
User-assisted reverse modeling with evolutionary
algorithms

Pierre-Alain Fayolle
The University of Aizu

Aizu-Wakamatsu, Japan

Email: fayolle@u-aizu.ac.jp

Alexander Pasko
Bournemouth University, Bournemouth, UK

Fusion Institute Global, Tokyo, Japan

Email: apasko@bournemouth.ac.uk

Abstract—This paper presents a system for user-assisted
reverse modeling: from digitized point-cloud to solid models ready
to be used in a CAD modeling system. Our approach consists
in the following steps: segmentation, fitting, and constructive
model discovery. Each of these steps are based on evolutionary
algorithms. The obtained objects can then be further edited or
parameterized by users and fitted to adapt their shape to different
point-clouds.

Keywords—Reverse modeling, evolutionary algorithms, function
representation, construction tree, solid modeling.

I. INTRODUCTION

In solid modeling, reverse engineering is the process of
reconstruction from a scanned point-cloud of a geometric
model ready to be used in a modeling system. In this
work, we consider objects modeled in a constructive way
by recursively applying geometric operations to primitives.
Constructive Solid Geometry (CSG) is an example of such a
constructive approach, where primitives correspond to quadrics
and the operations include regularized Boolean operations and
rigid transformations.

We are considering here evolutionary approaches to discov-
ering a constructive model from a given scanned point-cloud.
Our approach is based on the following steps: segmentation of
the input point-cloud; fitting of primitives to each cluster; and
discovery of a constructive model using these fitted primitives
and geometric operations. The obtained constructive object can
then be manipulated and edited by a user. A template model
can also be extracted by a user with abstract parameters that
can be fitted to adapt the shape to different point-clouds. We
illustrate these steps with various experiments.

The main contributions of this work are:

• A general pipeline for constructive model recovery
from point-clouds;

• Original evolutionary algorithms for construction tree
search using fitted primitives and set-theoretic opera-
tions;

• Outline of the possible user interactive involvement at
the different stages of the process.

II. RELATED WORK

A. Background on implicit surfaces and Function Representa-
tion modeling

An implicit surface is a surface defined as the isovalue of
a given function: {(x, y, z) ∈ R

3 : f(x, y, z) = c}, usually
c = 0, see [1] and references therein. The Function Represen-
tation (see [2]) considers solid as the point-set: {(x, y, z) ∈
R

3 : f(x, y, z) ≥ 0}. As an example, a ball of radius R is
represented by the set: {(x, y, z) ∈ R

3 : R2−x2−y2−z2 ≥ 0}
Complex objects can be modeled using numerical techniques
or procedurally by applying modeling operations (such as set
operations, affine transformation, or non-linear deformations)
to simpler primitives. The set operations (or Boolean opera-
tions) can be implemented using min/max [3] or R-functions
[2], [4]. Intersection, union, negation and difference can be
implemented, for example, with min/max as follows:

S1 ∩ S2 := min(fS1
, fS2

) (1)

S1 ∪ S2 := max(fS1
, fS2

) (2)

S̄ := −fS (3)

S1 \ S2 := S1 ∩ S̄2 (4)

where S, S1 and S2 are solids and fS , fS1
and fS2

their
corresponding functions. This allows for representing a solid
with a set-theoretic expression or equivalently by a function.
In this work, solids are represented using this model.

B. Reverse engineering

In solid modeling, reverse engineering consists in trans-
forming a digitized object into a computer model suitable
for further processing. Surface reconstruction techniques in
computer graphics consist generally in computing a triangle
mesh approximating the shape, sometimes through the com-
putation of an intermediate implicit surface (see e.g. [5] and
references therein). In [6], the authors used an evolutionary
algorithm to recover freeform CAD surfaces. Recent works
are putting efforts on intelligent processing of acquired data:
detection of symmetry and pattern, fitting of basic primi-
tives, see for example the recent state of the art article [7]
(and the references therein). In engineering application, the
goal consists in retrieving accurate and consistent models
using standard surfaces from common CAD (Computer Aided
Design) systems [8]. Some of the problems to be solved
are: identifying sharp edges, treatment of blends, providing
continuity and smoothness between the patches, and others
[9].978-1-4799-7492-4/15/$31.00 c©2015 IEEE

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:19:35 UTC from IEEE Xplore. Restrictions apply.

