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Abstract—A new stochastic logic gate language is presented.
Blossey et al.’s stochastic gene gate language is extended with
a complete set of stochastic Boolean gates. Although the gates
have behavioural similarities to conventional logic gates, a major
difference is that they operate on quantities of products or
substances that dynamically vary over time. A gene gate circuit’s
behaviour is characterized by a time-course plot of the substance
quantities. The paper studies the Boolean gate language by using
multi-objective genetic programming to evolve logic gate circuits
that conform to a number of different target systems. Circuit
behaviour is characterized by sets of up to 15 time course
statistics, and sum of ranks is used as a many-objective scoring
strategy. Results show that the language is highly compositional,
just like conventional logic expressions, and that multiple circuits
can exhibit similar behaviours. The new gate language uses
Blossey et al.’s gates as a rudimentary basis within evolved
circuits, with the advantage of using higher-level Boolean gates
when necessary. The identification of candidate solutions can
be challenging, however, and must account for noise inherent
in the time course behaviours. Circuit behaviour is also highly
dependent on channel rates, and future work applying the
language to real-world data will need to address this sensitivity.

I. INTRODUCTION
Boolean logic is widely used for modelling synthetic gene

regulatory networks (GRN) [1], [2], [3], [4]. Part of the reason
for its popularity is because it is well understood, being the
foundation for computer software and hardware. It also has
adequate descriptive power to model many regulatory phenom-
ena of interest. Although Boolean logic permits modelling of
causal relationships in synthetic circuits, the stochastic nature
of biological behaviour is also relevant [5], [6], [7].

Automating the construction of GRNs using computational
intelligence and other techniques is an active area of research.
Approaches include the use of directed evolution [8], genetic
algorithms [9], [8], neural networks [10], and Bayesian learn-
ing [11]. Of particular interest in this paper is the use of genetic
programming (GP) for regulatory network synthesis. Banzhaf
uses a linear representation with GP to generate GRNs, which
model protein concentration changes over time [12]. Qian et
al. use GP and Kalman Filtering to create differential equation
models of GRNs [13]. Cai et al. use GP and particle swarm
optimization to find GRNs [14].

This paper presents a new implementation of a stochastic
Boolean gate language. There are two main contributions of
this research. First, the new gate language extends and com-
plements Blossey et al.’s transcriptional gene gate language
[15]. We define conventional Boolean gates using the same
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simulation model as [15], written in the stochastic pi-calculus
(SPI) [16] that they use. The language inherits from Blossey’s
et al.’s model the ability to concisely model noisy, and often
chaotic, behaviours seen in stochastic systems.

A second contribution is to investigate the evolvability of
stochastic gate circuits using multi-objective GP. This extends
earlier work by Imada [17], [18] that used GP to evolve
circuits using Blossey et al.’s stochastic gate language [15].
Imada characterized the noisy time-course behaviour of the
target stochastic behaviours using feature-based statistics, and
used these statistics within the objective function. A few of
the same example systems were re-examined in [19] using
many-objective ranking strategies to account for the high
dimensionality of the problems. Similarly, we characterize SPI
gate circuits by using statistical analyses of their time-course
behaviour. We also use many-objective scoring within the GP
framework as a fitness evaluation strategy. However, the added
complexity of the gene gate language presents challenges when
assessing final results.

The paper organization is as follows. Section II briefly
reviews the stochastic pi-calculus. Section III presents the new
Boolean gate language. Methods used for evaluating stochastic
gate circuits are reviewed in Section IV. Experiments are
described in Section V, and results are presented in Section
VI. Conclusions and future research directions conclude the
paper in Section VII.

II. THE STOCHASTIC π-CALCULUS

TABLE I. SPI SYNTAX (EXCERPT)

Proc Defn ::= Let Name(V ar, · · · , V ar)
= Proc :Process definition

Proc ::= () :null (often removed)
| (Proc | · · · | Proc) :parallel composition
| do ActSeq or · · · or ActSeq :stochastic choice
| Name(V al, · · · , V al) :process call

ActSeq ::= Act | Act; ActSeq :action sequence
Act ::= delay@float :delay

| !Channel(V al, · · · , V al) :output action
| ?Channel(V al, · · · , V al) :input action

V al ::= Channel | float
V ar ::= variable label

Channel ::= channel label

The stochastic π-calculus (SPI) [16] is a stochastic variant
of the π-calculus process algebra [20]. SPI is a rudimentary
calculus that defines a core set of operators with which to
build complex behaviours. The main contribution of SPI is
its stochastic modelling of concurrent computations, which
is based upon Gillespie’s stochastic simulation of chemical
reactions [21]. This enables SPI to effectively model various
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natural phenomena, for example, chemical and biochemical
reactions, and gene regulation and transcription.

