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Genetics

We have all observed that offspring tend to have physical traits in common
with their parents. In humans, similarity in hair color, eye color, height, and
build often quite clearly run in families. That selective breeding might enhance
traits must have been noticed long ago in our history, as domesticated animals
and crops have strongly developed features that we find useful.

On the other hand, the traits of offspring are generally not completely
predictable from observing those of the parents. A child might have a trait,
such as hemophilia, that neither parent exhibits, though such a trait might
occur more commonly within one family than another. Thus, despite patterns
to inheritance, chance also appears to be involved. Creating a mathematical
model of heredity requires capturing both of these aspects.

The first decisive step was taken by the Augustinian monk Gregor Mendel
in the latter half of the nineteenth century. Experimenting with some carefully
chosen traits in peas, he was led to propose what we now call a gene as the basic
unit of inheritance. Though it is perhaps surprising to the modern student, at
that time the gene was an entirely abstract concept, with no proposed physical
basis, such as the DNA sequences we now immediately imagine.

Recognizing the value of quantitative analysis, Mendel created a mathe-
matical model for the transmission of heritable traits, based on the concepts
of probability. His genius was in both identifying simple enough traits to be
able to formulate a good model and then modeling the inheritance of those
traits successfully. Though subsequent work has added many new features to
our models, and we now know much more about the chemical and biological
mechanisms behind genetics, Mendel’s simple model remains the basic core
of our understanding of how many organisms pass on traits to their offspring.

6.1. Mendelian Genetics

In 1865, Mendel presented his findings from breeding experiments with
garden peas (Mendel, 1866) to a small group of scientists in Briinn, in the
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modern-day Czech Republic. Although the world scientific community
largely failed to notice until the turn of the century, Mendel’s genetic the-
ory was a major advance. Let’s consider some of his experiments carefully to
understand how the model describes what he observed.

Mendel isolated seven characteristics of pea plants: stem length, seed
shape, seed color, flower color, pod shape, pod color, and flower position
for study. Each of these characteristics appeared in the peas in one of two
forms we’ll call traits. For instance, stem length might be tall or dwarf, while
seed shape could be round or wrinkled. By selective breeding, he then devel-
oped true-breeding lines of peas for these traits — strains of pea plants that
produced progeny, all of which were identical to the parents. Thus, all the
descendents of a true-breeding line for tall plants would be tall, and all the
descendents of a true-breeding dwarf line would be dwarf.

For each of the characteristics, Mendel cross-bred the two true-breeding
lines. For example, true-breeding tall plants were crossed with true-breeding
dwarf plants, and true-breeding plants with smooth seeds were crossed with
true-breeding plants with wrinkled seeds. Thus, inheritance could be studied
one characteristic at a time, and the influence of pure parental traits on the
progeny observed. Mendel discovered that, in these crosses, the progeny dis-
played only one of the traits of the parental generation: The progeny of tall
and dwarf plants were all tall; the progeny of plants with round seeds and
those with wrinkled seeds all had round seeds. Since the same trait from the
parental generation was exhibited by all the progeny, Mendel called such a
trait dominant and the hidden trait recessive. The dominant traits discovered
by Mendel’s crosses are given in Table 6.1.

Mendel furthered experimented by allowing the offspring of these first
generation crosses, or Fi, to self-pollinate and produce a second generation
F5. (The symbols F; and F; are the standard notations in genetics for the first
and second filial generations.) Interestingly, the recessive traits, absent in F7,

Table 6.1. Mendel’s F Data

Parental Traits Dominant Trait
Tall, dwarf plants Tall
Round, wrinkled seeds Round
Yellow, green seeds Yellow
Purple, white flowers Purple
Inflated, constricted pods Inflated
Green, yellow pods Green
Axial, terminal flowers Axial
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Table 6.2. Mendel’s F> Data

Cross Producing F) F Ratio
Tall x dwarf plants 787 tall, 277 dwarf 2.84:1
Round x wrinkled seeds 5,474 round, 1,850 wrinkled 2.96:1
Yellow x green seeds 6,022 yellow, 2,001 green 3.01:1
Purple x white flowers 705 purple, 224 white 3.15:1
Inflated x constricted pods 882 inflated, 299 constricted ~ 2.95:1
Green x yellow pods 428 green, 152 yellow 2.82:1
Axial x terminal flowers 651 axial, 207 terminal 3.14:1

reappeared in F,. Mendel’s data for the frequency of each observed trait is
shown in Table 6.2.

The last column of Table 6.2 shows the ratio (number of plants with domi-
nant trait):(number of plants with recessive trait) in the F; plants. These ratios
are all remarkably close to 3:1 for each of the seven traits under study. (In
fact, they are so close to 3:1 that some believe Mendel may have selectively
reported his data at a time when scientific standards were less developed.)

» Is noticing this 3:1 ratio enough to help you create an entire genetic
theory, as Mendel did?

To explain the 3:1 ratio, Mendel proposed that, for each characteristic,
a pea plant must contain a pair of the hereditary factors now called genes.
Each gene can come in several forms or alleles, corresponding to variations
within a trait. For example, for the stem length trait, there is a dwarf allele,
d, and a tall allele, D. (Usually, we choose a small letter for a gene based on
the recessive allele and use the corresponding capital letter for the dominant
allele.) The true-breeding strains of pea plants contain two identical alleles
and are said to be homozygous. The genotypes of these strains are dd for the
dwarf strain and D D for the tall strain.

Mendel hypothesized that each parent passed along exactly one of its genes
to its progeny. If a parent has genotype Dd, either a tall D allele or a dwarf d
allele is passed on, rather than some sort of mix of the two. This principle of
segregation treats the alleles associated with traits as discrete and indivisible
units. A further consequence of the principle is that progeny will also have
exactly two genes for a characteristic, as did their parents, and thus the number
of genes does not increase in successive generations.

Chance is introduced into the model in determining which of the parental
genes each descendent receives. With equal probability, either of the genes in
the father will be passed to a descendent, and with equal probability, either of
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the genes in the mother will be passed on as well. It’s as if two parental coin
flips determine the outcome in the progeny.

Much more is now known about how genes segregate in the formation
of gametes or reproductive cells. Meiosis is a complicated process in which
gametes (egg and sperm in animals, spores in plants) carrying only one copy of
each gene are formed. Modern understanding is that genes are found arranged
linearly on chromosomes, large molecules residing in the nucleus of cells.
The chromosomes come in pairs, accounting for the two copies of each gene.
Indeed, in gamete formation, it is chromosomes that segregate, not genes as
Mendel proposed. At fertilization, two gametes, each carrying one copy of
each chromosome, join to produce new offspring.

In reality, inheritance of chromosomes is much more complicated than can
be captured by our Mendelian model. The process of crossing over, an impor-
tant source of genetic variability, makes segregation quite involved. Moreover,
not all alleles fit the dominant/recessive framework that the Mendelian model
supposes, and many traits are not determined by a single gene, but rather
by collections of genes. Finally, whereas most familiar organisms do carry
two copies of each gene in most cells, and are thus called diploid, there are
exceptions to this.

However, we are getting ahead of ourselves by bringing up all these com-
plications. The Mendelian model is remarkably good for predicting and un-
derstanding the inheritance of many traits and marks a first step toward un-
derstanding the biology of inheritance. We can bring modifications into the
model later, after we fully understand Mendel’s simpler view. So, for now,
we will continue to assume segregation of parental genes and restrict our
attention to the situation in which a single gene controls a single trait.

When Mendel crossed the D D true-breeding tall genotype with the dd true-
breeding dwarf genotype, each descendent inherited an identical set of genes
from the parents: D from the first parent and d from the second. Genotypically,
these progeny are all Dd, and, because they contain two different forms of
the gene, are said to be heterozygous.

Remember that each of the F; were tall pea plants. Thus, although genet-
ically the progeny were heterozygous, the D allele was dominant over the d
allele, in the sense that all the plants of F| resembled their tall parent. These
F| have the same phenotype as their tall parents, that is, they have the same
observable characteristics.

» What are the phenotypes of the genotypes DD, Dd, and dd?
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Table 6.3. Punnett
Square for Dd x Dd

D d
D DD Dd
d Dd dd

» If W denotes the dominant allele for round seeds and w the recessive
allele for wrinkled seeds, what are the phenotypes of WW, Ww, and
ww?

To understand the 3:1 phenotypic ratio in F, a helpful device is the Punnett
square. Here, we place the possible gametes formed by F parents as row and
column headings. The entries, formed by the union of such gametes, are the F,
genotypes. A Punnett square for the stem length gene in the self-fertilization
of a pea in Fj is shown in Table 6.3.

Because each of the gametes is equally likely, according to the model, the
four entries of the square are all equally likely descriptions of the genotypes
of offspring. We should thus find the three genotypes DD, Dd, and dd in a
ratio of 1:2:1 in the F, plants.

Notice that we can also deduce the expected ratio of the phenotypes of the
F, progeny. Since the first two of these genotypes produce the tall phenotype,
we should see three tall plants (DD and Dd) for every dwarf plant (dd),
giving a ratio of 3:1. Mendel’s simple genetic model describes the outcome
of his breeding experiments remarkably well.

We can easily extend Mendel’s model to make predictions about the out-
come of more complicated breeding experiments. For example, if W and w
denote the alleles for round and wrinkled seeds, then we may be interested in
predicting the outcome of the cross DdWw x ddWw. To handle such two
gene crosses, we assume, as Mendel did, that genes assort independently.
That is, in gamete formation, the segregation of alleles of one parental gene
occurs independently of the segregation of alleles for the other gene. Using
the language of probability, we would say the segregations of the alleles for
two different genes are independent events.

Example. To predict the outcome of the cross DdWw x ddWw, we can
again use a Punnett square. Because all combinations are equally likely in
gametes, the parental type Dd W w creates four types of gametes — DW, Dw,
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Table 6.4. Punnett Square for
DdWw x ddWw

DW Dw aw dw

dwW  DdAWW  DdWw ddWW ddWw
dw DdWw Ddww ddWw  ddww
dW  DdWW  DdWw ddWW ddWw
dw DdWw Ddww ddWw  ddww

dW, and dw — all with equal probability. Similarly, dd Ww creates gametes
dW,dw,dW, and dw with equal probability. The resulting Punnett square
is shown in Table 6.4.

Notice that there are only six different genotypes among the 16 entries in
the square. However, since several of these genotypes produce the same phe-
notype, there are only four different phenotypes represented. Careful counting
shows that, among the F, plants, we should expect the following fractions of
the population with the given phenotypes: Tall plants with round seeds 6/16,
tall plants with wrinkled seeds 2/16, dwarf plants with round seeds 6/16, and
dwarf plants with wrinkled seeds 2/16.

» Which genotypes in the square produce the phenotype of tall plants
with wrinkled seeds?

» Suppose you wanted to determine the phenotypes and their frequencies
for a cross between DdWwYY x ddW WYy, where Y represents the
dominant allele for green pods and y the recessive allele for yellow
pods. How big would your Punnett square be?

The size of a Punnett square grows quickly, in fact exponentially, with
the number of independently assorting genes you are tracking. For n genes,
the square is 2" x 2". This makes Punnett squares impractical for all but the
simplest of analyses. Ultimately, we will find that the language of probability,
as introduced in Chapter 4, is a better tool for calculating the chances of
different outcomes of a particular cross.

Example. To redo the example above of the cross DdWw x dd Ww using
probability, let’s first calculate the likelihood of dwarf progeny with wrinkled
seeds. Because both dwarfness and wrinkled seeds are recessive characteris-
tics, we know that the only genotype producing these traits is ddww. This
means that each parental strain must contribute a d and a w to such progeny.
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In detail,

‘P(dwarf plants with wrinkled seeds)
= P(ddww)
= P(dw from first parent)P(dw from second parent)
= P(d from first parent)P(w from first parent)

x P(d from second parent)P(w from second parent)
-(:) ) () G)-6)
\2/)\2 2)  \8/)°

Naturally, this answer agrees with our result from the Punnett square.

Let’s pause and examine several of the equal signs above, since they are
derived from important mathematical and biological concepts. Note, for ex-
ample, that the second equality, rewriting P(ddww) as the product of the
probabilities of inheriting alleles from each parent, is only correct if these are
independent events. This assumption of independence is part of the notion
of random union of gametes: The probability of any union of paternal and
maternal gametes is the product of the proportions in which those gametes
occur.

» Why biologically should what is inherited from one parent be indepen-
dent of what is inherited from the other?

In addition, the third equality, writing the probability of inheriting dw
from a parent as the product of the probabilities of inheriting d and w, is a
mathematical restatement of the principle of independent assortment.

Let’s try another, more involved, example.

Example. What is the probability that the progeny of DdWw x ddWw is
dwarf with round seeds?

Because having round seeds is a dominant characteristic, two genotypes
WW and Ww, both give rise to round seeds, and we will need to take both
possibilities into consideration. Now

P(dwarf with round seeds) = P(ddWW or dd Ww)
=PAdWW) + P(ddWw),
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since dd WW and dd Ww are disjoint events. But

PddWW) = P(dW from first parent)P(d W from second parent)
(1 1 0 1 /1
—\2/\2 2)  \8)°

PddWw) = P(dW from first parent)P(dw from second parent)
+ P(dw from first parent)P(d W from second parent)

-(2) ()0 ) () ) )
-()+()-G)

1 1 3
dwarf with dseeds) = | = -)=1=].
P(dwarf with round seeds) <8> + (4> <8>

» Justify each step of these computations. Where have we used the fact
that certain events are independent?

and

The last calculation was complicated enough that it is a good idea to check
it a different way. Let’s do this by thinking of the principal of independent
assortment differently, in more probabilistic terms. When we say that the two
genes assort independently, we mean that the events E; = {plant is dwarf}
and E, = {plant has round seeds} are independent events. Thus, we can com-
pute probabilities for each of these events, and then use the multiplication
rule for independent probabilities to combine the answers. This focuses our
attention on more manageable problems; instead of looking at the cross
DdWw x ddWw, we can look at the crosses Dd x dd and Ww x Ww
separately.