C. Segmentation

A necessary step in most reverse engineering techniques is
the segmentation of the input point-set, i.e. the clustering of the
input data. There are various techniques available depending
on the domain of application, see, for example, the section 1.1
of [10] for a more comprehensive survey of existing methods.
Common techniques used in reverse engineering are also de-
scribed in [11] (and references therein). After the segmentation
step, patches need to be fitted to each cluster. This fitting step
can either be done separately from the segmentation step as,
for example, in [12] or be done jointly with the segmentation
as in [13]. The result of the segmentation and fitting can
be improved by considering global relations between fitted
primitives as in [14].

D. Constructive model discovery

Related to the problem of constructive model discovery is
the problem of boundary representation to CSG conversion.
Approaches to solve this problem are discussed in [15], [16].
These algorithms may require some additional halfspaces not
available from the faces information or from the segmentation.
An attempt to recover construction trees from point-cloud is
discussed in [17]. The authors use strongly typed genetic pro-
gramming. Parsimony is used to control the tree size. However,
sizes of generated trees remain quite large. Fitting of primitives
and construction tree extraction are performed together by
genetic programming, making the approach unsuitable for
complex objects. In [18], the authors use a genetic algorithm
to evolve a linear tree with Boolean operations in the nodes
and given primitives in the leaves. However, for a given list
of primitives, some objects can not be represented by a linear
tree. In such case, the algorithm has to be iteratively applied
reusing the best model obtained so far. In [19], the authors
describe a parallel genetic programming system for recovering
simple CSG models. The authors of [20] and [21] combine
CSG with genetic programming to reconstruct degraded image.
We intend to improve the above approaches to the constructive
model recovery and to propose an original solution suitable to
wider class of constuctive models.

III. METHOD

A. Overview

The input to our algorithm is a finite 3D point-cloud made
of points sampled on the surface of a digitized object. We
compute a construction tree model for the object, made of
primitives fitted to the point-cloud and connected by modeling
operations. In the experiments described in section IV, we
use the following operations: union, intersection, complement
and difference. Figure 1 illustrates the intermediate steps of
our approach. The input point-cloud (left) is first segmented
into clusters and primitives from a predefined set are fitted
to each cluster (center-left). A constructive expression is then
recovered that involves the fitted primitives and connect them
by modeling operations (center-right). The expression can be
imported in a constructive modeling system and further edited
(right).

The main steps in our approach are:

• Point-cloud pre-processing: denoising, sub-sampling,
normals computation;

• Segmentation and primitive fitting;

• Construction tree discovery;

• Parameterization and fitting.

B. Pre-processing

The surface normals are used in the fitting and construc-
tion tree discovery steps. Sensors used for acquiring point-
clouds can usually provide this information. Otherwise, we
can estimate the normal at a point x of the input point-cloud
by linear least square fitting of the best plane over the k-
nearest neighbors of x (in our experiments we used k = 20).
Orientation propagation is done following the algorithm given
in [22]. For noisy point-sets, we estimats normals using the
approach described by Mitra et al in [23].

The algorithms described below can handle some noise in
the input data without any further pre-processing. However,
for objects severely corrupted by noise, it helps applying a
denoising algorithm as a pre-processing step. The smoothing
algorithms described by Jones et al. in [24] or Fleishman
et al. in [25] give sufficiently good results. We can replace
the connectivity information needed in these algorithms by
k-nearest neighbor queries. Once the point-cloud has been
smoothed, the normals are re-estimated using the updated
points positions.

C. Segmentation and fitting

1) RANSAC: The first step of our approach consists in the
segmentation of the input point-set. We also need to identify a
primitive from a set of candidates, such as plane, sphere, cone
or others, and fit its parameters to the points of each of the
identified clusters. For this purpose, we can use the approach
based on RANSAC [26] described in [13]. Given a finite point-
set, the best fitted plane, sphere, cylinder, cone and torus to the
point-set are computed using the RANSAC approach. Then the
fitted primitive that best describes the data-set is selected and
the corresponding points are removed from the point-set. In
order to determine which of the fitted primitives best describes
the data, the authors of [13] propose to count the number of
points from the input point-set S that are near the surface of
the fitted primitive. These two steps are then repeated until
the number of points left in the point-set is below some given
threshold.