Table I shows the subset of SPI used in this work. SPI
operators permit parallel execution of processes, stochastic
choices of behaviours, sequences of behaviours, and process
invocation. Processes communicate on channels. An inter-
process handshake arises when complementary input and out-
put actions occur on the same channel. The stochastic aspect
of communication arises with the stochastic choice operation.
When multiple choices of behaviour are available, each will
have a probability derived for it. The probabilities arise from
channel rates. Channels with higher rates are more active.
Delay terms affect simulation execution, but produce no action.

During a SPI simulation, SPI terms may be duplicated due
to recursion and other operations, and this will affect the rates
and probabilities of active channels. If one considers channels
as denoting proteins, enzymes, gene activation levels, etc.,
then these channel quantities can also be considered to denote
quantities of reactive substances and products arising in the
system being modelled. These dynamically changing values
can be plotted over time, resulting in time-course plots of the
substances within the simulation.

III. A STOCHASTIC GENE GATE LANGUAGE
A. Background: a gate language for inhibition and stimulation

TABLE II. BLOSSEY et al. GENE GATE LANGUAGE FROM ([15]).

new a@1.0:chan, b@1.0:chan, c@1.0:chan

let Tr(b:chan) =
do !b; Tr(b)
or delay@0.001

and Neg(a:chan,(cst:float, inh:float), b:chan) =
do ?a; delay@inh; Neg(a,(cst,inh),b)
or delay@cst; (Tr(b) | Neg(a,(cst,inh),b))

and Pos(a:chan, (cst:float, inh:float), b:chan) =
do ?a; delay@inh; (Tr(b) | Pos(a,(cst, inh), b))
or delay@cst; (Tr(b) | Pos(a,(cst, inh), b))

SPI is fairly rudimentary in its expressiveness. To address
this, Blossey et al. use SPI to define a higher-level gene
gate language for stochastic modelling and simulation [15].
The language definitions are shown in Table II. Channels are
defined as type chan. They denote pathways through which
communications occur, and have associated channel rates.

Tr(b) denotes the transcription factor. It can choose to
express an output signal on channel b, which is denoted !b.
This results in an increase in the quantitative availability of
!b. Alternatively, the expression might delay using a small
rate value of 0.001, in which case it forgoes expressing b. The
Neg gate performs signal inhibition. The cst and inh labels
are rate parameters for delays. Neg(a,...,b) will inhibit
the production of b when signals of a are more frequent, and
increase production of b otherwise. The Pos gate is similar.

There is a probabilistic race between the choices of action
in the above gates, which depends upon signal rates and
accumulated probabilities arising during the simulation. The
dynamically changing quantities of signals results in varied,
often noisy behaviours, and this makes the language useful
for modelling biological phenomena [15].

B. A new Boolean gate language.
A new stochastic logic gate language is given in Table

III. The SPI definitions are influenced by Blossey et al.’s gate

TABLE III. SPI DEFINITION OF BOOLEAN GATE LANGUAGE

new a@1.0:chan, b@1.0:chan, c@1.0:chan

Let BOr(a:chan, b:chan, (cst:float, inh:float), c:chan) =
do ?a; delay@cst; (Tr(c) | BOr(a,b,(cst,inh),c)) or

?b; delay@cst; (Tr(c) | BOr(a,b,(cst,inh),c))

and BAnd(a:chan, b:chan, (cst:float, inh:float), c:chan) =
?a; ?b; delay@cst; (Tr(c) | BAnd(a,b,(cst,inh),c))

and Nor(a:chan, b:chan, (cst:float, inh:float), c:chan) =
do ?a; delay@inh; Nor(a,b,(cst,inh),c) or