Example. To find the probability of dwarf progeny with round seeds, we
need only multiply the probabilities:

P(dwarf with round seeds) = P(E; N E,) = P(E;)P(E,).

For the Dd x dd cross, P(E;) = P(dd). This probability is P(dd) = %,
which could be found either by using a 2 x 2 Punnett square or by arguing
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that

1 1
‘P(dd) = P(d from first parent)P(d from second parent) = 5 ()= 3
For the Ww x Ww cross,

P(E,) =PWW or Ww) =Pot ww) =1—Pww)=1— l = §

4 4
1 3 3
P(EqNE,) = (5) (Z) =

just as we found before.

Thus,

While we have seen several ways to calculate the frequencies of phenotypes
in progeny from various crosses, we will use probability most often. It is a
sophisticated tool that allows us to estimate and model genotypic and, more
generally, allelic frequencies in a population. As we move into increasingly
complicated genetic models, simple devices like the Punnett square cannot
be usefully adapted.

Although the basic Mendelian model does not describe all genetic phe-
nomena of interest, it is adequate to model the incidence of certain human
diseases. For example, Tay-Sachs disease, a disease primarily striking chil-
dren of Ashkenazi Jewish descent and usually leading to death before age 5,
is developed by individuals who are homozygous with a recessive allele for
a particular gene. It is estimated that roughly 1 in 31 adults in the Ashkenazi
population in North America are heterozygous for the recessive allele. Reces-
sive alleles may lie hidden for generations if most individuals marrying into
a family are homozygous dominant. Tay-Sachs disease may thus occur un-
expectedly and with devastating impact when two heterozygous individuals
have children. For many years, estimates of the presence of the recessive al-
lele in the population, together with extensive family medical histories when
they were available, were the only means of calculating the risk that a child
would develop Tay-Sachs disease. More recently, prenatal techniques such as
amniocentesis are used to detect the presence of the Tay-Sachs mutation.

Problems

6.1.1. Imagine that, in a certain species, gamete formation does not oc-
cur, and instead of receiving half the genes of each parent, offspring
receive the full set of genes from both parents. If each parent in the
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founding generation Fy has two copies of a particular gene, how many
copies will offspring of the nth generation F, have?

. Create a Punnett square fora DdWw x DdW w cross of pea plants.

What proportion of the progeny has each genotype? Each phenotype?

. In the text, probabilistic arguments are given to compute the proba-

bility of dwarf wrinkled-seed and dwarf round-seed phenotypes for
the progeny of a DdWw x dd Ww cross of pea plants. Complete the
analysis by using probability to compute the following:

a. The probability of a tall wrinkled-seed phenotype.

b. The probability of a tall round-seed phenotype.

. According to (Petersen et al., 1983), the recessive allele for Tay-

Sachs disease is present in 1 of 31 people in the North American

Jewish subpopulation. Because of the nature of the disease, we can

assume all adults with the allele are heterozygous.

a. Whatis the probability that a couple drawn from this subpopulation
will both have the allele?

b. What is the probability that a child of such a couple will develop
Tay-Sachs disease?

c. What is the probability that a child, both of whose parents come
from this subpopulation, will develop Tay-Sachs disease?

. Consider three genes, each with dominant and recessive alleles, de-

noted A, a; B, b; and C, c.

a. If an individual has genotype Aa BbC C, how many different ga-
metes might it form?

b. If two organisms with genotype Aa BbCC are mated, how many
different genotypes and phenotypes are possible?

. Generalize the result of the last problem by considering N genes for

a particular organism, with each gene having dominant and recessive

alleles.

a. How many different gametes can be formed by an organism that
is heterozygous for n genes and homozygous for N — n genes?

b. Suppose two individuals, with identical genotypes, are heterozy-
gous for n genes and homozygous for N — n genes. How many
different genotypes and phenotypes are possible if these two or-
ganisms of identical genotype are mated?

c. Suppose one individual is heterozygous for the first k genes only
and a second individual is heterozygous for first / genes only, where
k <l < N. At the other loci, both organisms are homozygous re-
cessive. How many genotypes are possible when these organisms
are crossed? How many phenotypes?
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A testcross is a cross between a genetically unknown organism and

a homozygous recessive organism. Testcrosses can be used to de-

termine whether an organism is heterozygous or homozygous for a

particular allele.

a. Suppose three organisms with genotypes AA, Aa, and aa are
crossed with aa. What is the expected ratio of phenotypes in each
of these testcrosses?

b. Suppose that a pea plant of an unknown genotype is testcrossed
with dwarf pea plants that have wrinkled seeds and yellow pods
(ddwwyy). Of the progeny, some are tall, some are dwarf, and all
have wrinkled seeds with green pods. What is the genotype of the
unknown parental strain?

c. Explain why you can determine the genotype of an unknown plant
by testcrossing with another plant that is homozygous recessive
for all genes of interest, but not by testcrossing with a plant that is
homozygous dominant. Give both informal reasoning and quanti-
tative justification.

In rabbits, two independently assorting genes affect fur. The dominant
allele, B, determines black fur, and a recessive allele » determines
brown fur. Normal fur length is determined by a dominant allele, R,
and short fur length by a recessive allele, r. A homozygous (in both
genes) black rabbit with normal-length fur is crossed with a brown,
short-haired rabbit.

a. What are the possible genotypes and phenotypes of the offspring
in F;? What is the proportion of each?

b. If F) rabbits are intercrossed, what proportion of the F, are ho-
mozygous (both dominant and recessive) for the color gene? What
proportion are homozygous for both genes? What proportion of the
black rabbits are homozygous for both genes?

c. What is the genotype ratio for black rabbits with normal length fur
in Fz?

. To test his hypothesis that two genes assorted independently, Mendel

carried out another series of experiments. In one, he bred true-lines of

pea plants with round, yellow seeds (W WG G) and wrinkled, green

seeds (wwgg). Here, the recessive allele for green seed color is de-

noted by g. He crossbred these lines to get F, and then the F| plants

self-fertilized to produce F;.

a. What are the phenotypes and genotypes of F;?

b. What phenotypes will be represented in F,, and in what relative
frequencies should the phenotypes occur if the genes do assort
independently?
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Figure 6.1. A human pedigree.

c. If Mendel’s data did not exactly match that predicted in part (b),
should he have doubted the assumption of independent assortment?
By how much could the frequency data be off from the theoreti-
cal prediction before you would doubt the assumption? Explain
informally.

6.1.10. If a certain genotype is lethal to embryos, then the expected propor-
tions of genotypes in a new generation is, of course, affected.

In mice, an allele Y/, known as the yellow-lethal mutation, is domi-
nant for yellow fur color, but homozygotes die in the embryonic stage.
Homozygotes with genotype yy have gray-brown or agouti fur.

Suppose two yellow mice are crossed. Give the genotypes, pheno-
types, and expected proportions of their viable progeny, F;.

6.1.11. Family pedigrees can be used in determining the risk of human off-
spring developing certain genetic diseases. One such disease is sickle-
cell anemia, which occurs in individuals homozygous for a certain
recessive allele.

In the pedigree of Figure 6.1, circles denote females and squares
males; horizontal lines join couples, and vertical lines indicate chil-
dren. Gray coloring indicates an individual has sickle-cell anemia.
a. For the relevant gene, what must the genotypes of the parents be?
b. What is the probability that a fourth child of the parents will be

disease-free?
c. What are the possible genotypes of one of the sons? What is the
probability of each of those genotypes?

6.1.12. Brachydactyly, or short fingers, is determined in humans by a partic-
ular gene with dominant and recessive alleles. Suppose a couple, both
with brachydactyly, have two children. One child has normal length
fingers and the other has short fingers.
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a. Is brachydactyly a dominant or recessive trait? What are the geno-
types of the parents? Of the children?

b. Suppose the couple has two more children. What is the probability
that neither of them will have brachydactyly?

6.1.13. Plants heterozygous for three independently assorting genes are

crossed.

a. What proportion of the progeny is expected to be homozygous for
all three dominant alleles?

b. What proportion of the progeny is expected to be homozygous for
all three genes?

c. What proportion of the progeny is expected to be homozygous for
exactly one gene?

d. What proportion of the progeny is expected to be homozygous for
at least one gene?

6.1.14. Mendel’s simple model of dominant and recessive alleles does not
always apply. Even when one gene with two alleles controls a trait,
sometimes neither is completely dominant.

For example, in snapdragons, homozygous W W have red flowers
and ww have white flowers. In heterozygotes Ww, however, both
genes are expressed, and the flowers are pink. In such a case, the alleles
are said to be partially dominant. If the heterozygote’s phenotype is
midway between those of the homozygotes, we say the alleles are
semidominant.

For snapdragons, what are the phenotypic proportions in F; result-
ing from a WW x ww cross? What are the phenotypic proportions
in F; arising from F; self-fertilization?

6.1.15. Some genes have multiple alleles, that is, more than two alleles exist
in a population for a gene at a particular locus.

Suppose a gene has alleles ay, a;, and a3, and that a; is domi-
nant over a; and as, and a, is dominant over a3. What are the geno-
type and phenotype frequencies you would expect from a cross
ajaz X 612613?

6.1.16. Mendel’s model may be modified as in the last two problems to ac-
count for a gene that has more than two alleles, some of which exhibit
partial or semi-dominance.

For example, the three alleles for human blood type — I4, 12, and
10 — exhibit both dominance and codominance. Both I* and I? are
dominant over 7°, but an individual with genotype 71412 will have
type A B blood, because both alleles are expressed equally.
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a. What are the possible genotypes for the four phenotypic blood
types, A, B, AB, and O?

b. Suppose an individual homozygous with type A blood marries an
individual heterozygous with type B blood. What are the possible
phenotypes of any offspring, and in what relative frequencies do
these occur?

c. Suppose parents, heterozygous with types A and B blood, have
four children. How many of the children would you expect to have
type O blood? Would it be possible for all of the couple’s children
to have type O blood? Explain, both informally and quantitatively.

6.1.17. Mendel’s basic model only describes phenotypic traits that are con-
trolled by a single gene. However, most traits are more complicated.
A classic example is comb shape in chickens, which is deter-
mined by two independently assorting genes. There are four shapes
of chicken combs: rose, pea, single, and walnut. Two genes with two
alleles each are responsible for comb shape. The genotypes of the
four shapes are: rose R—pp, pea rr P—, single rrpp, and walnut R—
P—. (Here, a dash indicates either a dominant or a recessive allele is
possible.)
a. What phenotypes result from the crosses RRpp X rrpp,rr PP X
rrpp?
b. What phenotypes, and in what proportions, result from a RRpp x
rr P P cross? If the F| progeny are interbred, what phenotypes,
and in what proportions, are represented in F5?

6.2. Probability Distributions in Genetics

While the Mendelian model gives a good understanding of the probability of
a single child of certain parents being homozygous recessive for a particular
gene, or of a single F; plant being tall or dwarf, often we are interested in
calculating probabilities of more complicated events. For some of these, we
need additional knowledge of probability, rather than genetics.

The term “random variable” is sometimes used for the outcome of a mea-
surement or count when we believe some sort of random process underlies
the experiment. A few examples of random variables are

* A fair coin is flipped 10 times, and the number of heads is counted. This
number is a random variable that might take on the values 0, 1, 2, ..., 10.

* Parents who are heterozygous for the Tay-Sachs recessive allele have three
children. The number of their children that are homozygous recessive is a
random variable that might take on the values 0, 1, 2, or 3.
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* Mendel’s F, data on the progeny of the self-fertilized F; cross between tall
and dwarf pea plants involved 1,064 plants. The proportion of the plants
in F, that are tall was a random variable that could have taken on any
of the values 0 = 0/1064 (if all plants were dwarf), 1/1064, 2/1064, ...,
1 = 1064/1064 (if all plants were tall).

The random variables listed here are built by counting or finding propor-
tions of outcomes of simpler events. Our understanding of the simpler events
should enable us to analyze these, but how?

A function that describes the probability of the various outcomes of a
random variable is called a probability distribution. In this section, we will
consider two particular distributions of use in genetics.

The binomial distribution and expected values. As a first example, sup-
pose we flip a fair coin 3 times, and are interested in the probability of getting
exactly 2 heads among the 3 flips. We can list the 8 equally likely outcomes
of the 3 coin flips,

HHH,HHT,HTH,HTT,THH,THT,TTH,TTT,
each occurring with probability 1/8. In this list, the 3 outcomes
HHT,HTH,THH

have exactly 2 heads. Thus, using the addition rule of probabilities, we find

I 1 1 1 3
tly 2 headsin3 flips) = -+ -+ -=3 (=) = =.
P(exactly 2 heads in 3 flips) g + 3 + 2 (8) 3

Now suppose we wanted to find the probability of exactly 12 heads in 35
flips? We could proceed similarly, but listing cases is likely to be difficult
and error-prone. However, a probability distribution called the binomial dis-
tribution allows us to calculate such probabilities quickly and efficiently, by
associating probabilities to each of the possible outcomes 0, 1,2, ..., n of
the random variable that gives the number of heads produced by n coin flips.

To develop a formula for the binomial distribution, let’s examine the ex-
ample of 2 heads in 3 flips again. For each coin flip, we have probability 1/2
of getting a head and probability 1/2 of getting a tail. Thus, for any particular
way we might get 2 heads and a tail, the probability is

2
P(HHT)=P(HTH)=P(THH) = (%) (%) =_.
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The 2 heads required two factors of 1/2, and the single tail required an
additional factor of 1/2. Because the coin flips are independent, we multiply
these factors.