2) Evolutionary based segmentation: An alternative ap-
proach for fitting primitives from a list of candidates is
described in [10]. For each type of primitive, its parameters
maximizing an objective function are computed. The opti-
mization is done in two steps: in the first step the objective
function E1(p; f, P̃) in eq. 5 is maximized for the parameters
p. In the second step, the optimal parameters are refined using
the Levenberg-Marquardt algorithm [27], [28]. In [10], the
first step optimization is performed by simulated-annealing.
However, using a genetic algorithm gives similar results. The
primitive best describing the data is then selected among all
fitted primitives at this step and the corresponding points are
removed from the point-set. These two steps are repeated until
the number of points left in the point-set is below some given
threshold.

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:19:35 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Overview of the approach: The input point-cloud (left) is segmented and primitives from a selected set are fitted to each cluster. Each fitted primitive is
represented in its own color (center-left). A constructive model made of primitives and modeling operations is recovered: the center image shows the recovered
solid and the center-right image the corresponding constructive expression as a tree with fitted primitives in the leaves and modeling operations in the nodes.
Right: the edited object after addition of a cylinder and subtraction of a ball and cylinders.

Objective function Given a primitive f and a point-cloud
P̃ , the parameters of f are obtained by maximizing:

E1(p; f, P̃) =
N∑

i=1

exp(−di(p)2) + exp(−θi(p)2) (5)

where P̃ is a uniform random subsampling of the original

point-set P , N is the number of points in P̃ , di(p) =
f(xi;p)

εd
,

θi(p) = ArcCos(|∇xf(xi;p)· �ni|)
α and xi ∈ P̃ . This objective

function is maximized for the unknown parameters p of
the current primitive f . With this objective function, the
parameters p are penalized when the zero level-set of the
corresponding primitive f(x;p) does not approximate well
points in the point-cloud P or when ∇xf(x;p) does not
align with the normal to the surface at each point in P . The
term exp(−θi(p)2) in (5) is used to distinguish between two
primitives with ”close” zero level-set.

This method has the advantage over RANSAC of allowing
for a larger set of possible primitives (such as ellipsoid or
super-ellipsoid [29]). Consider, for example, Fig. 2. Points
were artificially sampled on a surface obtained from two
ellipsoids. The image on the left illustrates the segmentation
result from the RANSAC based algorithm where each zone
(represented by its own color) is identified as a part of a sphere.
The right image shows the result of the method described in
this section with the two identified ellipsoids.

3) Separating primitives: Primitives detected on the surface
of an object are not always sufficient to describe the object
when set operations are used. Sometimes it is necessary to
introduce additional primitives that do not appear in the seg-
mentation. These are called separating primitives or separators.
The idea of introducing such primitives in order to describe
an object by a CSG expression was introduced by Shapiro and
Vossler in [15]. To illustrate the idea, consider the example in
Fig. 3. The left part illustrates a simple two-dimensional object,
where each boundary patch has a different color. Building a
constructive representation of this object, given the boundary
patches, is not possible. An additional halfspace is required as
illustrated in Fig. 3, right. The final CSG representation of the
solid is given by: f = a ∪ b ∩ c ∩ d ∩ e.

In order to compute separating primitives, we use the
following method. First, we iterate through all the primitives

Fig. 2. Points were sampled on a surface made of two ellipsoids. Left:
segmentation and fitting using RANSAC. Right: segmentation and fitting with
the approach described in section III-C2. Points are colored based on the fitted
primitive they belong to.

Fig. 3. Additional primitives may be required to build a constructive
representation from a boundary representation. The left object is a boundary
representation of a simple two-dimensional solid, where each boundary patch
has a different color. The right object contains an additional primitive, which
is needed to build a constructive representation of the solid.

identified during the segmentation step. If the current primitive
is not a plane, we retrieve the set of points on or near
this primitive. We compute the axis aligned bounding box
corresponding to this point-set and add all the planes of
the bounding box to the list of primitives obtained from the
segmentation. If the plane to be added is already present in
the list, we discard it. All identified separating primitives are
added to the list of fitted primitives for the further steps of the
recovery process.

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:19:35 UTC from IEEE Xplore. Restrictions apply.

D. Construction tree recovery

Given the input point-cloud and the list of primitives
obtained from the previous steps, the goal is to automate the
modeling process by providing ways to recover models that
can be further edited, or parameterized and used as template
models. Two evolutionary techniques are explored: a genetic
algorithm, and a more generic approach based on genetic
programming.