?b; delay@inh; Nor(a,b,(cst,inh),c) or
delay@cst; (Tr(c) | Nor(a,b,(cst,inh),c))

and Nand(a:chan, b:chan, (cst:float, inh:float), c:chan) =
do ?a; (do ?b; delay@inh; Nand(a,b,(cst,inh),c) or

delay@cst; (Tr(c)|Nand(a,b,(cst,inh),c))) or
?b; (do ?a; delay@inh; Nand(a,b,(cst,inh),c) or

delay@cst; (Tr(c)|Nand(a,b,(cst,inh),c))) or
delay@cst; (Tr(c)|Nand(a,b,(cst,inh),c))

and Equiv(a:chan, b:chan, (cst:float, inh:float), c:chan) =
do ?a; (do ?b; delay@cst; (Tr(c)|Equiv(a,b,(cst,inh),c))

or delay@inh; Equiv(a,b,(cst,inh),c)) or
?b; (do ?a; delay@cst; (Tr(c)|Equiv(a,b,(cst,inh),c))

or delay@inh; Equiv(a,b,(cst,inh),c)) or
delay@cst; (Tr(c)|Equiv(a,b,(cst,inh),c))

and Xor(a:chan, b:chan, (cst:float, inh:float), c:chan) =
do ?a; (do ?b; delay@inh; Xor(a,b,(cst,inh),c) or

delay@cst; (Tr(c)|Xor(a,b,(cst,inh),c))) or
?b; (do ?a; delay@inh; Xor(a,b,(cst,inh),c) or

delay@cst; (Tr(c)|Xor(a,b,(cst,inh),c)))

and Impl(a:chan, b:chan, (cst:float, inh:float), c:chan) =
do ?a; (do ?b; delay@cst; (Tr(c) | Impl(a,b,(cst,inh),c))

or delay@inh; Impl(a,b,(cst,inh),c)) or
delay@cst; (Tr(c)|Impl(a,b,(cst,inh),c))

language [15] (Table II). The new gates incorporate the Tr
gate, and circuits can optionally include Pos and Neg gates.
The logic gates also result in signal inhibition and excitation,
but in a way that reflects conventional Boolean gates. We will
examine 3 definitions.

In the BOr gate, the input signals a and b both result in the
transcription of product c. With BAnd, the reception of both a
and b are required before c is transcribed. Since all gates use
the Tr gate to transcribe the output signal, the transcription of
c will be subject to degradation.

A more complex definition is Xor. If input a is seen, and
b occurs soon after, then no transcription arises; otherwise,
after a delay, c is transcribed. The second case mirrors this
first case, but with a and b reversed. Implicit in this definition
is the importance of signal timing. In the first case, b might
eventually arrive, but if it does after the delay term has
activated, then it will be ineffective. This means that channel
rates, and accumulated frequencies of signals, are critical in
determining the activation behaviour of gates.

Figure 1 shows some time plots for the And, Or, and Xor
gates. A (blue) and B (red) are the input signals, and H (green)
is the output. The behaviour of H corresponds to the truth table
definitions of the gates. In the And plot, the output H activates
whenever both A and B are non-zero. Note that signals do not
rise and fall immediately, but require time to strengthen and
degrade. In the Or plot, H is active over active portions of
either A, B, or both. With Xor, H is active only when one of
A and B are active, but not both simultaneously.

Figure 2(a) shows a gate circuit for a D-type transparent
latch, which is a 1-bit memory flip-flop [22]. The equivalent
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Fig. 1. Example time-course plots for And, Or, and Xor gates.

Nand(D,E,(u,t),C) | Nand(E,C,(u,t),B) |
Nand(C,Q,(u,t),Q)| Nand(B,Q,(u,t),Q)

(a) Boolean circuit and SPI gate expression.

(b) Time course plot.

Fig. 2. Flip-flop: D-type transparent latch. In (b), plateau labelled ON has
both D and E set high, while OFF has E high only.

SPI gate expression is given. The signal lines are D (input data
bit), E (input save signal), and Q (output saved memory). To
use the latch, D is set to a bit value, and when stable, E is
turned on to saved the high or low input on Q. Figure 2(b)
shows a time course plot. The plateau labelled ON is formed
by the simultaneous activation of both D and E. During this
time, the Q signal shows some instability, but then settles on a
stable state. After E is turned off, the Q output retains its high
value. The second plateau now sets E high, while leaving the
data D to low. Q then resets itself to a low value accordingly.
Fritz et al. discuss applications of flip-flops in GRNs [1].

The above examples are interesting from a few perspec-
tives. Firstly, their functional behaviours are analogous to
their Boolean equivalents. Secondly, the time course plots are
similar to what might be viewed on an oscilloscope, where the
vertical “value” axis denotes voltage. Hence the SPI circuits
are simulating the state transitions of electrical energy. This
equivalence between biological and electrical modelling is
not new. Koza et al. use GP to evolve bio-chemical reaction
networks [23], that are modelled as electrical circuits.