Now why are there three scenarios in which 2 heads can be produced in
the 3 flips? We have to account for which of the 3 particular flips were the
ones in which the heads occur. They could occur on flips 1 and 2, flips 1 and
3, or flips 2 and 3. The number of scenarios is the number of different ways
that 2 of the 3 flips can be designated as producing heads.

This simple example motivates the general formula for the binomial distri-
bution. Suppose we perform n independent trials of a random process that has
two possible outcomes. For convenience, we call one of the two outcomes a
success S and the other a failure F. Suppose further that in each trial we have
P(S) = pand P(F) = g = 1 — p. Then, the binomial distribution calculates
the probability of k successes among the n trials, as

: . _ n k _n—k
P(k successes in n trials) = k pqr.

Here, we have introduced the notation (}) to mean the number of different

ways that the k successes might be located among the » trials.

» Above, we calculated the probability of 2 heads in 3 coin flips. What is
a success? A failure? What is the number of trials » and the number of
successes k?

Of course, for the binomial formula to be useful, we need a good way to
find a value for (Z) For the 3-coin flip example, thinking of “heads” as a
success, we computed (;) = 3 by listing all the cases. (Alternatively, if we
think of “tails” as a success, the same list shows (?) = 3.) It really is not
feasible to list all the possibilities for large n and k, however. In the exercises,
you will develop the formula

n n!
(k) TR @D

The expression ( k) is called the number of combinations of n objects chosen
k at a time, but is usually read as “n choose k.” We think of it as counting how
many ways we can designate (or choose) k out of the n trials to be the ones
where the successes occur.

Let’s consider an application of the binomial distribution to genetics.
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Example. In mice, an allele A for agouti — or gray-brown, grizzled fur —
is dominant over the allele @, which determines a non-agouti color. If an
Aa x Aa cross produces 4 offspring, what is the probability that exactly 3 of
these have agouti fur?

From the Mendelian model, we know that, for any particular offspring, the
probability of the agouti phenotype is 3/4. Although it is tempting to leap to
the conclusion that this means 3 of the 4 offspring must have agouti fur, that
is in fact incorrect.

We will first compute the probability that 3 of the 4 progeny have agouti
fur without using the binomial distribution, working from the basic laws of
probability instead. If we let A represent an agouti offspring and N non-
agouti, then there are four ways in which exactly 3 of the 4 offspring could
have agouti fur: in order of birth, the offspring might be NAAA, ANAA,
AANA,or AAAN. Thus, we can use the multiplication and addition rules of
probability to find

‘P(exactly 3 of 4 offspring has agouti fur)

= P(NAAA) + P(ANAA) + P(AANA) + P(AAAN)
1333 3133 3313 3331

Now let’s redo the computation using the binomial distribution. We’1l call
having agouti fur a success, so p = 3/4, ¢ = 1/4. Then,

4\ /3’ /1
‘P(exactly 3 of 4 offspring has agouti fur) = < ) <> ()

3)\4) \4
41 (27
= (=) = .421875.
3111\ 256

» If you decide to call having non-agouti fur a success, that changes the
details of the work in this computation, but not the answer. How do the
details change?

Notice that even though each offspring of the Aa x Aa cross hasa3/4 =
.75 chance of having the agouti phenotype, the probability that exactly 3 of 4
offspring have the phenotype is considerably lower, at around .42.

» Why is this statement not contradictory?
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Since Mendel’s studies focused on diallelic genes, that is, genes with
exactly two alleles, the binomial distribution very naturally fits this setting.
Of course, many genes have more than two alleles. Nonetheless, by grouping
alleles into two categories — healthy and diseased, or dominant and recessive —
the binomial distribution can often be used to make genetic predictions even
when more alleles exist. For instance, in the agouti fur example, the symbol a
actually represents a number of different alleles, each associated with different
fur colorings and patterns, but all recessive to agouti. Because we are only
concerned with the agouti phenotype, we can lump all others together in our
analysis.

Example. What is the probability that exactly 4 of 10 mice from an Aa x Aa
cross have agouti fur?

We’ll use the same setup as before, only this time we are interested in deter-
mining the probability of k = 4 successes (agoutis) in n = 10 trials (births).
This probability is

P agouti in 10 births) = [ ) (3} (LY’
agouti in 10 births) = (" | { 7 2
_ (i> (5) <1> ~ 01622.
a6 ) \a) \a

We can use the binomial distribution together with the addition rule to
solve even more difficult problems.

Example. What is the probability that more than half of six progeny of a
Aa x Aa cross have the agouti phenotype?

Continuing to think of an offspring with agouti fur as a success, we need
to calculate P(at least 4 successes in 6 trials). But this is the same as

P (4 successesin 6 trials) + P(5 successes in 6 trials)

6 6 il — (0) (3 e
+ P(6 successes in 6 trials) = 4 (Z) (Z)

6\ (3\ 1\, [6) (3\°/1\°
+<5> G) G) +(6> (3) (5) =~s0s

Thus, it is quite likely that more than half of the six offspring have agouti fur.

Let’s return to considering the number of agouti mice in a cross producing
four progeny. Similar computations to those above give the probabilities that
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Table 6.5. Probabilities of Exactly i Agouti Mice Among Four
Progeny of Aa x Aa Cross

i 0 1 2 3 4
P@) .00390625 .046875 2109375 421875 31640625

exactly 0, 1, 2, 3, or 4 of the 4 progeny have agouti fur, as shown in Table 6.5.
Of course, the entries in this table add to 1.

While Table 6.5 tells us the probability of any outcome of this four-progeny
mouse cross, a useful summary of the table is the expected value of the
number of agouti mice progeny. Informally, the expected value tells us how
many agouti progeny we might expect when four offspring are produced. You
should think of the expected value as an average of the outcomes, with each
outcome weighted by the probability it occurs. To be more precise,

Definition. For any probability distribution describing a random variable
with a finite number of possible outcome values i, the expected value is

defined as
E = Z i-PG3).

outcomes i

Because it is an average weighted by probabilities, the expected value of
a random variable might not be an integer, even if the random variable can
have only integer outcomes.

For the example described by Table 6.5, we find

E =0-.00390625 + 1 - .046875 42 - .2109375 4 3 - .421875
+4..31640625 = 3.

Thus, in this example, the expected value seems to be capturing our naive
belief that 3 of the 4 mice should have agouti fur, since the probability that
any particular mouse does is 3/4.

As you will see in the exercises, whenever a random variable with a bino-
mial distribution is used, something similar happens. More specifically, the
expected value for the number of successes in 7 trials, assuming the proba-
bility of any one success is p, is

E =np.

This should seem reasonable, because it simply states that if for each trial
the fraction of times you get a success is p, then of n trials, you expect np
successes.
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» What is the expected number of agouti offspring in 10 births?

Expected values for two random variables have a nice additive property.
Suppose for the mouse cross above, we consider the random variables

X1 = the no. of agouti mice in a litter of 4,

X, = the no. of agouti mice in a litter of 5.

Then X| 4+ X, = the no. of agouti mice in a litter of 9, since we can think of
the first 4 births and the last 5 births as two separate groups. In this case, it is
easy to check that

E(X) + X3) = E(X)) + E(X2), (6.2)

because the left-hand side is 9(3/4), and the right-hand side is 4(3/4) +
5(3/4). In fact, Eq. (6.2) holds for any two random variables, as you will see
in the exercises.

The x? distribution. Although the binomial distribution is useful in com-
puting the probabilities of certain types of outcomes in repeated trials, many
other probability distributions arise in biology. A particular useful distribution
for genetics is the x? distribution. Rather then predicting the likelihood of
certain outcomes, the main use of the X2 distribution is to determine whether
the outcome of an experiment fits a particular probabilistic model.

For instance, the Mendelian model predicts that all the phenotypic ratios
in Table 6.2 should be 3:1. However, none of them were exactly 3:1, even
though they were close. With Mendel’s data the results are so close to 3:1 that
few would doubt the model applies, but what if they had been further from
that ratio? How far could they deviate before we might doubt the model?

In designing an experiment, a scientist ideally has a hypothesis to test. For
Mendel’s experiment, this might be: The principal of segregation, that parents
pass on each of their alleles to progeny separately and with equal likelihood,
holds. This hypothesis implies that a cross between F) hybrids should yield
a phenotypic ratio of approximately 3:1. The larger the number of offspring,
the closer we expect the experimental ratio to match the theoretical 3:1.

If data collected from the experiment is in line with the expected results,
then evidence has been gathered in support of the hypothesis. If the data
deviates a great deal from the expected values, then a scientist must reconsider
the validity of the hypothesis; perhaps the hypothesis was wrong, or perhaps
the experiment was poorly designed. An important issue for the researcher,
then, is how to decide whether the data fits the hypothesis.
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Table 6.6. Progeny of Gg x Gg

Phenotype Observed No.  Expected No.

Yellow seeds 231 245.25
Green seeds 96 81.75
TOTAL 327 327

The x-statistic is one way to measure goodness of fit of data to the hypoth-
esis in an experiment. From the data and hypothesis, we compute a certain
number according to a formula given below and denote it by x2. If this
x2-statistic is large, the fit is poor. If it is small, the fit is good. An under-
standing of the probability distribution for this particular random variable —
the y2-distribution — will allow us to decide how large x> must be for us to
consider it unlikely that the hypothesis is correct.

To illustrate how the x 2-statistic is used, let’s apply it to one of Mendel’s
experiments, to test the hypothesis that the principal of segregation applies
to seed color. (This was one of Mendel’s hypotheses, though he did not
phrase it this way.) In the laboratory, we cross hybrids Gg x Gg and ob-
tain 327 progeny. Under our hypothesis, we expect that 3/4 of these,
(.75)(327) = 245.25, will be phenotypically dominant with yellow seeds,
and the remainder, (.25)(327) = 81.75, will have green seeds. The experiment
turns out to produce data that is a bit off from that, as shown in Table 6.6.

The x2-statistic is defined as

X2 = zn: (0; ;Ei)z.
i=1 i
Here, O; and E; denote the observed and expected frequencies, that is, the
observed and expected numbers as in Table 6.6. Each expression (O; — E;)
measures deviation of an observation from what we expect, and because this
expression is squared, any chance of positive terms canceling with negative
ones is eliminated. Dividing each term by E; gives us a sense of how large
the deviation is relative to the expected number. Summing gives us a measure
of total deviation.
In this experiment, we have n = 2 classes and find

(0; — E;))> (231 —245.25)> (96 — 81.75)?
X2 = Z =

~ 3.312.
E; 245.25 81.75

i=1

If X2 were smaller, we would know the data fit the hypothesis better, and if
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it were larger, the fit would be worse. We still don’t know whether 3.312 is
small enough to consider the fit to be good.

Before proceeding, there is one other issue we must understand about x -
statistics. Because x2 involves adding up a number of positive terms, we
would expect its value to be larger whenever there are more terms. This is
captured in the idea of a parameter called the degrees of freedom. Counting
the degrees of freedom can be quite difficult, but a rule of thumb is that there
is one degree of freedom for each class whose size can vary freely. In this
example, if we imagine the size of the first class (the yellow seed phenotype)
varies freely (it could be any number from 0 to 327), then the size of the second
class (the green seed phenotype) is obtained by subtracting the first from the
total 327. This means we have one degree of freedom. More generally, if we
had n classes in a test, then the first n — 1 of them could range freely, but the
last is constrained. This corresponds to n — 1 degrees of freedom. The more
degrees of freedom in a test, the larger you might find the x-statistic to be,
because it requires summing more positive numbers. To judge the size of a
particular X2—statistic, we must take this into account.

With the degrees of freedom specified, statisticians have studied the x?
distribution. Although a formula for the distribution is too complicated to
give here, information from it is incorporated in tables and in software. This
makes it possible to compute, for a specified number of degrees of freedom,
the probability that the x2-value lies in any specified range, assuming the
hypothesis holds.

Keep in mind that, even when the hypothesis is true, every time we do an
experiment, we will get different data and a different y 2-statistic describing
the fit. Most of these will be small, but some will be large because of chance.
We would like our goodness-of-fit test to be flexible enough to accommodate
this variation. So, to decide whether we consider our value of x2 to be too
large for the data to fit the hypothesis, we pick a significance level, for instance
a = .05. This means we decide to view x? as too large if the probability of
getting a lower value is at least | — o = 95% when the hypothesis is true.

If we consult a table, such as the abbreviated Table 6.7 at the end of this
section, we find that the critical value for a x2-statistic with one degree of
freedom at the .05 level of significance is x2;;. = 3-841. This means that,
assuming the hypothesis is correct, only 5% of the time would we calculate a
value of x2 that was 3.841 or larger. Thus, if our statistic is larger than 3.841,
we say the data do not support our hypothesis at the .05 level of significance.
However, if our statistic is less than 3.841, we find that the data do support
the hypothesis at the .05 level of significance.
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Since for Mendel’s experiment, x? = 3.312 < 3.841 = x2....;, the value
of x2 is not too large, and the experiment supports the hypothesis that the
alleles for seed color segregate.

If, instead, our statistic had turned out to be larger than x 2, ., leading us to
reject the hypothesis at the .05 level, a number of things could be responsible.
It could be that the hypothesis was wrong (exactly what y 2-statistics are trying
to test), or it could be that our hypothesis is correct and we just happened to
obtain extreme data through randomness.