1) Genetic algorithm: Let us P = {x1, . . . ,xn} be the
input point-cloud and F = {f1, . . . , fm} the set of primitives
fitted to the segmented point-cloud. Given a finite set of
geometric operations {o1, . . . , ol}, we are searching for an
ordering of the primitives with operations acting on them such
that the expression:

fi1oj1fi2 . . . fim (6)

is a model for the solid corresponding to the point-cloud P .
In the above expression, jk ∈ {1, . . . , l} (k ∈ {1, . . . ,m})
and {i1, . . . , im} is a permutation of {1, . . . ,m}. We assume
that all fitted primitives obtained from the previous steps are
correctly oriented. Then we can restrict the list of operations to:
union, intersection, difference, which are all binary operations.
It simplifies the approach described below. Points xi in P are
on (or near) the surface of the object, so we are searching for
f = fi1oj1 . . . fim minimizing the least-square error: E2(f) =∑

xi∈P f(xi)
2. Following [18], a genetic algorithm is used for

this minimization problem.

An individual of the population represents a possible
solution to the problem, in this case, an expression f . Each
individual contains m pairs of integers (opk, Lk), 1 ≤ k ≤ m.
In contrary to [18], we represent these m pairs (opk, Lk) by
an array of 2m integers. Here, opk is an index in the set
of possible operations. Lk corresponds to the position of the
primitive k in the expression f . The operation corresponding
to opk is applied between the primitive k (at the position
Lk) and the preceding primitive (at the position Lk − 1) in
the reconstructed expression. Because there are only m − 1
operations in an expression with m primitives, we always
ignore the operation paired with the primitive appearing at
the first position.
Mutation With a given probability (using a uniform distri-
bution), an individual in the current population is mutated.
A mutation point is obtained by sampling from an uniform
distribution. There are two cases depending on whether the
mutation point falls on an operation index (opk) or a primitive
position (Lk). If it falls on an operation index, then we can
simply select a new index at random. Otherwise, one of the
primitives position Lk is randomly altered. The problem is
that we may then have two primitives at the same position:
i.e. Li = Lj for some i �= j. The same type of problem can
happen after the crossover operation is applied. One way to
resolve it is to sort the pairs opk, Lk with a stable sorting
algorithm. The position of the primitive k is then given by its
position in the sorted array of pairs.
Crossover Pairs of individuals are subject to crossover with a
given probability. A one-point crossover is used in the experi-
ments. Similarly to the case of the mutation, an individual may
contain two primitives at the same position after the crossover
operation is applied. We use the same technique as for the
mutation operation to resolve this issue.

Selection Individuals to be included in the next population are
selected using fitness proportionate selection (roulette wheel).
We also always include the best individuals (two in the
experiments) from the precedent population.

In [18], (6) is evaluated from left to right. It corresponds to
a left-linear tree structure with operations in the internal nodes
and primitives in the leaves. However, not any given object can
be represented by a left-linear tree. The best individual is only
an approximation of the object in such case. Since any object
represented by a construction tree has an equivalent left-heavy
tree, it is possible to iteratively re-apply the genetic algorithm
re-using the best found individual as an additional primitive.
In contrary we use a different approach in this work. Instead of
evaluating (6) from left to right, we first evaluate the operations
with higher precedence: intersection (∩) and difference (\).

2) Genetic programming: An alternative approach is to
derive the expression (or the construction tree) by genetic
programming [30]. An individual in the population corre-
sponds to an expression with fitted primitives as leaves and
geometric operations as internal nodes. A common approach
is to use ”S-expressions” to represent the individuals and use
a language that directly manipulates ”S-expression” such as
Lisp to implement the genetic programming approach. Instead
we are directly representing the tree in memory, and evaluate
a given expression by tree traversal. It allows us to implement
the approach with any programming language. The set of
terminals (leaves) consists of all the fitted primitives (including
separating primitives) obtained from the segmentation and
fitting step. The set of functions (internal nodes) consists of
geometric operations applied to the leaves and sub-trees. In our
experiments, we used the traditional set-theoretic operations:
union, intersection, difference and complement implemented
with min/max (see section II-A).