TABLE IV. TIME COURSE STATISTICS

Label Name and description

a mean: average value
b standard deviation: signal variance from mean
c skew: asymmetry around the mean
d kurtosis: flat or peaked shape relative to normal dist.
e serial correlation: degree of fit to a white noise model
f chaos: Lyapunov exponent; sensitivity dependence on initial values
g periodicity: measure of cyclic patterns

IV. FITNESS EVALUATION

A. Statistical features of time course data
The modelling of time series has been actively studied [24],

and it has been a topic in evolutionary computation [25], [26].
Because SPI gate expressions are non-deterministic, they do
not permit direct comparison of output time plots, say between
expressions and targets, which is possible in deterministic
simulations [23].

We use the time series features from [17], [27]. Imada
presents a suite of 17 different statistical measurements of time
series, which are based on ones described in [28], [29]. When
a SPI expression is simulated, the SPI interpreter generates a
time-course plot of data for designated channels of interest.
We take these data plots, and compute desired time-course
statistics for them. The subset of statistics that we use are in
Table IV; see [17] for details.

To use the time course statistics, the target system is
simulated 1000 times. Time-course statistics are computed for
each simulation’s time plot. The mean values of these target
features are then used as target values for the GP fitness
function. To evaluate fitness, the evolved SPI expression is
simulated, and its time-course statistics are computed. The
absolute difference between the expression statistic and target
statistic is computed for each feature. This vector of errors is
used by the MOP strategy in the next section.

The selection of features to use for different channels is
done in an ad hoc manner. As done in [17], the stability of
particular statistics, reflected by calculating μ/σ from the 1000
interpretations of the target system, is often considered when
making selections.

B. Many-objective ranking
Multi-objective optimization problems (MOP) are charac-

terized by multiple discrete objectives that can be related to
each other in complex, non-linear ways [30]. Our experiments
use between 4 to 15 objectives, selected from the set in
Table IV and applied to multiple channels. Problems of this
size are high-dimensional (many objective) MOPs, and are
not conducive to Pareto ranking. Therefore, we use the sum
of ranks (or average rank) strategy for evaluating the many
objectives into a fitness value [31], [32].
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The normalized sum of ranks is computed as follows.
Consider a vector of k objectives �v =< v1, ..., vk > (k ≥ 2)
to be minimized. Each population member has an objective
vector �vi(i = 1, ..., n). Each objective j = 1, ..., k is first
ranked amongst the population members, in increasing order.
The least value found for objective j is assigned the rank value
1, and successive values are ranked up to a maximum maxj .
After doing this for all objectives, each population member i
will have a rank vector �ri =< r1, ..., rk >. Next, for each
objective j = 1, ..., k, a normalized rank is determined:

�sn = < r1
max1

, ..., rk

maxk
>

= < s1, ..., sk >

Fitness is then computed for each individual:

fitnessi =
k∑

j=1

wjsj

where wj is an optional weight value (default is 1.0).

V. EXPERIMENTS
A. Target systems

The six target systems used are as follows (rate terms
are omitted for brevity). (1, 2) Basic OR and NOR are:

(1) And(a,e,h) | Or(b,f,h)
(2) And(a,e,h) | Nor(b,f,h)

The channels a, b, e, and f are read from a repressilator circuit
(described below), and are non-deterministic input values for
the above expressions. The h channel is tested. Note that when
two gates simultaneously transcribe h, then h’s quantitative
amount may double. This contrasts to the true/false output
of a conventional Boolean expression. (3) The repressilator
is taken from [15]. It is a well-known synthetic network
which generates cyclic, circadian clock behaviour. The target
expression is:

Neg(w,x) | Neg(x,y) | Neg(y,w)

All 3 channels are tested. (4, 5) The D016 and D038 circuits
are also taken from [15], and are based on synthetic genetic
circuits from [33]. D016 is a synthetic network that behaves
similar to a Nor gate for one of the products, while D038
behaves like a logical “not if” during particular state config-
urations. They use additional transcription gates beyond those
given in Table II, as well as a more complex parameterization
of rates. The target expressions are not encodable in our gate
language, even when supplemented with the gates in Table
II. Therefore, it will be necessary to evolve behaviourally
equivalent Boolean expressions. (6) The i633 target is a
solution obtained for one of our early D016 runs:

Nand(gfp,laci,(0.1,0.001),gfp) |
4@Neg(lci,(0.1,0.001),gfp) |
Neg(tetr,(0.1,0.001),tetr) |
2@Pos(gfp,(0.1,0.001),gfp) |
Pos(gfp,(0.1,0.001),laci) |
4@Pos(gfp,(0.1,0.001),lci) |
Pos(lci,(0.1,0.001),gfp) |
2@Pos(lci,(0.1,0.001),lci) |
Pos(lci,(0.1,0.001),tetr)

TABLE V. EXPERIMENT SUMMARY. THE BASIC OR AND NOR
EXPERIMENTS USE THE LOGIC GATE LANGUAGE, WHILE THE REST USE

LOGIC GATES AND POS/NEG GATES.