In fact, even when the hypothesis is actually correct, this second case will
happen 5% of the time. If we breed pea plants that are perfectly described by
the Mendelian model again and again, as in this experiment, and calculate x 2
statistics for each of these trials, then about 5% of the time we would expect
to see x2-values larger than x2,...,. A x? test is not capable of definitively
telling us whether the hypothesis is true or not.

» Sometimes critical values corresponding to a level of .01 or .1 are used.
Which of these makes it more likely that you will doubt the hypothesis
you are testing? Which level insists on a closer fit of the data to the
expected frequencies?

A significance level of .01 means that we only consider a x>2-value to
show a poor fit if it is larger than what would occur 99% of the time when
the hypothesis is true. That means we are less likely to reject the hypothesis
erroneously. On the other hand, the significance level .1 insists on a closer
fit for us to feel the data supports the hypothesis. With « = .1, we are more
likely to reject the hypothesis erroneously.

As you can probably imagine, we are just at the tip of the iceberg in
discussing y2-statistics. There is much more to learn about them as they are
used ubiquitously in the scientific world. You will get some practice in the
exercises, but a course in statistics is really necessary to delve deeper.

Table 6.7. x2..a Values at Significance Level o

d.f. a=.10 a=.05 a=.01
1 2.70554 3.84146 6.63490
2 4.60517 5.99147 9.21034
3 6.25139 7.81473 11.3449
4 7.77944 9.48773 13.2767
5 9.23635 11.0705 15.2767

Note: d.f. denotes degrees of freedom.
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Problems

6.2.1.

6.2.2.

6.2.3.
6.2.4.

6.2.5.

6.2.6.

6.2.7.

List all the ways that you might have exactly 3 heads among 5 coin
flips. Then compute (g) by Eq. (6.1) to verify that it gives the correct
count.

In the text, the binomial distribution is used to find the probability
of exactly 1 of 3 coin flips producing tails. Find the probabilities of
exactly none, exactly two, and exactly three tails in this situation.
What is the sum of these four probabilities?

Verify the entries in Table 6.5.

Use a calculator or computer to find (lko) foreach k =0,1,2, ...,
10. A MATLAB command to do this type of calculation is
nchoosek (10,0).

a. For which k is (1k0) smallest? For these particular values of k,
explain why it has the value it does by thinking in terms of choosing
objects.

b. For which k is (]ko) largest? Is this intuitively reasonable? Explain.

c. What patterns do you notice in your calculations? Do the patterns
hold if 10 is replaced by other numbers?

Explain the following results not by referring to formula (6.1), but in
terms of choosing objects.

a. (}) =nand (") = n forany n.

b. (3) =l and (") = 1 for any n.

Suppose a family has six children.

a. What is the probability that four are boys and two are girls?

b. Give the probability distribution (i.e., the seven probabilities) that
the family has 0, 1, . .. , or 6 boys. How would your answer change
if you were to list the probability distribution for the number of
girls in the family?

c. What is the expected number of boys in the family?

d. What is the probability that the family has four or more girls?

In the text, the binomial distribution is used to find the probability
that exactly 3 of 4 offspring have agouti fur from a cross of mice
heterozygous for agouti fur.

a. Find the probabilities that exactly 30 of 40 offspring of this cross
have agouti fur. Then, find the probability that exactly 300 of 400
offspring have agouti fur.

b. Can these results be consistent with the fact that, in a large number
of such offspring, we would expect 3/4 of them to have agouti fur?
Explain.

https://doi.org/10.1017/CBO9780511790911.008 Published online by Cambridge University Press


https://doi.org/10.1017/CBO9780511790911.008

6.2. Probability Distributions in Genetics 239

6.2.8. If you roll a fair die once, what is the expected value of the
outcome?

6.2.9. Suppose you roll two fair dice and add the results.

a. Calculate the expected value of the outcome by first finding the
probabilities of each of the outcomes 2, 3,4, ..., 12, and then
computing a weighted average of the outcomes.

b. Let X; and X, be random variables denoting the outcome of the
roll of the first and second die, respectively. Find E(X), E(X>),
and E(X| + X>).

6.2.10. When using the binomial distribution in applications, it does not mat-
ter which of the two trial outcomes you consider a success. Use the
binomial distribution to calculate the probability of 10 rolls of a die
producing three sixes as follows.

a. Ifyoucall “producing a six” a success, what should p, ¢, n, and k be
in the binomial formula for this probability? What is the resulting
probability?

b. If you call “not producing a six” a success, what should p, g, n,
and k be in the binomial formula for this probability? What is the
resulting probability?

6.2.11. Part of the reason the formula for the binomial distribution gave the
same result in both parts of the last problem was because () = (,,",)-
a. Explain in intuitive terms, in terms of choosing k or n — k objects
from n objects, why this formula should hold.
b. Explain why the mathematical formula (6.1) shows this formula
holds.

6.2.12. One form of albinism (lack of pigment) in humans is caused by areces-
sive allele a. Suppose an homozygous albino marries a heterozygote,
and the couple has two children.

a. What is the probability their first child will be an albino?

b. What is the probability their first child will be an albino and their
second child will have normal skin pigment?

c. What is the probability exactly one of their two children will be an
albino?

d. What is the probability at least one of their two children will be an
albino?

e. What is the expected number of their children that will be albino?

6.2.13. Mice homozygous for a recessive allele, f, are fat. Suppose a dihy-
brid cross, AaF f x AaFf,is carried out by experimenters. Here, A
denotes the agouti allele.
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6.2.14.

6.2.15.

6.2.16.

6.2.17.

6.2.18.

Genetics

a. How many of 25 progeny are expected to be fat with agouti fur?

b. What is the probability that exactly 4 of 25 progeny will be fat
with agouti fur?

c. What is the probability that, at most, 4 of the 25 progeny will be
fat with agouti fur?

d. What is the probability that at least 4 of the 25 progeny will be fat
with agouti fur?

In a certain population of rats, the probability of an individual surviv-
ing through its first year is .5. For the rats who make it to age one, the
probability of surviving a second year is .25, and for those who make
it to age two, the probability of surviving a third year is also .25. All
rats die before the end of their fourth year.

a. What is the probability that the age (in years, rounded down) at

death of aratis 0?7 1? 2? 3?7 Why should these add to 1?
b. What is the expected age at death of one of these rats?

The yellow-lethal allele is dominant for yellow fur color, but lethal to

homozygous embryos. Suppose two mice, both heterozygous for the

yellow-lethal mutation, are crossed and produce 12 viable progeny.

a. What is the probability that exactly five of them will have normal
coloring?

b. What is probability that 10 or more of the progeny will be yellow?

c. What is the probability that at most three of the progeny will be
yellow?

In humans, the hereditary Huntington disease is caused by a dominant

mutation. Onset of Huntington disease occurs in midlife, between

35 and 44 years of age typically, and the progressive disorder leads

eventually to death. Suppose, in a married couple, one individual

carries the allele for Huntington disease. They have four children.

a. What is the probability that none of their children will develop
Huntington disease?

b. What is the probability that at least one of their children will de-
velop Huntington disease?

c. What is the probability three or more of their children will develop
Huntingdon disease?

Inatrihybrid cross, AaBbCc x AaBbCc, whatis the probability that
exactly 20 of 30 progeny will display the dominant phenotype for all
three traits? What is the probability that at least two of the progeny
will display the dominant phenotype for at least one of the traits?

The goal of this problem is to derive formula (6.1) for counting com-
binations. Formally, a combination of n things taken k at a time is
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an unordered k element subset of a set of n elements. However, it’s

better to think of it more concretely, as follows. Imagine a box of n

balls with the numbers 1,2, 3, ..., n printed on them. You pick out

k of these balls and first place them in a row, in the order you picked

them. Then, since you don’t care about the order, you dump them in

a bag. That’s a combination. The number of different bags of balls

you might end up with is (7).

a. When you pick the first ball out of the box, how many different
choices could you make for it? When you pick the second ball,
why are there only n — 1 choices for it? For the /th ball, why are
there n — I 4- 1 choices?

b. Why does part (a) indicate that, when the k balls are all in a
row, therearen(n — 1)(n — 2) - - - (n — k + 1) possible choices you
might have made? (The count of these ordered choices is some-
times called a permutation.)

c. Several different ordered choices might lead to the same collection
of balls in the bag, so the answer in part (b) is bigger than the
number of combinations. To see how much bigger, it’s easiest to
imagine having the balls in the bag, and (going backward in time)
putting them back in some order in a row. Using reasoning similar
to parts (a) and (b), explain why there are k(k —1)---2-1 = k!
choices of ways this could be done.

d. Using parts (b) and (c), conclude (}) = ”(”71)(”7,%?"'(”7“1).

e. Explain why this formula can also be written as formula (6.1).

6.2.19. The binomial distribution received its name because of a relationship
to the expression (x 4 y)", a power of a binomial. In fact, the numbers
(1) are often called the binomial coefficients, because they give the
coefficients in the expansion of (x + y)". That is,

n n n n n—1 n n
x+y)= x'+ Xy 4+ v (6.3)
0 1 n

a. Check this for n = 2, 3, and 4, using Eq. (6.1).

b. By thinking of (x + y)" as a product of n copies of (x + y), explain
why this product will produce a term x*y"~* for each way we
can choose k of the copies. Explain why this justifies formula
(6.3).

c. Whatisthesum 3°7_ (7)2, 351, (})? Give aformulafor 30 (7).

6.2.20. Suppose a trial has probability of success p, so the number of suc-
cesses in n trials is described by the binomial distribution. Show the
expected value for the number of successes in n trials is E = np as
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follows:

a. Express the expected value as a sum involving factorials and pow-
ers of p and q.

b. Show

I Lt MU SC)
(n —i)i! (n =G - 1!

c. Use part (b) to factor pn from your expression in part (a). Then
use Eq. (6.3) to complete the problem.

6.2.21. The goal of this problem is to show that expected values of random
variables are additive, as claimed in Eq. (6.2). Only a special case
will be considered, where X; and X, are two independent random
variables that, for simplicity, can take on only integer values between
land N.

a. Explain why the expected value of X; + X, is

N N
EXi+X2) =) Y (i + )PXi =)P(Xz = ).

i=1 j=1
b. Through algebra, show this can be written as

N

N N N
SiPX1=0)Y PXa=j)+ D jP(Xa= )Y P(Xy =1i).
j=1 j=1 i=1

i=1

c. Whatare - | P(X; = i) and ., P(X; = i)? Use this to con-
clude Eq. (6.2) holds.

6.2.22. Suppose an Aa x Aa cross produces 1,000 progeny, N with the dom-
inant phenotype, and 1,000 — N with the recessive phenotype.

a. For N = 700, compute the x >-statistic to test whether this data fits
the Mendelian model. Using a significance level of o = .05, is the
data in accord with the model?

b. Repeat part (a) with N = 725.

c. What is the smallest value of N that would be judged in accord
with the model (at the ¢ = .05 level)? The largest value of N?

6.2.23. Explain informally why in Table 6.7, the entries get larger as you
move across the rows. Explain informally why they get larger as you
move down the columns.

6.2.24. The data in Table 6.8 is from Mendel’s experiments with genes for
seed shape and color resulting from WwGg x WwGg crosses (W =
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Table 6.8. Progeny of
WwGg x WwGg

Phenotype Observed No.
Round, yellow 315
Round, green 108
Wrinkled, yellow 101
Wrinkled, green 32

round; w = wrinkled; G = yellow; g = green). Use x2 to test if the
genes for seed color and shape assort independently in pea plants.
Because there are four phenotypes, there are 4 — 1 = 3 degrees of
freedom.

6.2.25. The critical value of a x2-statistic comes from a theoretical x? dis-
tribution with appropriate number of degrees of freedom. Figure 6.2
shows a graph of a typical x? distribution.

In such a graph, the values of x? are along the horizontal axis, and
probabilities of x2 falling in any interval are represented by the area
above that interval and below the curve. The total area between the
curve and the horizontal axis is 1 unit and corresponds to 100% or
a probability of 1. The critical value x2;;., at significance level « is
the value on the horizontal axis that leaves an area of « to the right.
In Figure 6.2, this area is shaded for « = .05.

a. Suppose you are performing a x>-test and choose a significance
level of .01 (or 1%). Where, approximately, would the critical value
fall on the horizontal axis in Figure 6.2?

b. Notice that the bulk of the area under the curve is just a bit to the
right of the vertical axis and there is very little area under the right

5%

xcritical

Figure 6.2. x2-Distribution.
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tail of the curve. If your data is well explained by your experimental
hypothesis, where do you expect your calculated y2-statistic to
fall? How is the shape of this curve related to the goodness-of-fit
test?

6.3. Linkage

After receiving little attention for more than 30 years, Mendel’s theory of
inheritance eventually became well-accepted through the efforts of the British
geneticist William Bateson and others. Since Mendel only hypothesized the
existence of genes, it was necessary to find the physical basis of these units
of inheritance. Around the turn of the century, biologists suspected strongly
that genes resided on chromosomes, large thread-like structures that could be
stained and viewed under a microscope during cell division. Evidence for this
was given by the American geneticist Thomas Hunt Morgan in 1910 and his
coworkers. Morgan’s group worked with fruit flies, Drosophila melanogaster,
a favorite of geneticists, since they reproduce quickly and in great abundance
and have some readily observable traits with simple variants.

Sex-linked genes. Let’s consider one of Morgan’s experiments to see how
his laboratory was able to discover the important role played by chromosomes
in inheritance. After 2 years of breeding Drosophila, a mutant male fruit fly
with white eyes was born. (Normal, or wildtype, eye color is red.) This white-
eyed male was crossed with wildtype red-eyed females, and the resulting
F, generation had all red eyes, indicating that the new mutant allele was
recessive. Then, the F; generation was interbred to produce F5.

» Assuming Mendel’s model applies, what fraction of the F, population
should have white eyes?