For a given individual c and a finite point-set P , we need
to assign a raw score to c. We use the following objective
function E:

E3(c;P) =

N∑

i=1

(exp(−d2i) + exp(−θ2i))− λ size(c) (7)

where: xi are the points from the input point-set P , N is

the number of points in the point-set, di = f(xi)
εd

, with f()
the expression corresponding to the individual c (obtained by
traversing the tree corresponding to c) and εd a user defined

parameter, θi =
ArcCos(−∇xf(xi)· �ni)

α , with ∇xf the gradient
of the expression corresponding to the individual c, �ni the
normal vector to the surface at the point xi, and α a user
defined parameter, size() the function that counts the number
of nodes (internal and leaves) in the tree corresponding to the
individual c, and λ a user defined parameter.

The goal is to maximize E3(c, P) by genetic programming.
Note the similarity of (7) with (5) used for segmentation in
section III-C2. One essential difference is the additional term
−λ size(c). This term is used in order to prevent trees to grow
unnecessary large. In our experiments, we used λ = log(N),
where N is the size of the point-cloud. Similarly to (5), this
objective function smoothly penalizes expressions that do not
pass on or near the points from the input point-set or have
a gradient not aligned with the surface normal at each given
point. The term exp(−θ2i)) is used to guarantee that the object

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:19:35 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Illustration of a parameterized template model: a model is built in a
constructive way with abstract parameters (corresponding to the position and
radius of the cylinders, lengths of the box) that can be tuned to satisfy some
modeling criteria. The images from left to right show the model with different
parameter values.

is globally correctly oriented. It is also used to guarantee that
locally the function behaves like a distance field (and therefore
remove some potentially unwanted extra iso-surfaces).

We use standard implementation for the genetic operators:
tree-based crossover and one-point mutation. For the mutation,
we either alter a given node in the tree or with a given
probability (from a uniform distribution) replace a subtree at
the given node by a new random individual. We use fitness
proportionate selection.

E. Fitting of template models

Once a constructive model has been recovered (even if only
partially), it can be further edited or completed and eventually
parameterized to be re-used as a template model.

1) Template models: Given a constructive model, it is
possible to identify various parameters, such as the width of
a box or the radius of cylinder. These parameters can also be
adapted to generate different shapes or to fit some modeling
criteria. Template models can exist in specialized libraries for
each application domain such as mechanical design, human
prosthesis design, or others, and can be reused, or need to be
created by a user. In the latter case, a modeling work needs to
be done by a designer. An example of a parameterized template
model, with different parameter values, is illustrated in Fig.
4. A template model can be written using its corresponding
function as: f(x;p) where x corresponds to an evaluation
point in the 3D space and p is the vector of parameters
controlling the shape.

2) Fitting: Given a point-cloud S, the parameters p are op-
timized such that the isovalue {x : f(x;p) = 0} approximates
the shape of the point-cloud. The parameters are obtained
by optimizing an objective function E4 defined for a given
template model f and a point-cloud P = {xi}. The simplest
choice for the objective function is to use the least square error:∑

i f
2(xi;p). This objective function should be minimized for

the vector of parameters p. An alternative choice is to use
an objective function similar to what we used in (5) or in

(7): E4(p;P) =
∑

i exp(− f2(xi;p)
σ2). E4 is maximized for p,

either using simulated annealing [31] or a genetic algorithm
[32] with real encoded individuals.

IV. EXPERIMENTS

In this section, we illustrate with experiments the different
steps of our approach. For the genetic algorithm and genetic
programming technique, we use large populations (at least
100 individuals). We use a mutation rate high enough to

Fig. 5. A CAD object. Left: result of the segmentation. Right: recovered
object by the genetic algorithm approach.

avoid premature convergence to a local optimum (0.3 in these
experiments). The crossover rate is set to 0.6. We use a large
number of iterations (3000) and let the algorithm run until the
end. In practice, one would implement some mechanism for
trying to detect convergence (such as convergence to a uniform
population or the value of the best individual(s) below/above
some threshold). We ensured that repeated applications of the
method produced similar results, even if the recovered expres-
sions may be different at each run (the CSG representation for
an object is not unique).

A. Experiments with construction tree recovery

a) Genetic algorithm: Figure 5 illustrates an example of
point-cloud segmented (left), with primitives (plane, cylinder,
sphere) fitted to each subset (in different colors), and the
final object (right) obtained by the genetic algorithm approach
described in section III-D1. The object’s surface is defined
as: {(x, y, z) ∈ R

3 : f(x, y, z) = 0} where f is the
expression recovered by the genetic algorithm. This surface
is approximated by a triangle mesh using a meshing algorithm
(the Marching Cubes algorithm [33]) and rendered with a
typical mesh viewer. The time taken by this approach is a
few minutes on a regular desktop computer.