Rates Channels Features
Name Fix Var T K tested extra #: type

Basic OR � - 400k 1000 1 4 4: abcd
Basic NOR � - 400k 1000 1 4 4: abcd

Repressilator - � 600k 1000 3 - 15: (abefg)×3
D016 � � 200k 500 4 - 12: abf, (aef)×3
D038 � � 100k 500 4 - 12: abf, (aef)×3
i633 � � 200k 500 4 - 13: abef, (aef)×3

TABLE VI. GP PARAMETERS: COMMON

Parameter Value

Prob. crossover 90%
Prob. mutation 10%

Prob. internal crossover 85%
Prob. terminal mutation 75%

Tournament size 3
Elite migration 3

The notation 4@E is shorthand for E|E|E|E. This target
expression has one Nand gate, 5 Neg gates, and 11 Pos gates.
Although reproducible in the Boolean language, it may be too
complex for that to reasonably happen.

Table V summarizes the experiments undertaken. The
columns Fix and Var refer to whether fixed or variable rate
parameters were used. Fixed rates used throughout are cst=0.1
and inh=0.001. Variable rates will evolve one of 6 rate values
10k for integer k, where −5 ≤ k ≤ 0. T is the maximum
time used during SPI simulations. K is the number of data
values generated per channel. Test channels are the number of
channels used for fitness testing, and extra channels are those
permitted in the expression, but not tested. Features refers to
the statistics in Table IV. The total number of features is given,
along with the set of features used. When multiple channels
are tested, the feature sets might be different. For example,
D016 uses features a, b, and f for one channel, and a, e and f
for 3 channels.

Normalized sum of ranks is used for fitness evaluation
(Section IV-B). Although unweighted sums are the default, we
decided to use weighting a few times after inspecting results
from early runs. In the Repressilator, we used weights of 3
for the “g” objective (frequency), and used 1 for the rest. For
D016 (fix and var), we used a weight vector of (3,3,1) for the
channel using objectives abf, and weights of 1 elsewhere.

Table VI shows the GP parameters common in all experi-
ments, while Table VII show parameters for specific exper-
iments, which are based on preliminary runs. A parameter
sweep was not performed, and other settings could easily
show improved results. Grammar-guided GP is used, and the
grammar (not shown) defines variable-length lists of gate calls.
To evaluate fitness, evolved gate expressions are converted into
SPI-readable files, which are then interpreted with the SPI
interpreter [16], [34].

TABLE VII. GP PARAMETERS: SPECIFIC

Popn Max Init Max
Experiment size gens tree depth tree depth

Basic OR 500 50 4, 5 6
Basic NOR 500 50 4, 5 6
Repressilator 500 30 4, 8 10
D016 (F,V) 1500 75 5, 7 9
D038 (F,V) 750 50 5, 7 9
i633 (F,V) 750 50 5, 7 9
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B. Analyzing results
It is challenging to identify good solutions from the GP

runs. This is because both the GP and target expressions are
stochastic, and matching their behaviours is approximate and
error prone. Expressions can have varying behaviours during
different simulations. Fitness evaluation performs simulations
once per expression, which may be inadequate for expressions
with unstable behaviour. Stochastic time series are complex
to characterize, and the particular statistical features used in
experiments may not be ideal.

We processed experimental results as follows. Prior to
the GP runs, each target system was simulated 1000 times,
the time course statistics of the channels of interest were
computed for each simulation output, and basic statistics (min-
imum, maximum, mean, standard deviation) were computed
and saved. Solutions from each experiment were processed
as follows. (1) The top 10 fittest individuals are saved from
every run. Since 20 runs were done, 200 candidate solutions
were saved per experiment. (2) Each solution was simulated
100 times. The time series feature vector for the channels of
interest are calculated for each plot. From these, we compute:
(i) Basic statistics (as above). (ii) Z-score match with the
target expression (90% significance). (iii) Range compliance
(R-score) with the target expression. This verifies whether the
distribution of the expression’s feature values resides within the
target’s observed range. The Z-score and R-score are heuristic
aids to help identify solutions of interest. They cannot be relied
upon for definitive matching. Many feature tests of our targets
do not have normal distributions, and Z-scores will fail for
them. The R-score does not consider distribution shapes.