The basic model predicts that, regardless of sex, 1/4 of F, would be ho-
mozygous recessive, and hence have white eyes. However, when the F| gen-
eration were intercrossed, the F, were observed with phenotypes as given in
the middle column of Table 6.9. In a striking departure from the expected
values, there is a total absence of any white-eyed females. Also, roughly half
of the males had white eyes, rather than the predicted 1/4. While roughly
1/4 of all progeny had white eyes, they are not distributed equally among the
sexes. This is strong evidence for a connection between the determination of
sex and the behavior of the eye color gene.

In a second experiment in Morgan’s laboratory in which a female from
F) was crossed with the mutant male, phenotypes of (very) roughly equal
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Table 6.9. Progeny of Two Crosses

Phenotype F, x F;, F;x mutant
Red-eyed, female 2459 129
White-eyed, female 0 88
Red-eyed, male 1011 132
White-eyed, male 782 86
TOTAL 4252 435

frequency occurred, as shown in the last column of Table 6.9. However, this
data is not in contradiction with Mendelian genetics, since a Ww x ww cross
would produce equal numbers of each phenotype, regardless of sex.

The first experiment points out the need for a new model consistent with its
outcome. However, any new model must be capable of predicting the outcome
of the second as well.

At about the same time that Morgan concluded from these experiments that
the inheritance of eye color must somehow be related to the determination
of sex, he also noticed a relationship between sex and chromosomes under
microscopic inspection of the flies’ cells. Although all chromosomes came in
matching pairs in female Drosophila, male Drosophila had one nonidentical
pair of chromosomes. Moreover, one of the chromosomes from the noniden-
tical pair in males was morphologically identical to a pair in females. Morgan
suspected that this set of chromosomes, the sex chromosomes, must control
sex determination in fruit flies and that a gene for eye color must lie on this
chromosome pair.

Morgan proposed a model for this sex-linked gene behavior that used chro-
mosomes to explain the observations from experimental data. We denote the
identical sex chromosomes in females by X X, and the corresponding differ-
ing chromosomes in males by XY. In addition, we’ll use w to denote the
white-eye allele, and w™ the wildtype red-eye allele. (Such notation is com-
mon for the wildtype alleles of any gene.) Hypothesizing that the eye-color
gene lies on the X chromosome only, we let X" denote a sex chromosome
carrying the white-eye allele, and X one carrying the wildtype allele.

In Morgan’s initial experiment, the females were genotype X ™ X ™ and the
mutant male X"Y. Now, assuming segregation of chromosomes in gamete
formation, in the F| generation we expect equal numbers of the genotypes
X*tX" and X*Y. We continue to view the white-eyed mutation as recessive,
so each female will have red eyes due to the Xt X" genotype. Similarly,
each of the F; males carries only a wildtype allele X* so they also have red
eyes. The presence of the gene for eye-color on the X chromosome, with no

https://doi.org/10.1017/CBO9780511790911.008 Published online by Cambridge University Press


https://doi.org/10.1017/CBO9780511790911.008

246 Genetics

Table 6.10. Punnett Square for

XtTXY x X¥Y
X+ X
Xv X+xu' Xvxw
Y Xty Xy

corresponding gene on the ¥ chromosome is consistent with Morgan’s data
on the phenotypic make-up of Fj.

We will leave analysis of the experiment leading to the data in the middle
column of Table 6.9 to the exercises and instead consider Morgan’s second
experiment. When F| females were crossed with the mutant male, Morgan was
crossing heterozygous females X+ X" with hemizygous males X*Y. Again,
assuming segregation of chromosomes, the results of this cross are shown in
the Punnett square of Table 6.10.

Now, each genotype in the table is equally likely for progeny, and each
genotype gives a different phenotype. In the top row, the phenotypes are red-
eyed female and white-eyed female; in the bottom row, they are red-eyed
male and white-eyed male. This corresponds roughly with the approximately
equal numbers in the last column of Table 6.9. (In the exercises, you are
asked to perform a y>-test to test more rigorously if the hypothesis of X-
linked inheritance of eye color meshes well with this data.)

Because males and females have a different number of X chromosomes,
X-linked traits are often manifested in different proportions in the two sexes.
For a female Drosophila to have white eyes, she must be homozygous for
the mutant allele, X* X", receiving a (possibly rare) mutant allele from each
parent. However, for a male to have white eyes, he needs only one mutant
allele so that his genotype is X"Y. As a consequence, recessive X-linked
traits are more likely to appear in males. In humans, certain types of color
blindness, hemophilia, and mental retardation from fragile X syndrome are
X-linked traits that are found almost exclusively in males.

Linked genes and genetic mapping. While sex-linked genes required a
modification of the Mendelian model, other experiments from Morgan’s labo-
ratory pointed to additional problems with the idea of independent assortment
of genes. Even when sex determination was not involved, numerous examples
were found of data inconsistent with that assumption.

One such example concerns two genes in Drosophila. One gene affects
wing shape, with the dominant allele causing straight wings and the recessive
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Table 6.11. Progeny of Cross

Phenotype No.

Straight wings, red eyes 520
Straight wings, purple eyes 133
Curved wings, red eyes 129
Curved wings, purple eyes 467
TOTAL 1,249

causing curved wings. The second gene affects eye color, with the dominant
allele causing red eyes and the recessive causing purple eyes. Crossing a ho-
mozygote recessive for both genes (with curved-wing, purple-eye phenotype),
with a heterozygote for both genes (with straight-wing, red-eye phenotype),
produces data like that in Table 6.11.

» If the two genes assort independently, what is the expected phenotypic
ratio? Is the data in line with that?

Although the basic Mendelian model, with independent assortment of the
two genes, would have predicted that all four phenotypes were equally likely,
the data show clear deviation from this. The inheritance of the two genes
seems to be linked, in that there is a definite tendency for the progeny to have
a phenotype similar to one or the other of the parents.

This linkage comes from the relationship of genes to chromosomes and the
manner in which gametes are formed. The chromosomal theory of heredity
revised and improved the Mendelian model by taking into account the physical
location of genes on chromosomes and modeling such linkage.

Most cells in diploid organisms contain a set of pairs of chromosomes,
with one chromosome in a pair inherited from each parent. Chromosomes
are divided into two types: autosomes (nonsex chromosomes) and sex chro-
mosomes. Chromosome number varies greatly between species and seems in
no way to reflect developmental complexity; humans have 46 chromosomes,
Drosophila 8, and cats 72.

According to the chromosomal theory of heredity, gametes are formed
by the segregation of chromosomes into reproductive cells, rather than the
simpler segregation of genes that Mendel imagined. Genes reside on chromo-
somes, arranged in a linear fashion. Somatic cells, or body cells, are diploid
in that they contain the full count of 2n chromosomes in a species. Gamete
cells have only half the number of chromosomes, 7, and are called haploid.
At fertilization, two gametes (e.g., an egg and sperm) are united to form a
zygote, from which a new diploid offspring develops.
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Figure 6.3. Tetrad before crossing over; four chromatids are visible.

When gametes are formed, they do not simply receive a copy of one of the
chromosomes in each pair. Instead, a complicated and not completely under-
stood process of crossing over provides a source of genetic recombination.
The chromosome passed along to the gamete is not an identical copy of either
one of the parental chromosomes, but instead an amalgam of the parental
chromosome pair, with some genes from each.

» If no crossing over occurred, how would the principle of independent
assortment of genes need to be modified? If two genes were on different
chromosomes, would they assort independently? What if they were on
the same chromosome?

Let’s look more closely at how crossing over works. In the process of ga-
mete formation, chromosomes replicate forming identical chromatids joined
at a centromere. Next, matching chromosomes gather together and form ho-
mologous pairs. This arrangement, known as a tetrad, can be seen in Figure
6.3.

In crossing over, two chromatids in the tetrad exchange genetic material.
If the chromatids belong to different chromosomes, then this might result in
an exchange of alleles. For example, suppose the solid chromosome in Figure
6.3 was inherited from the mother and contains dominant alleles for two
genes AB, and that the dashed chromosome, inherited from the father, has
recessive alleles for these genes, ab. (Note that the individual in this example
is heterozygous for these two genes, AaBb.)

During crossing over, two chromatids swap DNA as shown in Figure 6.4.
Since nonidentical chromatids are involved in crossing over, they exchange
alleles B and b for the second gene. The parental types A B and ab occur in the
tetrad before crossing over, but after crossing over four genotypes are repre-
sented: AB, Ab, aB, and ab. The two new genotypes, Ab and a B, the results
of crossing over, are recombinants. In the final steps of gamete formation, the
four chromatids separate, with each one going into a different gamete.

Because it is so important biologically, we point out again that only two of
these gametes are identical to a parental chromosome; the two recombinant
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Figure 6.4. Tetrad during (L) and after (R) crossing over.

gametes, if they ultimately unite with other gametes and develop into full
organisms, will introduce new genetic combinations into the population. In
fact, more than one crossover can occur between homologous chromosomes,
so tremendous possibilities for genetic variation are introduced. New variation
is of course the raw material for evolution, since recombinants may be better
adapted for survival and reproduction.

From a modeling point of view, the behavior of genes on a chromosome dur-
ing gamete formation can now be captured by the probability of a crossover
occurring between them. If this probability is low, then alleles for the two
genes will tend to be inherited together, and parental types will dominate in the
progeny. If this probability is high, then recombinants will be more common
in the progeny. A probability of .5 for a crossover, so that the genes essentially
behave as if on different chromosomes, would result in independent assort-
ment. Any divergence from independent assortment is known as linkage.

Alfred Sturtevant, who at the time was an undergraduate student working
in Morgan’s laboratory, realized that the observed frequencies of crossovers
could be used to create a genetic map. If we imagine that a chromosome
is a long string with genes ordered along it, then it seems natural to expect
that, for any little piece of the chromosome, there is some specific probability
of a crossover occurring there. Sturtevant’s idea was that this probabilistic
behavior could be used to give an abstract notion of genetic distance, and
then from that distance a map could be constructed. Specifically, he defined
the genetic distance between two genes on a chromosome as the average
number of crossovers that were observed between them during formation of
many gametes. If between two genes crossovers are rare, the distance between
them is small; if many crossovers typically occur, the distance is large.

Notice that genetic distance is statistical in nature. More precisely, for any
stretch of a chromosome, there is a random variable giving the number of
crossovers that occur on that piece in gamete formation. Its probability distri-
bution describes the chance of 0, 1, 2, .. ., crossovers occurring in that piece.
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The expected value of this random variable (or more simply, the expected
number of crossovers) is what Sturtevant’s average was estimating. Because
expected values are additive by Eq. (6.2), they will behave just like distances
on a map. We formalize these ideas with a definition.

Definition. The genetic distance or linkage distance between two genes on
a chromosome is the expected number of crossovers that occur between the
genes in gamete formation.

Because the expected value is an average number of crossovers, theoreti-
cally a genetic distance could take on any value from O upward. For physically
close genes, genetic distances will tend to be small, since crossovers are less
likely to occur, whereas for physically distant genes, distances will tend to be
larger. The type of map we will construct from crossover data is called a link-
age or genetic map. This map will show the linear arrangement of the genes on
a chromosome, with genetic rather than physical distances separating genes.

Let’s see how a two-point testcross can place two genes on a linkage
map. Suppose we suspect that, in Drosophila, the genes for curved wings
c and purple eyes pr are linked. For genotypes of linked genes, we use a
special notation to keep track of which alleles are on which chromosome
in a given pair. For instance, we write ¢ pr/c pr for a homozygous recessive
Drosophila, where the slash separates alleles inherited from different parents.
There are now several different ways a fly could be heterozygous at both genes;
cpr/ctprt and ¢t pr/c prt are different configurations.

As a first step in genetic mapping, we cross true-breeding, curved-wing,
purple-eyed Drosophila with true-breeding wildtype flies: ¢ pr/c pr x
ctprt/ctprt. Notice that all the progeny in F; are genotypically
¢t prt/c pr and phenotypically wildtype, since curved wings and purple
eyes are recessive traits.

Next, we cross F flies with curved-winged, purple-eyed flies to produce
F,. This testcross is ¢* prt/c pr x ¢ pr/c pr, and we suppose that the data
in Table 6.11 came from such an experiment. As we noticed before, there
is a discrepancy between the data and the numbers predicted by Mendelian
genetics. Moreover, because there are two large phenotypic classes that re-
semble the parents —red-eyed with straight wings and purple-eyed with curved
wings, and two smaller nonparental phenotypic classes — there is evidence
for linkage.

» What are the possible genotypes of the F;, progeny in this second cross?
Which of these are parental types and which are recombinants?
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Notice how this testcross was designed to test for linkage and crossing over.
In the doubly recessive homozygous parent, crossing over may occur between
identical chromatids, but it has no effect on the genotype of the gamete. Such
Drosophila only create ¢ pr gametes. In contrast, the parental-type gametes
from the heterozygous parent are crt prt and ¢ pr, and crossing over results
in recombinants ¢* pr and ¢ pr* that will be phenotypically detectable in

progeny.

» Why are the recombinants ¢* pr and ¢ pr™ phenotypically observable
in this cross?

Now we can estimate the average number of crossovers that occurred. Be-
cause the recombinants ¢ pr and ¢ pr result from a crossover, each straight-
winged, purple-eyed Drosophila, c* pr/c pr, and each curvy-winged, red-
eyed fruit fly, ¢ pr*/c pr, is the result of a crossover. In the testcross above,
we suspect that 133 4 129 = 262 crossovers took place.