One difficulty with the genetic algorithm approach is to
extend it to work with the additional separating primitives
computed in section III-C3. A possible solution would be to
include a Boolean to each pair (opk, Lk), where the Boolean
variable controls whether the primitive k should be accounted
for in the final expression or not. It makes the method more
complicated to implement. The genetic programming based
approach described in section III-D2 seems a more natural
approach.

b) Genetic programming: In addition to the parameters
(mutation and crossover rate, population size) given above,
trees are initialized at random with a maximum depth of 10
and a probability of 0.7 for an operation to be selected. During
the run of the algorithm, we limit the depth of the trees to 20.
This was sufficient for the examples used in the experiments,
but should be eventually increased for more complex examples
(with a higher number of primitives).

Figure 6 illustrates the result of applying the genetic
programming approach from section III-D2 to a complex CAD
shape (a fandisk). The input point-cloud is initially clustered
in 23 segments with primitives identified and fitted to each
segment. The result of the segmentation is shown in Fig. 6,
left, with each segment in a different color. The best individual
found by genetic programming is shown in Fig. 6, right. In this

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:19:35 UTC from IEEE Xplore. Restrictions apply.

Fig. 7. The construction tree for the fandisk model with geometric operations in the internal nodes and fitted primitives in the leaves.

Fig. 6. Left: result of the segmentation and primitive fitting. Points are colord
based to the fitted primitive they belong to. Right: recovered object by genetic
programming.

picture, the zero level-set of the best expression is approxi-
mated with a meshing algorithm as previously described. The
resulting construction tree with geometric operations (Boolean)
in the internal nodes and fitted primitives in the leaves is
shown in Fig. 7. The tree is evaluated by a traversal, with
the operations replaced by their equivalent functional form
(see section II-A) and the primitives implicitly defined. The
evaluation at a given point is used in the objective function
(7).

The object shown in Fig. 6, right image, is the best
individual found after 3000 iterations of genetic programming.
The raw fitness (7) of the best individual at each iteration is
illustrated in the right graph, Fig. 8. Unless the input shape is

Fig. 9. A more complex CAD part recovered by our approach. Left: The
input point-cloud. Right: The meshed recovered expression.

relatively simple, the recovered object will be an approxima-
tion only. Approximation can occur in the segmentation and
fitting stage, or in the genetic programming stage. The point-
wise approximation error (using a log-scale) on the fandisk
data-set is illustrated in Fig. 8, left. The point-wise error was
obtained by evaluating the discovered expression f at each
point of the input point-cloud P . Figure 8, middle, shows the
distribution of the point-wise error.

Finally, Fig. 9 illustrates a more complex shape processed
by the proposed approach. The input point-cloud consists in
280K points with normals. The time taken for this approach
ranges from a few minutes to a few hours depending on the
number of primitives and complexity of the model.

B. User-assisted construction tree recovery

With a fixed number of iterations in the tree recovery step,
it is possible to get incomplete objects. The pot shown in Fig.

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:19:35 UTC from IEEE Xplore. Restrictions apply.

Fig. 8. Left: Pointwise error (log scale) of the discovered object by genetic programming. Middle: Error distribution. Right: Raw fitness value of the best
individual at each iteration of the genetic programming approach.

10 was incompletely recovered after 3000 iterations of genetic
programming, with a part of the handle missing. The model
was first edited by the user to remove the existing handle part.
Then points from the input point-cloud that were not properly
recovered were automatically identified by selecting those with
an error above some given threshold. The segmentation, fitting
and genetic programming steps were then applied to this
residual point-cloud in order to obtain the handle (see Fig.
10 second to right). Finally, the handle was attached to the
rest of the object by using the union of the two recovered
expressions (using (2)).

In the next experiment, we try to recover a freeform object
from the point-cloud shown in Fig. 11, left. After the steps
of segmentation, fitting and construction tree recovery, we
obtain the model illustrated in Fig. 11, middle. In this example,
approximation appears at different levels: fitting of primitives
and construction tree recovery. While the final result appears to
be an interesting approximation and convey the overall shape
of the object, one may want to improve this result. In order to
obtain the result shown in Fig. 11, right image, the following
additional steps were carried: First, the box approximating
the horns was removed from the constructive model. Then,
the set of points corresponding to the horns were isolated
from the input point-cloud, and used to fit RBF splines [34].
Finally, we computed the union of the horns fitted by splines
with the previous constructive model (from which the horns
approximation was removed). The result is shown in Fig. 11,
right image.