Other analyses were also selectively used: (i) Re-ranking
solutions: All 200 candidate solutions are combined, and
re-ranked using normalized sum of ranks. (ii) Expression
examination: Here, solution expressions can be compared to
the target (in cases where the target is defined using SPI
gates). (iii) Time plots: The time course behaviour can be
plotted, and compared to that of the target. Each of these
has advantages and disadvantages. For example, expression
examination may ignore behavioural equivalence, and visual
comparison of complex time plots can be error-prone.

VI. RESULTS
A. Fitness scoring of results

TABLE VIII. RESULTS SUMMARY. STATISTICS BASED ON 200
SOLUTIONS PER EXPERIMENT (10 SOLUTIONS FROM EACH OF 20 RUNS).

Tot Z-score hits R-score hits
Experiment objs Avg Best # best Avg Best # best

Basic OR 4 0.56 3 12 3.06 4 93
Basic NOR 4 0.48 3 1 3.78 4 157
Repressilator 15 1.93 13 1 8.31 15 11
D016 fix 12 1.43 5 1 9.14 11 8
D016 var 12 2.84 12 1 9.99 12 3
D038 fix 12 0.80 4 1 3.42 10 10
D038 var 12 2.18 6 2 8.76 11 12
i633 fix 13 3.99 11 1 11.99 13 61
i633 var 13 2.55 6 3 12.31 13 85

Table VIII summaries the Z-score and R-score analyses
for all the runs. The total objectives column is the maximum
number of hits possible for the hits. A “hit” is a Z-score or
R-score match of a solution with a target (see description in
Section V-B). The Avg column is the average over all 200
solutions, Best is the highest number of hits of any solution,
and # best is the number of solutions with the Best score.

Fig. 3. Time-course plots for repressilator target, plus solution having Z-score
match of 13.

Examining the table, note that the R-score is easier to satisfy
than the Z-score. Matching the range of each objective over
100 simulations to the target’s range is often satisfied, while
Z-scores are not so easily matched. As noted earlier, Z-scores
should not be relied upon. The target’s objective values are
often non-normally distributed, and in such cases the target
will not match itself using Z-scores. In this sense, the R-
score is a more accurate heuristic than the Z-score, albeit not
very informative. Another insight is that variable rates have
higher hit scores than the fixed rate runs in the D016 and
D038 experiments. Since neither target expression is directly
encodable in the Boolean gate language, variable rates added
the necessary flexibility for expressions to be behaviourally
closer to the targets. This effect is not evident in the i633
experiments, however, where the fixed rates have better Z-
scores. This is probably because the target i633 expression is
written with fixed rates.

The goal for evolved solutions is that their time-course be-
haviours match those of the target system. It is therefore useful
to compare plots for a few solutions with their corresponding
targets. Figure 3 shows plots for the repressilator target, as
well as the solution with the highest Z-score hits (13 out of
15), as well as a perfect R-score of 15. Both plots are visually
similar, and show round-robin oscillation of all 3 channels.
The expression for this solution is:

Neg(x,(0.1,0.0001),y) |
Neg(y,(0.1,0.0001),w) |
Nor(w,w,(0.1,0.0001),x) |
Nor(x,w,(0.0001,0.0001),y)

The Nor(w,w,x) gate is behaviourally (and logically) equivalent
to Neg(w,x). Therefore, the first 3 terms are identical to the
target expression. Although the final Nor term is extraneous, its
encoded rates are small, and so it may play a minor influence.

Another plot comparison is in Figure 4. The i495 plot is
the solution from the D016 Var experiment that has the highest
Z-score of 12, and R-score of 12. Its expression is:
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Fig. 4. Time-course plots: D016 target, i495 (var rate solution having Z-score
match of 12), and i53 (fixed rate solution with no Z-scores matching).

BAnd(gfp,lci,(1.0E-05,0.001),lci) |
Nor(lci,laci,(0.001,0.001),lci) |
Neg(gfp,(0.001,0.0001),lci) |
Neg(laci,(0.01,1.0E-05),tetr) |
Neg(laci,(0.1,0.01),laci) |
Neg(laci,(0.1,0.01),lci) |
Neg(lci,(0.1,0.01),gfp) |
Neg(tetr,(0.1,0.01),tetr)

The behaviours are visually similar, although the D016 target’s
GFP channel (blue) tends to show a higher average in this
simulation instance. An example of a poor match is the i53
plot, which is a solution from the D016 fix experiment. It had
a Z-score of 0, and R-score of 6.