Now, assuming all recombinants were created by a single crossover, the
recombination frequency (no. of recombinants)/(total no. of progeny) is ex-
actly the same as the average number of crossovers. Thus, the genetic distance
is estimated by

no. of recombinants 262 .
= ~~ .21 units =21 cM.
total no. of progeny 1249

Genetic distances are usually measured in centiMorgans (cM) in honor of
Morgan.

In our calculation, we made the assumption that all recombinants were
created by a single crossover. What if two crossovers occurred between the
genes on a chromatid with ¢* prt and one with ¢ pr? Then, the gametes
produced would be of parental type, and our testcross would produce no
evidence of any crossovers (see Figure 6.5). Similarly, if three crossovers
occurred between the genes, that would appear to us exactly as if only 1 had
occurred. Thus, our use of the recombination frequency may understate the
true average. Only if we believe multiple crossovers are very rare between

A B
A B
-\ ———
Y N,
a b

Figure 6.5. A double crossover producing no recombination of genes A and B.
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Table 6.12. Progeny of
gltdtws™/gldws x gld ws/gld ws

Phenotype No.
Normal leaves, tall, normal sheaf 301
Normal leaves, tall, white sheaf 146
Normal leaves, dwarf, normal sheaf 15
Normal leaves, dwarf, white sheaf 1
Glossy leaves, tall, normal sheaf 2
Glossy leaves, tall, white sheaf 17
Glossy leaves, dwarf, normal sheaf 154
Glossy leaves, dwarf, white sheaf 289
TOTAL 925

these genes can we believe our estimate of genetic distance is good. If the
genes are close, and the average number of crossovers is small, then our
estimation is reasonable.

Now that we have seen how testcrosses can be used as evidence for linkage
and for estimating genetic distances, let’s extend the method to locating three
or more genes on a genetic map. Consider three genes in corn plants with
recessive alleles: d for dwarf plants, g/ for glossy leaves, and ws for white
sheafs. In creating a genetic map, we now have to determine the order of the
genes on the chromosome as well as find distances.

To locate the three genes, we make a three-point testcross,
gltd ws™/gld ws x gld ws/gld ws. (Remember: The order in which the
genes are listed is not necessarily the correct order on the chromosome.) Sam-
ple data on phenotypes of progeny from such a cross is shown in Table 6.12.

The most numerous classes are parental types, indicating linkage of genes
on a single chromosome. The remaining classes must be the result of recom-
bination. Before counting the average number of crossovers, notice that we
can now observe evidence of either one or two crossovers. Because we are
mapping three genes, a first crossover could occur between the leftmost gene
and the central gene and a second crossover between the central gene and
the rightmost gene. We will use the terminology single crossover when only
one of these is observed and double crossover when both are observed.

» From Table 6.12, what are the likely phenotypes of double crossovers?
Of single crossovers?

Notice that two of the phenotypic classes are extremely rare and four of the
classes are of intermediate size. Because a double crossover is much less likely
than a single crossover, this identifies the phenotypic classes that correspond
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to double crossovers. Actually, we’ll be able to figure out the gene order too
now, if we examine the genotype of individual chromosomes carefully.

» If the genes are arranged along the chromosome in order g/ d ws, what
gametes would be produced from a double crossover in the heterozygous
parent? What if they were arranged in the order g/ ws d or d gl ws?

In this testcross, crossing over only effects the gametes formed by one of the
parental strains. The parental-type gametes from this line are g/td+ws™ and
gl d ws, with the alleles either all wildtype or all recessive. But the phenotypic
classes of the double crossovers show what the chromosome inherited from
this parent must have been. The class normal leaves/dwarf/white sheaf must
have arisen from gametes g/*d ws, and the class glossy leaves/tall/normal
sheaf from the complementary gl d " ws™.

Because the outcome of a double crossover is to exchange the middle
allele in the parental types, the only way a double crossover could produce
the gametes here is if the genes are ordered as d gl ws or ws gld. The gl
gene must be in the middle. Figure 6.6 illustrates one possible configuration
for a three-strand double crossover in which the recombinant d* gl ws™ is
formed.

Now we are ready to estimate genetic distances. We start by finding the
distance between d and gl. Four phenotypic classes result from crossovers
between d and gl: tall/glossy leaves/white sheaf (d ™ gl ws) and dwarf/normal
leaves/normal sheaf (d glTws™*) from single crossovers, tall/glossy
leaves/normal sheaf (dtglws™) and dwarf/normal leaves/white sheaf
(d gl*ws) from double crossovers. Thus, the recombination frequency

—_——— — S —
_DCd g _ws _ D( 4 g ws _
'

d al ws"®
X d" al ws

T

d gl ws
_>/__d___|____
—_/N_C__9___ws __

Figure 6.6. A three-strand double crossover.
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between d and gl is

17+154+2+1 35 ~ 04
925 95
Because this is small, we estimate the genetic distance as 4 cM.

Similarly, single crossovers between g/ and ws produce phenotypes
dwarf/glossy leaves/normal sheaf (d g/ ws™) and tall/normal leaves/white
sheaf (d*gltws). We include the double crossover phenotypic classes in
our tally, too, because a crossover occurred between the genes in them also.
Thus, the recombination frequency between g/ and ws is

154 + 146 +2 4+ 1 303
+ tot =—=~330r33cM.
925 925

Thus, we estimate the genetic distance as 33 ¢ M, but since 33 is not so small,
we may worry that this estimate is not so accurate.

Note that an estimation of the distance between d and ws requires that we
count all crossovers between the genes, so double crossovers must count as

two:
174+ 15 4+ 154 4+ 146 + 2(2) 4+ 2(1 338
Rl + H2ADF ()z—%.37or37cM.
925 925
In particular, our estimates of genetic distance are additive, since 4 ¢cM +
33cM =37cM.

Finally, we put this together and draw the genetic map of Figure 6.7.

Return for a moment to considering only two genes, a and b. If we sus-
pect that a and b are linked, then we might breed a™b* /a b as Fy, perform a
testcross with a b/a b, and calculate the recombination frequency. This fre-
quency is our estimate of the genetic distance between the genes.

Notice, however, that even if a and b are located on different chromo-
somes, a recombination frequency can still be computed. If we did not realize
they were on different chromosomes, we would count a*b and a b as single
crossovers. However, because the two genes assort independently, the het-
erozygous parental strain produces four types of gametes, atb™, a™h, ab™,
and a b, in equal proportions. Thus, half the offspring in F;, will show recom-
binant genotypes and the recombination frequency will be .5. This means we
would estimate that genes on different chromosomes are 50 ¢ M apart!

d dl ws
| I

I
[4 eMm| 33cM |

Figure 6.7. A three-gene genetic map.
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The error we have made is in assuming
genetic distance ~ recombination frequency,

despite the fact that this approximation is only valid when the recombination
frequency is small. Even for genes on the same chromosome, as recombina-
tion frequencies approach .5, the true genetic distance gets larger and larger.
The approximation assumes multiple crossovers are rare, and that is only
justifiable if the recombination frequency is small.

In genetic mapping, we must map genes that are close together first, and
then build our map out from them. For example, if we want to find the dis-
tances in a chromosome with genes ordered a — b — ¢ — d, it is better to
calculate distances between a and b, b and ¢, ¢ and d, than to try to use
linkage information about only a and d. A reasonable rule of thumb is that re-
combination frequency is a good estimator of genetic distance when it is less
than .25. Genes at a distance of 50 cM or greater will assort approximately
independently, as if they were on different chromosomes.

Performing testcrosses for genetic mapping of humans is of course neither
ethical nor practical. Nonetheless, through pedigree analysis and somatic-cell
hybridization techniques, genetic maps of the longest human chromosome
have been built, with total length about 293 cM.

In addition to genetic maps, there are several other types of maps of chro-
mosomes. A physical map shows markers, which might be genes or other dis-
tinguishable features, along the chromosome. Because crossover frequency
does not correlate well with physical distance, such a map can look quite
different, despite showing the same linear ordering of genes. Sequencing a
chromosome to display the full structure of the DNA in terms of its con-
stituent bases produces the highest resolution map, though genes and other
features must be identified in a sequence to relate it to a genetic or physical
map. Despite rapid advances in sequencing, genetic maps of the sort discussed
here will remain important because of their direct applicability to problems
of inheritance.

Problems

6.3.1. Three of Queen Victoria’s nine children by Albert are known to have
carried the X-linked allele for hemophilia. (Two of her four sons were
hemophiliacs, and one of her five daughters had a hemophiliac son.)
Neither she nor Albert were hemophiliacs.

a. What must have been the genotypes of Victoria and Albert? Explain
how you can rule out all other possibilities.
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b. What was the probability of a son of Victoria and Albert having
hemophilia? Of a daughter having hemophilia? Of a daughter being
heterozygous for the allele?

c. What was the probability that exactly three of Victoria and Albert’s
children would carry the mutant allele?

6.3.2. Using the model Morgan developed for the X-linked, white-eyed
mutant allele, compute the phenotypic ratios you would expect in
the outcome of the experiment described by the data in the middle
column of Table 6.9. Is the model in rough agreement with the data?

6.3.3. In another experiment, Morgan crossed white-eyed females to red-
eyed males.
a. What must the genotypes of these flies be?
b. What genotypes and phenotypes would be in F;? In what propor-
tions?
c. If males from F| were crossed with females from F;, what would
be the resulting genotypes and phenotypes? In what proportion?

6.3.4. Perform a x>2-test with & = .05 to see if the observed data from the
X'X" x X™Y in the last column of Table 6.9 is consistent with ex-
pected numbers from such a cross. (Apparently, Morgan did not per-
form such a test.)

6.3.5. Suppose a rare disease is caused by a recessive X-linked gene, and

phenotypically normal parents have a son who develops this disease.

a. If another son is born into the family, what is the probability he
will develop the disease?

b. If a daughter is born into the family, what is the probability she
will be a heterozygous carrier?

c. If there are two daughters in the family, what is the probability
both will be carriers of the mutant allele?

6.3.6. A man with X-linked color blindness marries a woman with no his-
tory of color blindness in her family. Their daughter then marries a
man with no history of color blindness and has children. What is the
probability that
a. a son in the last generation will be color blind?

b. a daughter in the last generation will be color blind?
c. exactly two of three sons in the last generation will be color blind?

6.3.7. A certain allele is known to be X-linked. Determine, to the extent
possible, genotypes of the parents and whether the allele is dominant
or recessive if the allele is expressed in the progeny by:
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. none of the females; all of the males

. 50% of the females; 50% of the males
. all of the females; none of the males

. none of the females; 50% of the males
. 25% of the progeny

o 0 o e

6.3.8. Inabreeding experiment with flies, a particular cross produces 105 fe-
males with mutant phenotype, 98 wildtype females, and 179 wildtype
males. Give a possible explanation for this outcome.

6.3.9. Vermilion eye color in Drosophila is caused by a recessive X-linked
gene. Black body color is caused by a recessive allele on an au-
tosome. Wildtype individuals for these genes have brick red eyes
and gray body color. What phenotypic ratios are expected from the
Crosses:

a. gray females with brick red eyes heterozygous for both genes x
black males with vermilion eyes?

b. heterozygous gray females with vermilion eyes x homozygous
gray males with brick red eyes?

6.3.10. Under a hypothesis of independent assortment of genes, the cross
resulting in the data shown in Table 6.11 would be expected to produce
a 1:1:1:1 phenotypic ratio. Apply the x>-test with @ = .05 to the data
to test whether the data supports rejecting a hypothesis of independent
assortment.

6.3.11. Suppose a diploid organism has seven pairs of chromosomes, and
each chromosome has an equal number of genes on it.
a. What is the probability that two genes chosen at random lie on
distinct pairs of chromosomes?
b. Would the probability that two randomly chosen genes assort in-
dependently be greater or less than this number?

6.3.12. Suppose in the three-point test cross described by Table 6.12 you
attempt to compute the genetic distance between the d and ws genes
by first collapsing the table to only show information about these
phenotypes.

a. Create a table like Table 6.12, but with only 4 phenotypes: tall,
normal sheaf; tall, white sheaf; dwarf, normal sheaf; dwarf, white
sheaf. Fill in numbers by adding appropriate entries of Table 6.12.

b. Use your table to estimate the genetic distance.

c. Why does this not agree with the estimate in the text? What is
incorrect about this approach?
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6.3.13. Two recessive alleles, su for sugary kernels and g/ for glossy leafs,
are known to exist in certain corn plants. A testcross su™gl™ /su gl x
su gl/su gl is performed to test for linkage. The progeny are: 198
wildtype, 228 sugary/glossy, 39 sugary, and 35 glossy. Is there evi-
dence for linkage? If so, what is the recombination frequency between
the loci for su and gl?

6.3.14. In Drosophila, the genes with recessive alleles sn for singed bristles
and m for miniature wings are located approximately 15 ¢M apart.
a. What sort of gametes, and in proportions, can be formed by
sntm* /snm?
b. If Drosophila with genotype sntm™ /sn m are intercrossed, what
phenotypes, and in what proportion, are the progeny?

6.3.15. Suppose two genes with alleles a and b are located 10 ¢M apart.
On a different autosome, two other genes with alleles ¢ and d are
located 14 ¢M apart. Suppose individuals with genotype at b /a b,
ctd*t/cd are crossed with individuals, homozygous recessive for
each of these genes. What phenotypes, and in what proportions, are
represented in the progeny?

6.3.16. Suppose two genes with alleles, a and b, are linked. In a heterozy-
gote, there are two possible configurations for the chromosomes. If
the genotype is a™b™ /a b, the arrangement is called a coupling or
cis configuration. If the genotype is a™b/a b™, the layout is known
as a repulsion or trans configuration. Is it possible to use a trans
configuration in genetic mapping? Why or why not?