V. CONCLUSION

We have presented in this paper our approach for discover-
ing a constructive model from a given scanned point-cloud for
an object. Our approach consists in: segmentation of the point-
cloud, fitting primitives to it and discovery of a constructive
model using an evolutionary approach. Parameters can be
extracted by a user from the model and fitted to adapt the
shape to different point-clouds. Experiments illustrated results
obtained with our actual prototype. Perfect automation of the
process is a difficult task and we plan to further incorporate
user assistance in the different steps of the approach.

ACKNOWLEDGEMENT

The authors would like to thank the anonymous reviewers
for their valuable comments. The authors acknowledge the
authors of [14] for providing the point-cloud used in Fig.
9. The point-clouds used in Fig. 6 and 11 are courtesy of
AIM@SHAPE.

REFERENCES

[1] J. Bloomenthal, C. Bajaj, J. Blinn, M.-P. Cani-Gascuel, A. Rockwood,
B. Wyvill, and G. Wyvill, Introduction to implicit surfaces. Morgan-
Kaufmann, 1997.

[2] A. Pasko, V. Adzhiev, A. Sourin, and V. Savchenko, “Function repre-
sentation in geometric modeling: concepts, implementation and appli-
cations,” The Visual Computer, vol. 11, no. 8, pp. 429–446, 1995.

[3] A. Ricci, “A constructive geometry for computer graphics,” The Com-
puter Journal, vol. 16, no. 2, pp. 157 – 160, 1973.

[4] V. Shapiro, “Theory of r-functions and applications: A primer,” Cornell
University, Tech. Rep., November 1988.

[5] M. Kazhdan and H. Hoppe, “Screened poisson surface reconstruction,”
ACM Transaction on Graphics, vol. 32, no. 3, pp. 29:1 – 29:13, 2013.

[6] T. Wagner, T. Michelitsch, and A. Sacharow, “On the design of
optimisers for surface reconstruction,” in Proceedings of the 9th annual
conference on Genetic and evolutionary computation. ACM, 2007, pp.
2195–2202.

[7] M. Berger, A. Tagliasacchi, L. Seversky, P. Alliez, J. Levine, A. Sharf,
and C. Silva, “State of the art in surface reconstruction from point
clouds,” Computer Graphics Forum, vol. 1, no. 1, pp. 1–xx, 2014.

[8] T. Varady, R. Martin, and J. Cox, “Reverse engineering of geometric
models-an introduction,” Computer-Aided Design, vol. 29, no. 4, pp.
255–268, 1997.

[9] P. Benkó, G. Kós, T. Várady, L. Andor, and R. Martin, “Constrained
fitting in reverse engineering,” Computer Aided Geometric Design,
vol. 19, no. 3, pp. 173–205, 2002.

[10] P.-A. Fayolle and A. Pasko, “Segmentation of discrete point clouds
using an extensible set of templates,” The Visual Computer, vol. 29,
no. 5, pp. 449–465, 2013.

[11] T. Várady, M. Facello, and Z. Terék, “Automatic extraction of surface
structures in digital shape reconstruction,” Computer-Aided Design,
vol. 39, no. 5, pp. 379–388, 2007.

[12] M. Vanco and G. Brunnett, “Direct segmentation of algebraic models
for reverse engineering,” Computing, vol. 72, no. 1, pp. 207–220, 2004.

[13] R. Schnabel, R. Wahl, and R. Klein, “Efficient ransac for point-cloud
shape detection,” Computer Graphics Forum, vol. 26, no. 2, pp. 214–
226, 2007.

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:19:35 UTC from IEEE Xplore. Restrictions apply.

Fig. 10. User-assisted reverse modeling. Left: The original point-cloud. Middle: Intermediate object with the handle missing. Right: Final object with the
handle fitted and attached to the object with the union operation.

Fig. 11. Left: The original point-cloud. Middle: Recovered constructive object. Right: Horns fitted by splines are used instead.

[14] Y. Li, X. Wu, Y. Chrysathou, A. Sharf, D. Cohen-Or, and N. J. Mitra,
“Globfit: Consistently fitting primitives by discovering global relations,”
ACM Transactions on Graphics, vol. 30, no. 4, pp. 52:1–52:12, 2011.