Figure 5 shows the population fitness performance for
the D016 experiments. The graphs plot the 12 raw objective
values (feature statistic value errors), which is used by the
sum of ranks scoring. Clearly the sum of ranks minimizes all
objectives to different extents (Pareto ranking would not be
able to do this with 12 objectives.) The Var runs have a higher
initial error than the Fix, due to the extreme behaviours caused
by wide ranges present in the channel rates. Of special note
is the curve labelled “LCI avg” in the Fix plot. When using
the sum of ranks scoring strategy, the performance of some
objectives can be sacrificed in order to benefit the majority of

Fig. 5. Raw fitness performance plots of population for D016 runs (average
over 20 runs). Each of the 12 plot lines is the error between objective values
of target and GP population.

TABLE IX. GATE DISTRIBUTIONS IN D016 AND D038 SOLUTIONS.
200 SOLUTIONS PER EXPERIMENT.

D016 D038
Gate Var Fix Var Fix

Nor 33% 82% 42% 13%
Nand 49% 48% 54% 26%

Or 53% - 22% 12%
And 25% - 12% 7%
Xor 23% 46 % 36% 15%
Impl 47% - 30% 5%
Equiv 31% - 41% 12%
Pos 79% 100% 96% 58%
Neg 100% 100% 87% 100%

other objectives. In this case, the improvement of LCI avg
noticeably lags behind the other objectives during the first
half of the run, but improves significantly afterwards. If we
assigned LCI avg a weight higher than the default of 1, this lag
might have been avoided, but at the expense of the performance
of other objectives.

B. Examination of circuit expressions
Solution expressions were studied with respect to gate com-

position, and the degree they matched the target expression.
The Basic OR and NOR experiments were devised for the
purpose of comparing circuit expressions. These experiments
used fixed-rate Boolean gates, and omitted the Pos and Neg
gates. Examining the 200 solutions for Basic OR, 190 expres-
sions used an Or gate, and 105 used Nor. One exact match
with the target was evolved. On the other hand, with the 200
Basic Nor solutions, none used Or gates, and 198 used Nor
gates. No exact target matches occurred. This shows that GP
is exploring expression schema appropriate to the behavioural
requirements.

Target expression matching is difficult for D016 and D038,
because the target is written in a different gate language than
ours. A simple analysis is the gate distribution found in evolved
solutions in Table IX. This table reports the percentage of
solutions using each gate. The basic Pos and Neg gates are
the most frequent gates. This supports the original motivation
of Blossey et al. in proposing that these gates are fundamental
in modelling gene regulation [15]. Another insight is that
solutions in the variable rate language show a wider assortment
of gates than fixed-rate solutions. Especially surprising is how
the D016 fixed case entirely omits four gates (Or, And, Impl,
Equiv) from all solutions. These same gates were also the least
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TABLE X. TERM ANALYSIS FOR I633 FIX. TOTAL ARE THE NUMBER

OF SOLUTIONS INCLUDING THAT TERM. EXACT ARE THE NUMBER OF

SOLUTIONS WITH EXACT MATCH IN QUANTITY OF THAT TERM.

Target Top ranked (10 tot) Nand (8 tot)
expression term Total Exact Total Exact

Nand(gfp,laci,gfp) - - 8 8
4@Neg(lci,gfp) - - 1 -

Neg(tetr,tetr) 3 4 6 5
2@Pos(gfp,gfp) 6 2 6 4

Pos(gfp,laci) - 2 6 6
4@Pos(gfp,lci) 6 2 8 -

Pos(lci,gfp) 2 3 4 3
2@Pos(lci,lci) 7 2 8 6

Pos(lci,tetr) 2 3 1 1

Fig. 6. Three Nand solutions having top Z-scores. Yellow indicates exact
match with target, and green is partial match.

used ones in the D038 fixed solutions. We hypothesize that the
variable languages permit more variations of useful circuitry
components, which also shows that rates and expressions are
somewhat orthogonal in the search space. In addition, low rate
values allow more “bloat terms” that have little or no effect
on behaviour.

The i633 runs involve a more complex gate circuit that is
replicable in our gate language. We examined the 200 solutions
from the fix rate runs in two ways: (i) We re-ranked the
solutions using the normalized sum of ranks, and saved the
top 10 scorers. (ii) We found 8 solutions in total that used
the identical Nand gate term (including channel arguments)
found in the target expression. None of these Nand solutions
were in the top 10 set. We then matched the terms of all
these expressions with the target expression. Table X shows
a summary of the matching. Total are the number of solutions
that include this particular target term, albeit possible not the
same number of instances as the target. Exact are the number
of solutions that have the same instances as well. For example,
when the target term is 2@pos(lci,lci) and the solution
term is 3@Pos(lci,lci), that is considered a match for
Total, but not an exact match.

