behaviors and supports the evolution of 
the BM models through direct interactions with the CPS with 
Genetic Programming (GP). 

2. UNCERPLORE 

Figure 1 presents UNCERPLORE having three main compo­
nents, i.e., Model Execution, Model Evolution, and Exploration 
Strategy Evolution, forming an iterative evolution process. 
UNCERPLORE takes BSMs as inputs. We define Exploration 
Strategy (ES), which decides how to explore models, e.g., 
selecting a transition to execute. Guided by ES, Model Ex­
ecution performs the BSM execution with direct communi­
cations with the System Under Test (SUT), i.e., the CPS. 
The model execution enables transitions (e.g., involving an 
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SUT operation) and evaluates the state invariant of the target 
state based on the SUT status. Based on execution results, 
Model Evolution evolves states, transitions, uncertainties, and 
uncertainty measurements in the BSM. Exploration Strategy 
Evolution evolves ES for maximizing model coverage and 
exploring SUT behaviors with GP. The evolved BSM and ES 
are regarded as inputs of the next iteration of the evolution. 
Problem Reformulation. We reformulate ES as a program to 
guide model execution and allow model evolution by inferring 
execution information. Figure 1 shows that the ES is modeled 
as a decision tree with two kinds of nodes: action (see A in 
Figure 1) and condition (see C in Figure 1), and it determines 
how to explore BSMs under certain conditions. All ES leaves 
are action node. Each action selects the next step to process 
the model execution, e.g., selecting a transition. Internal nodes 
define conditions regarding model execution and evolution: 1)  
the current arrived state in the BSM; 2) the candidates of the 
outbound transitions; 3) the achieved model coverage; and 4) 
the achieved uncertainty occurrence coverage. 
Model Execution. To enable the BM execution, we defined 
executable belief state machines (ExBSMs). ExBSMs map 
model elements with variables and accessible SUT test APis 
for supporting state invariant evaluation and state transition 
handling and collect execution information (e.g., model exe­
cution coverage) at run-time. To support adaptive exploration 
with model execution, the execution of ExBSMs is guided by 
the specified execution strategy, i.e., ES. The metamodel of 
ExBSMs is online available1 . 
Model Evolution. The model evolves when the current SUT 
state does not conform to the specified target state after 
triggering a transition/introducing an indeterminacy source. 
For instance, as shown in Figure 1 ,  assume that the current 
state is 80, after triggering the transition T1 (selected by ES), 
the SUT does not reach the state 81 , i.e., the state invariant 
of 81 being evaluated as false.  To identify the new state 
and uncertainty, we propose Algorithm 1 that derives satis­
fied constraints based on actual values of potentially related 
variables of the source target. To infer the state invariant, we 
define constraint weakening rules specific to Object Constraint 
Language (OCL) and define collection and numeric operators, 
i.�, forAl l, one, include sAl l, excludesAl l, =, >, 
and < .  In addition, we calculate uncertainty measurement 
based on the frequency of the occurrence of uncertainty. 
Exploration Strategy Evolution with GP. To evolve, UN-

1 https://github.com/man-zhang/uncerplore 
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Figure 1. Overview of UncerPlore 

Algorithm 1: Identify State and Uncertainty 
Input : Specified Target State (tST), Source Target (sST), Triggerred 

Transition ( tT R) 
Output: New State (nST), New Uncertainty (nUN) 

nCons +- {} 
vars +- getVar(tST) 
for each variable var E vars do 

cons +- getConstraints(var) 
for each constraint con E cons do 

if con.evaluate() then I nCons +- nCons U con 
else 

weans +- weak(ean) 
for each weaken wcon E weans do 

I if wcon.evaluate() then 

I nCons +- nCons U wean 
break 

if lnCons == 0 then I nST +- createUkST() 
else I nST +- createST(nCons) 
nUN +- (sST, tTR, nST) 

CERPLORE employs GP implemented in the MOEA frame­
work [6] with its default configurations, aiming to maximize 
the execution and model exploration. Thus we define fitness 
based on the coverage of model execution and the rate of new 
states and uncertainties detected as Fitness = 0.2 x M EC + 
0.8 x Nor( lnSTs l + lnUNs l ) , where MEC is the model 
execution coverage, nSTs is a set of newly derived states, nUNs 
is a set of newly discovered uncertainty, lS I represents the size 
of a set, and Nor is a normalization function [7]. 

3 .  PRELIMINARY STUDY 

We implemented seven kinds of conditions and 1 1  kinds of 
actions for defining ES to be evolved by GP in UNCERPLORE. 

We experimented with a preliminary study with one use case 
of an automated warehouse system. The use case is originally 
specified with seven uncertainties in its BSM. We set 100 
fitness evaluations as GP's stopping criterion and repeated 
the experiment 10 times. Results show that UNCERPLORE 

identified on average 2 new uncertainties in the 10-times 
repetition and evolved 28.6% (217) uncertainties. 
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