[15] V. Shapiro and D. Vossler, “Separation for boundary to CSG conver-
sion,” ACM Transactions on Graphics (TOG), vol. 12, no. 1, p. 55,
1993.

[16] S. Buchele and R. Crawford, “Three-dimensional halfspace constructive
solid geometry tree construction from implicit boundary representa-
tions,” Computer-Aided Design, vol. 36, no. 11, pp. 1063–1073, 2004.

[17] S. Silva, P.-A. Fayolle, J. Vincent, G. Pauron, C. Rosenberger, and
C. Toinard, “Evolutionary computation approaches for shape modelling
and fitting,” in Progress in Artificial Intelligence. Springer Berlin
Heidelberg, 2005, pp. 144–155.

[18] P.-A. Fayolle, A. Pasko, E. Kartasheva, C. Rosenberger, and C. Toinard,
“Automation of the volumetric models construction,” in Heterogeneous
objects modelling and applications. Springer Berlin Heidelberg, 2008,
pp. 214–238.

[19] K. Weinert, T. Surmann, and J. Mehnen, “Parallel surface reconstruc-
tion,” in Genetic Programming. Springer, 2002, pp. 93–102.

[20] M. Yamagiwa, F. Sugimoto, and M. Yoneyama, “Reconstruction of
the ultrasonic image by the combination of genetic programming and
constructive solid geometry,” in Acoustical Imaging. Springer, 2009,
pp. 245–250.

[21] M. Yamagiwa, E. Kikuchi, M. Uehara, M. Murakami, and
M. Yoneyama, “Reconstruction for artificial degraded image using
constructive solid geometry and strongly typed genetic programming,”
in Complex, Intelligent and Software Intensive Systems, 2009. CISIS’09.
International Conference on. IEEE, 2009, pp. 162–168.

[22] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle,
“Surface reconstruction from unorganized points,” in SIGGRAPH ’92:
Proceedings of the 19th annual conference on Computer graphics and
interactive techniques. New York, NY, USA: ACM, 1992, pp. 71–78.

[23] N. J. Mitra, A. Nguyen, and L. Guibas, “Estimating surface normals

in noisy point cloud data,” International Journal of Computational
Geometry and Applications, vol. 14, no. 4-5, pp. 261–276, 2004.

[24] T. Jones, F. Durand, and M. Desbrun, “Non-iterative, feature-preserving
mesh smoothing,” ACM Transactions on Graphics, vol. 22, no. 3, pp.
943–949, 2003.

[25] S. Fleishman, I. Drori, and D. Cohen-Or, “Bilateral mesh denoising,”
ACM Transactions on Graphics, vol. 22, no. 3, pp. 950–953, 2003.

[26] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography,” Commun. ACM, vol. 24, no. 6, pp. 381–395,
1981.

[27] K. Levenberg, “A method for the solution of certain non-linear problems
in least squares,” The Quarterly of Applied Mathematics, pp. 164–168,
1944.

[28] D. Marquardt, “An algorithm for least-squares estimation of nonlinear
parameters,” SIAM Journal on Applied Mathematics, vol. 11, pp. 431–
441, 1963.

[29] A. Barr, “Superquadrics and angle-preserving transformations,” IEEE
Computer graphics and Applications, vol. 1, no. 1, pp. 11–23, 1981.

[30] J. Koza, Genetic Programming. MIT Press, 1992.

[31] A. Corana, M. Marchesi, C. Martini, and S. Ridella, “Minimizing multi-
modal functions of continuous variables with the “simulated annealing”
algorithm,” ACM Trans. Math. Softw., vol. 13, no. 3, pp. 262–280, 1987.

[32] J. H. Holland, Adaptation in Natural and Artificial Systems. The
University of Michigan Press, Ann Arbor, 1975.

[33] W. Lorensen and H. Cline, “Marching cubes: A high resolution 3d
surface construction algorithm,” Computer Graphics, vol. 21, no. 4,
1987.

[34] Y. Ohtake, A. Belyaev, and H.-P. Seidel, “A multi-scale approach to 3d
scattered data interpolation with compactly supported basis functions,”
in Shape Modeling International, 2003. IEEE, 2003, pp. 153–161.

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:19:35 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

		2015-09-21T11:10:40-0400
	Certified PDF 2 Signature