6.3.17. Experimental evidence indicates that crossing over seems to be less
likely near the ends or the centromere of a chromosome. Suppose two
genes, a and b, are located near the centromere of a chromosome,
about 5 ¢M apart. Two other genes, ¢ and d, are located about 5 cM
apart and about 40 cM away from the centromere. Which physical
distance, that separating a and b, or ¢ and d, is likely to be greater?
Explain.

6.3.18. Fortwo genes on achromosome, give an example of a tetrad crossover
configuration that results in recombinant gametes only. Why can’t any
tetrad configuration produce one parental-type and three recombinant
gametes?

6.3.19. Suppose in a certain plant species, three genes are known to be linked.
The recessive alleles for these genes are a for amethyst flowers, b for
brown stalks, and ¢ for curved leaves. Plants are bred with genotype
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(atb™c)/(a b ct), where the parentheses indicate that the order of the
genes is unknown. In a testcross with (a b ¢)/(a b c), two phenotypic
classes occur in much smaller numbers: wildtype and plants with
amethyst flowers, brown stalks, and curved leaves. What is the correct
gene order?

6.3.20. In Drosophila, the genes with recessive alleles ¢/ for clot eyes, dp for
dumpy wings, and rd for reduced bristles are known to be linked.

a. Give two different examples of appropriate testcrosses to determine
the order of these genes.

b. Suppose the phenotype wildtype eyes, dumpy wings, and reduced
bristles corresponds to a recombinant from a double crossover,
where the heterozygous parent had genes in the (cITdp*rd*)/
(cl dp rd) configuration. What is the correct gene order?

6.3.21. Suppose in a certain species three genes are linked, with alleles e
for enlarged eyes, i for hairy legs, and p for prickly antennae. The
wildtypes for these genes are normal eyes, hairless legs, and smooth
antennae. Suppose e h p is the correct gene order with e and / are
located 12 ¢ M apart and & and p are located 15 ¢ M apart. In an exper-
iment, eth p/e h™ p™ individuals are testcrossed with triply homozy-
gous recessive individuals. What are the phenotypes of the offspring
and in what frequencies should these phenotypes occur?

6.3.22. For X-linked genes, you can also analyze three-point testcrosses.

In Drosophila, the alleles for cut wings ct, sable body s, and ver-
milion eyes v all determine recessive traits that are X-linked. The
wildtype traits are long wings, gray body, and red eyes. Table 6.13
gives the results of a testcross of (ctTstv™)/(ct s v) females with
(ct s v) males. Parentheses here denote unknown gene order.

Table 6.13. Progeny of
(cttsTvt)/(ct sv) x (ctsv)

Phenotype No.
Long wings, gray body, red eyes 723
Long wings, gray body, vermilion eyes 8
Long wings, sable body, red eyes 71
Long wings, sable body, vermilion eyes 125
Cut wings, gray body, red eyes 105
Cut wings, gray body, vermilion eyes 106
Cut wings, sable body, red eyes 5
Cut wings, sable body, vermilion eyes 776
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6.3.23.

Genetics

. Notice that no data are presented on the sex of the progeny, despite

the fact that X-linked genes are being investigated. Explain why it
is not necessary to give that information.

. Does the data give evidence for linkage between the three genes?

Explain.

. Determine the order of the three loci ct, s, and v and estimate the

distances between them on a linkage map.

The occurrence of one crossover on a chromosome can inhibit the
likelihood of a second crossover occurring nearby. This phenomenon,
interference, typically takes places at distances less than 20 c M.

On chromosome III in Drosophila, the genes cu for curled wings,

Sb for stubble bristles, and e for ebony body are located at 50.0 cM,
58.2¢M, and 70.7 ¢ M, respectively. Suppose 2,000 fruit-fly progeny
result from a three-point testcross.

a.

Projects

Assuming only single crossovers can occur between consecutive
pairs of these genes, and that there is no interference, what is the
expected number of double crossovers between cu and e?

. If interference occurs, then the observed number of double

crossovers is less than expected. Define the coefficient of coinci-
dence, c, to be the ratio observed number of double crossovers:
expected number of double crossovers. If only three double
crossovers are observed, what is the coefficient of coincidence?

. The level of interference is measured by I = 1 — c. Explain why

I is a reasonable way to quantify interference. If there is no inter-
ference, what is the value of 7?

. What is the level of interference in the testcross above?

1. Use the outcomes of simulated experiments to map genes.

The MATLAB program genemap will perform simulated 2- and 3-

point crosses for 6 autosomal genes in Drosophila. (It is easily modified
to simulate data for mouse genes as well.) Perform a number of such
crosses and construct a genetic map from your results.

Suggestions

* Pick a reasonable number of progeny to produce, keeping in mind the
laboratory and time resources necessary for real experiments.

¢ Record all the data from each of your crosses, to present it as support
for your map.

* These genes may or may not all be on the same chromosome.
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* Because in a laboratory experiment, each cross could require much
time and labor, try to keep the number of crosses you do relatively
small while still gathering sufficient data. Also, 3-point crosses should
be viewed as more work than 2-point ones, since they would require
more breeding to prepare the lines.

* Once you have produced a genetic map, use it to predict the outcome
of some crossing experiments you did not do previously. Then perform
the experiments. Are the results consistent with your map? Explain any
discrepancies.

* If you repeat your work using crosses that produce 10 times as many
progeny, how does that affect your map? Of which map would you be
more confident?

* Can you back up a claim that several genes are on different chromo-
somes with evidence? Can you back up a claim that several genes are
on the same chromosomes with evidence?

6.4. Gene Frequency in Populations

So far, we have focused on one parental cross at a time in our models of
genetics. As valuable as this may be for basic biological understanding, and
for medical applications, it has neglected the larger picture. In evolution,
the genetic make-up of species and populations may change over time. Some
traits may be lost, other new ones arise, while some persist unchanged. Though
chance plays a large role in the inheritance of traits in a single parental cross,
understanding how this plays out in the evolution of a population requires
mathematical modeling.

Suppose several alleles of a gene are present in a population. You might
imagine a gene that determines eye color, or one that can affect the fertility
of its carrier. Does the proportion of each allele change over time, or does it
remain fixed? The answer might depend on the particular gene, of course, since
an allele decreasing fertility seems more likely to disappear from a population
than one that affects a more superficial trait such as eye color. Nonetheless,
alleles that seem innocuous are observed to disappear from certain breeding
populations.

We’ll first study a type of equilibrium of genetic composition of a popula-
tion and then investigate models of two forces tending to change the compo-
sition.

Let’s focus on a single gene in a large population. To describe the variabil-
ity of this gene among the population members, we use allele frequencies.
Although technically these are relative frequencies, or the proportions of all
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alleles that are of a certain type, we will use the simpler term “frequency”
throughout this section.

The M N blood typing system in humans provides a good example of how
we can estimate allele frequencies. The presence of each of the alleles M and
N can be detected through antigen tests. A person with genotype M M has type
M blood, and a person with genotype N N has type N blood. A heterozygote
M N will test positive for both alleles and so has type M N blood. (The two
alleles M and N are thus codominant, as both are equally expressed in the
phenotype.)

Suppose, in a certain population, that 60 individuals have type M blood,
101 individuals type M N blood, and 53 individuals type N blood, for a
total population size of 214. Because each person carries two alleles of the
gene, there are a total of 2(214) = 428 alleles in this data. To determine the
frequency of M alleles, we note that each person of M blood type carries 2,
those of type M N carry 1, and those of type N carry 0. Thus, the frequency
of the alleles is

2(60) + 1(101 1(101) 4 2(53
o 260 10D 10D +253)

9 87
428 428
and of course these add to give 1.
Notice the genotype frequencies in this population are
60 101 53
MM : —~ .28, MN:—= .47, NN :— =~ .25.
214 214 214

We can use these to calculate allele frequencies also, but because each geno-
type involves 2 alleles, we have to divide by 2 to account for the change in
the number of objects:

2(.28) + 1(.47)
‘ 2

1
M = .28+ 5(.47) ~ .52,

with a similar calculation giving the frequency of N.

Random mating and Hardy-Weinberg equilibrium. Suppose now we
have a large population with the allele frequencies of the M and N blood types
as calculated above. As new generations are produced, do these frequencies
change?

To explore what might happen in future generations, we have to make some
assumptions about the mating process. The simplest model, random mating,
is that the genotypes of offspring are determined by the random pairing of all
gametes that might be produced from current organisms. This means a given
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gamete is equally likely to unite with any other gamete. Because our model
does not track the sex of the source of the gamete, this is of course impossible
for many organisms. However, assuming allele frequencies are the same in
the two sexes makes the model more reasonable.

Under the random mating model, the probability of various genotypes
occurring in the next generation can be calculated simply; just multiply
the appropriate allele frequencies. Since picking two gametes to unite can
be viewed as two independent events, the multiplication rule of probabil-
ity applies. For instance, using the previously described blood type allele
frequencies, the probability that an arbitrary zygote has genotype MM is
(.52)(.52) = .2704, because .52 is the probability of picking a gamete with
the M allele. Similarly, the expected frequency of the NN genotype in the
offspring is (.48)(.48) = .2304. Since the M N genotype can be formed in two
ways, MN or NM, we find, by the addition rule for disjoint probabilities,
that expected frequency is 2(.52)(.48) = .4992.

Notice that we could have used binomial probabilities in calculating the
genotype frequencies instead. For instance, if we define a success as having
an M allele, then p = P(S) = .52, g = .48, the number of trials is n = 2,
and the frequency of the M N genotype is

. : 2
P(one success in two trials) = (1> (.52)(.48).
» Compare the genotype frequencies of the new generation, .2704, .4992,
and .2304, with the original. Did they change? How?

Now, let’s calculate the allele frequencies in the new generation:

1 1
M : 2704+ (4992) = 52, N : (4992)+ 2304 = 48.

Remarkably, these allele frequencies are exactly the same as the original ones.
Although the genotype frequencies changed a bit, the allele frequencies did
not change in the new generation.

» Repeating these calculations for a third generation would produce ex-
actly the same allele frequencies and genotype frequencies as in the
second generation. Explain why.

Under random mating, then, we have found that the allele frequencies
are in a state of equilibrium. This equilibrium is called the Hardy-Weinberg
equilibrium, after the British mathematician Hardy and the German physician
Weinberg who independently discovered it.
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Let’s work more theoretically with the allele frequencies to see why such
an equilibrium state exists. We continue to focus our attention on a diallelic
gene, with alleles a* and a. Let p denote the frequency of a™ in the population
and g the frequency of a, so p + g = 1. The assumption of random mating is
what allows us to calculate the frequency of a™ in the next generation: each
allele in a second generation individual is a* with probability p, or a with
probability g.

In the next generation, then, the allele a* occurs in genotypes a*a™ and
a*a, which have frequencies, p> and 2pq, respectively. However, only half
of the alleles in a™a genotypes are wildtype. Thus, the frequency of the allele
a™ in the progeny equals

1
P’ + (5) 2pg = p*+pq = p(p+q) = p(l) = p,

and the allele frequencies are constant from generation to generation.

» Whether the assumption of random mating is reasonable for humans
might depend on what gene is being considered. Give examples of some
traits for which you think it is reasonable and some for which it might
not be.

» If a population is in Hardy-Weinberg equilibrium, what sorts of things
not included in our model might move it away from equilibrium?

You might have noticed in the M N blood typing examples previously
described that codominance allowed us to detect heterozygotes in the pop-
ulation and then to compute both genotype and allele frequencies. If a gene
has a completely dominant allele, however, it may be difficult to distinguish
between homozygous dominant and heterozygous individuals. Nonetheless,
if we assume the population is in Hardy-Weinberg equilibrium, we can still
estimate allele and genotype frequencies.

For example, in the United States, approximately 1 in every 3,700 individ-
uals suffers from cystic fibrosis, the most frequent serious genetic disease of
childhood, causing severe respiratory and digestive problems. Because cystic
fibrosis is caused by a recessive autosomal allele, we estimate the frequency
of homozygous recessives is 1/3700. Thus, we estimate

g~

~ .0164 and

2
8
<
%

With these values, an estimate for the proportion of heterozygotes in the
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populationis 2pg = 2(.9836)(.0164) ~ .0323. In other words, roughly 3% of
the population carries the mutant allele without showing signs of the disease.

In nature, many alleles are not in Hardy-Weinberg equilibrium. In fact,
evolution occurs through changing allelic frequency; so, if all genes were
in equilibrium, there could be no evolution. Indeed, many real-life circum-
stances lead to non-equilibrium situations: In a certain population, mating
might fail to be random with particular phenotypes preferring to mate with
similar phenotypes (assortative mating), or individuals might migrate into or
out of a subpopulation, disrupting an equilibrium. Differences in viability
or fertility may result in certain genotypes having a higher survival rate and
being more likely to reproduce. Spontaneous mutations may introduce new
alleles into a population, changing allele frequencies. Even the size of a popu-
lation may alter allele frequencies, because random forces may influence the
genetic makeup in small populations. Although a Hardy-Weinberg equilib-
rium is appealing mathematically, it is not a long-term feature of the natural
world.

Fitness and selection. Mutation and natural selection, two potent forces of
evolutionary change, bring about changes in allele and genotype frequencies.
Mutations produce new alleles, and organisms with a new genotype may have
a changed ability to survive and reproduce. Only the genes of organisms that
successfully produce offspring appear in future population members. Genes
of organisms that are less well adapted to their environment may be passed
along to the next generation in smaller numbers. Thus, the gene pool may
be in constant flux as mutations introduce variability that selection may then
weed out.