From this table, there is evidence that the Nand gate term
has a significant influence on the rest of the expression. When
solutions have the same Nand term as the target, the frequency
of matches with other target terms increases, and most notably,
the exact match counts. When this term is not found in an
expression, there is a correspondingly lower match with the
remaining expression.

Three of the i633 fix Nand solutions having the highest
Z-scores are shown in Table 6. The left column is the i633
target, and each column shows a separate solution. Green
indicates partial matches with the target (off in repetition

factor), and yellow indicates exact matches. Many of the
matches undoubtedly arise because Pos and Neg are frequently
used, and there are only 16 channel argument combinations
possible for each of them. On the other hand, the 8 Pos and Neg
combinations residing in the target expression were common
in most solutions. We surmise that many of these terms must
play an important behavioural role. Although the variable rate
case is not studied here, those solutions show a much wider
range of terms than the fixed case.

VII. CONCLUSION

This research presents the definition of a stochastic Boolean
gate language in the style of Blossey et al.’s stochastic gene
gate language [15]. We showed that stochastic systems written
in the language could be automatically synthesized using GP.
As done elsewhere, we specified desired time-course behaviour
with statistical features [17], [27]. Because experiments used
upwards of 15 features as objectives, the many-objective sum
of ranks scoring strategy was effective in evolving systems that
were behaviourally similar to target systems.

The gate language was shown to be highly compositional.
We discovered that Blossey et al.’s Pos and Neg gates more
rudimentary than the Boolean gates, and GP often exploited
the basic gates during evolution. It is more difficult to see
higher-level causal relationships using Pos and Neg, versus
the higher-level semantics afforded by Boolean gates. Note
that expression behaviours cannot be fully understood via their
logical semantics visa-viz truth tables. Full analyses requires
consideration of the how time-series output changes over time,
which is considerably more complicated to understand than
basic truth-table equivalences. With the D016 and D038 exper-
iments, although we tried comparing the causal relationships
of channels in our solutions with the target expressions, we did
not get very far. Gate expressions generate varying quantities
of channels (substances) over time, in an often chaotic and
unstable manner, and the mechanisms by which this happens
can be unintuitive. Although stochastic gate expressions would
not be straight-forward to create and understand by most
people, the ones evolved with GP can be especially arcane.

There are a number of future directions for this research.
A detailed study of the functional characteristics of gate ex-
pressions is required. It would be valuable to find biologically
meaningful functional correspondences between circuit com-
ponents and (say) the target expressions of D016 and D038.
However, the results of our experiments here show that the
effects of channel rates is critical (as is also discussed in [1]),
and needs further study. Rate terms substantially alter the form
of gate expressions, which shows that they introduce orthog-
onality into the search. The ability to evolve gate expressions
for real-world data will require a better understanding of how
to scale and control rate expressions. Furthermore, although
Boolean logic is well understood, there is no reason to suppose
that Boolean gates are the most natural means for describing
phenomena such as gene regulation or metabolic pathways. It
is interesting to consider SPI implementations of other gate
languages, such as those in [35], as alternative modelling
formalisms may be better suited to biological modelling. In
any case, it is important to investigate the utility of the gate
language for real-world biological systems, rather than the in
silico examples studied exclusively in this paper.

Statistical features mitigate the problem of characterizing
noisy, non-deterministic time series [28], [29]. As in [17], we
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manually choose features to use in an ad hoc manner. Poor
choices of features can negatively effect the results. Future
work will consider the use of more principled feature selection
strategies [36].

We will also enhance the GP implementation. When study-
ing the D016 and D038 systems, Imada used multiple fitness
cases, by “knocking out” the effects of specific channels [17].
Our GP runs would greatly benefit with this essential strategy.
Our results also show the challenge of finding a suitable
solution from a set of hundreds of candidates evolved over
many runs. Our use of Z-scores were not guaranteed to show
matches to non-normal distributions of feature values, and a
non-parametric test such as Kruskal-Wallis would be worth
consideration. However, this would not influence the quality
of GP results, since fitness evaluation uses an absolute error
measurement. More stable fitness measurements could be ob-
tained by performing multiple simulations of gate expressions,
albeit at a computational cost.
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