Geneticists use the term fitness for a measure of the ability of an organism
to survive and reproduce. Suppose, for two alleles of a gene, A and a, an
individual with genotype A A is the most fit. Then, we will define its relative
fitness, wa4, to be 1, and assign fitness values w4, and w,, between 0 and 1
to the other two genotypes. For example, if relative fitness values are given
by

waa =1, wae, = .98, wy, = .92,

then in this species the most fit genotype is AA, and heterozygotes are more
fit than aa homozygotes.

» With these fitness values, do you think the allele frequency of A will
increase or decrease over time?
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Of course, there are many other possible relationships between relative
fitness values. If A is completely dominant over a, and fitness depends on
phenotype, then w44 = wy,. If the homozygous recessive genotype is more
fit, then we have w,, = 1 and 0 < w4 = wy, < 1. In the exercises, some
of the many other cases will be investigated.

Although relative fitness can describe selective advantage, sometimes al-
ternate terminology is used, focusing on the selective disadvantage of a geno-
type. A genotype with relative fitness w is said to have selection coefficient
s = 1 — w. In our previous example, the selection coefficients are 0, .02, and
.08, respectively. With a selection coefficient of .08, we see that the homozy-
gous recessive genotype is the genotype whose members will pass on the
fewest genes to progeny.

We can now model how allele frequencies change because of selection.
Suppose that A occurs with frequency p in the population, so a occurs with
frequency ¢ = 1 — p. Our model will track how p changes with time, under
the assumption that mating is random.

At fertilization, gametes randomly unite to produce genotypes AA, Aa,
and aa, in proportions

P’ 2pq. 4°.

The relative fitness values then account for the competition in survival and
reproduction between the genotypes as these zygotes mature and produce new
gametes. Thus, the measures of the contribution of each of these genotypes
to the next collection of gametes are the products

WaAP®, Waa2Pq, Waaq -
Now, because the relative fitness coefficients are less than or equal to 1, we
see
2 2 2 2 _ 2 __
WaAp” + Waa2pq + Waaq” < p” +2pqg+q-=(p+4g) =1

Therefore, we must renormalize (i.e., divide through by the quantity w44 p> +
Waa2Pq + Waaq?) to calculate the successful contribution of gametes to the
genotype proportions of the next generation, obtaining

Wwasp? Waq2pq
Waap? + Waa2pq + Waaq?' waap? + wa2pqg + waag?’

Waaq?
WarP? + Waa2Ppg + Waaq?

Finally, because all the alleles contributed by the AA genotype are A, but
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only half the alleles contributed by the Aa genotype are, we find

wAAp[2 1 wAazplql
2 2 T3 2 2
WAAP? + Waa2Piqr + Waaq? 2 WaaP} + Wad2PiGr + Waaq;
wAAP,2 + Waa Prq:
wAAp,Z + wau2pigr + waa‘]zz

Pi+1 =

» Express this in terms of p, alone, with no g;.

Let’s consider a concrete example. Suppose, initially, 70% of the alleles
are A. Thus, py = .7 and go = .3. If all genotypes are equally fit, then w4 =
Waq = Wye = 1, and we find

» Pi + Poqo 49 + 21
] — = —
P +2pogo + 4 1

7,

which illustrates the Hardy-Weinberg equilibrium. If, however, relative fitness
values wagq = 1, wa, = .98, and w,, = .92 describe the genotypes, then

P5 + (:98)poqo A9+ (.98).21
p§ + (:98)2pogo + (.92)g3 9844

p1 = = .7068.
As you might expect, the allele frequency of A has increased slightly, from
.7 to .7068, at the expense of the allele a.

Iterating the model over a few generations produces Figure 6.8. Since the
genotypes are increasingly fit according to the presence of the allele A, over
many generations A becomes fixed in the population and the recessive allele
dies out.

This model becomes even more interesting for parameter choices where the
outcome is less intuitive. What might happen if a recessive allele was the most
fit? Would it be fixed eventually, or would the fact that it was only expressed
in homozygotes give it too weak an influence to eventually predominate? Or,
what if the heterozygotes were the most fit genotype? The outcome of such a
situation is hard to predict without a mathematical model. These questions are
not simply a result of mathematical curiosity, as a few biological examples
show:

* In a certain species of moths, a dominant allele is associated with dark
coloring. Homozygous recessives are light-colored. If a moth population
lives in a forest with dark-colored trees, the light-colored moths are at a
competitive disadvantage, as their predators can more easily see them. If
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Effect of natural selection on allele frequencies

Allele Frequency

0 10 20 30 40 50 60 70 80 90 100
Iterations

Figure 6.8. Allele frequencies of A (top) and a (bottom); relative fitness values ws = 1,
Wy, = .98, and w,, = .92.

the tree bark tends to be lighter-colored, then light-colored moths are more
likely to survive.

¢ In humans, the often-fatal disease sickle-cell anemia is associated with a ho-
mozygous recessive genotype. In certain parts of the world, the recessive
allele is quite common — by some estimates about as high as 19%. Re-
searchers have discovered that heterozygotes have an increased resistance
to malaria, and thus a greater fitness in a tropical climate.

In the exercises, we will explore a number of scenarios for the effects of
natural selection:

Selection for A: favors the dominant allele and associated phenotypes.

Selection against A: favors homozygous recessives.

Heterozygote Advantage or Overdominance: favors heterozygotes at the
expense of homozygotes.

Homozygote Advantage: favors homozygotes, at the expense of heterozy-
gotes.

The frequency of an allele may rise or fall, depending on the forces of

selection.

Genetic drift. So far, our models addressing allele frequencies have tacitly
assumed that the population under study was large. For instance, we assumed
we were modeling a large population when we argued that because a certain
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Table 6.14. Probabilities That Exactly k of 4 Alleles Are A

k 0 1 2 3 4
Pk) .0625 25 375 25 .0625

proportion of the gametes had an allele, then the same proportion of the ga-
metes that successfully united would have that allele. Even if half the gametes
have an allele A, if we randomly pick gametes to unite, we might pick more
or less than half As to form the next generation. In a small population, any
deviation from half might be proportionally large, and thus proportionally
greater than you are likely to have in a large population. In other words, small
populations are more greatly affected by chance than are large ones.

For a concrete illustration of this, imagine a very small population of 2
individuals of genotypes Aa and Aa. Then, the alleles A and a appear in the
gamete pool in proportions .5 and .5, and so random mating implies that each
offspring will have genotype AA (or aa) with probability .25, and genotype
Aa with probability .5.

However, if the new generation also has size 2, then to determine the alleles
in this generation, we simply pick four specific gametes out of the pool. Using
the binomial distribution, the probability of having exactly two of each allele

in the next generation is
4
(2) (.5)%(.5)* ~ .375.

This means that the probability that the allele frequencies remain stable is only
37.5%, and the more likely scenario is that allele frequencies will change.
Furthermore, any change in the allele frequency must be at least .25, because
there are only four alleles total in this small population. Thus, a reasonably
large change is quite likely.

It might seem that this result contradicts the ideas underlying the Hardy-
Weinberg equilibrium for allele frequencies. However, calculating the prob-
abilities that exactly k of 4 alleles are A for k = 0, 1, 2, 3, and 4 as in Table
6.14, we see the most likely outcome is that the allele frequencies represented
in the two offspring will be p = g = .5, the same frequencies of the parental
generation and just as Hardy-Weinberg predicts. However, this most likely
outcome is not very likely.

If a population is large — say 3,000 heterozygotes producing 3,000 off-
spring — then producing a table like Table 6.14 also shows that some change
in allele numbers is likely. However, the likely size of this change is much
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Change in allele frequency for population of size 30
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Figure 6.9. Two examples of genetic drift; population size N = 30.

smaller proportionally than for the two individual case. Rather than changes
in allele frequencies of magnitude .25, tiny changes typically occur. Thus,
the Hardy-Weinberg values are a more accurate estimate of what actually
happens.

For large populations, we lose little by ignoring chance fluctuations. If
a population is small, then chance fluctuations are much more important
and may in fact predominate. The phenomenon of chance changes in allele
frequencies dominating other factors in small populations is known as
genetic drift.

Genetic drift may be modeled by fixing a population size N and initial
allele frequencies. Then, a new generation of alleles is chosen according
to the probabilities calculated by the binomial distribution. Using the new
allele frequencies, this process is repeated for the next generation, and so on.
Because of the random choices made at each generation, no two simulations
are likely to be identical.

Figure 6.9 shows two simulations of allele frequency p over a number of
generations. In both plots, the population is small, N = 30, and the initial
value is p = .5. Notice the random fluctuation of the frequency p, and that
whether the allele remains fixed in the population or is removed entirely is a
matter of chance.

Using only concepts introduced here, it is easy to imagine a more sophis-
ticated model that combines genetic drift with selection. But models of genes
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with more alleles, or of several genes that collectively determine traits affect-
ing fitness, are also possible. Modeling the creation of new alleles through
mutation, along with their possible elimination or fixation through selection,
also leads to interesting insights. We have really only scratched the surface
of mathematical models in population genetics.

Problems

6.4.1.

6.4.2.

6.4.3.

6.4.4.

An autosomal recessive allele ct causes curly tails in mice. Suppose,

in a certain population of 450 mice, 441 mice have normal tails and 9

have curly tails, and that the allele frequencies are in Hardy-Weinberg

equilibrium.

a. Estimate the allele frequency of ct.

b. What percentage of the mice population is heterozygous for this
gene?

Color blindness is an X-linked trait that occurs in about 8% of human

males.

a. Give the allele frequencies for this gene. (Assume the frequencies
p and ¢q are the same in both genders, and are in equilibrium.)

b. Approximately what percentage of the female population is color
blind? What percentage of the female population with normal vi-
sion carries the mutant allele?

Suppose a randomly mating population segregating two alleles is in

Hardy-Weinberg equilibrium.

a. What are the allele frequencies p and ¢ if the frequency of het-
erozygotes is .47 If the frequency of heterozygotes is H?

b. Express the frequency of heterozygotes in terms of p. What values
of p and g maximize this frequency? (Either graphing or calculus
can be used to answer this.)

There is a strong connection between certain powers of polynomials

and genotype frequencies in simple situations.

a. Expand the binomial power (p + ¢)* and explain the meaning of
each summand in terms of genotype frequencies for a diallelic
gene.

b. If a gene has multiple alleles, multinomial expansions are related
to genotype frequencies. Suppose a gene has 3 alleles, occurring
in frequencies p, ¢, and r. Expand (p + g + r)? and relate each
term in the expansion to genotype frequencies.

c. Does the concept of a Hardy-Weinberg equilibrium make sense for
the 3 allele situation? Explain.
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6.4.5. The genetics of the A B O blood typing system was explained in Prob-
lem 6.1.16.

a. In ABO blood-typing studies in an isolated community, 32% of
the population have type A blood, 15% type B blood, 4% type AB
blood, and 49% type O blood. Determine the allele frequencies
I4, 1%, and I9 in this community.

b. In the United States, approximately 40% of the population have
type A blood, 11% type B blood, 5% type A B blood, and 44% type
O blood. Give the system of equations that describes the blood-
type frequencies in terms of the allele frequencies 74, I, and 1°.
Can you solve this system? If not, explain the difficulty and its
biological implications.

6.4.6. Suppose a gene has 3 alleles in equilibrium in a randomly mating
population. To find allele frequencies for the population, what is the
minimum number of phenotype frequencies you must know? Answer
the same question for n alleles.

6.4.7. Although a Hardy-Weinberg equilibrium may exist in a well-mixed
population, over expansive geographic areas, natural barriers often
cause variations in local equilibrium frequencies.

Suppose two lakes separated by a short distance are populated with
the same species of fish and that both lakes are in an equilibrium state.
In the first lake, the frequency of a particular allele a™ is p;. In the
second lake, the frequency of a™ is p,. After a flood, the two lakes
are merged, and one lake is formed. Suppose both lakes contained the
same number N of fish.

a. Whatis the frequency p of the allele a™ in the fish in the large lake
after the flood?
b. What are the genotype frequencies immediately after the flood?

What would a Hardy-Weinberg equilibrium predict for the geno-

type frequencies? Explain why these two answers do not agree.

6.4.8. Show the selection model simplifies considerably if way = wa, =
wg, = 1. Using these relative fitness values, give the simplest formula
possible for p;y; in terms of p,. Explain the relationship of your
formula to Hardy-Weinberg equilibrium.

6.4.9. Investigate the behavior of the selection model experimentally, using
a computer program such as onepop, for each set of relative fitness
values below. Describe your observations on the model’s behavior,
including likely equilibria and their stability. Are the behaviors you
see biologically reasonable?
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go o

was = 1, wya, = .98, and w,, = .92 (dominant advantage)
waa = .92, wa, = .98, and w,, = 1 (recessive advantage)
waa = 1, wa, = .92, and w,, = 1 (homozygous advantage)
waa = .92, wa, = 1, and w,, = .92 (heterozygous advantage).

6.4.10. In mice, homozygotes for the yellow-lethal allele, Y/, die in embry-
onic stage, while heterozygotes have yellow fur. What are reasonable
values to use in the selection model for the selection coefficients for
the three genotypes? Use a computer program such as onepop to in-
vestigate the model, and describe your results. Does the allele persist

in the population?

6.4.11. Relative fitness values wsq = 0, wa, = wy, = 1 describe a special

case of the selection model.
a. Interpret these biologically.
b. Show that with these values the model is simply

_ D
P = 1+ p
c. Show that the explicit formula
Po
= , t=1,2,3,...
pr 1+ tpo

gives allele frequencies for this model.

6.4.12. Relative fitness values waq = wa, = 1, wy, = 0 describe a special

case of the selection model.
a. Interpret these biologically.

b. Give the simplest formula you can expressing p;; in terms of p;.

c. Find an explicit formula for p, in terms of pg and ¢.

6.4.13. Find all equilibria for the selection model as follows:

a. Express the equilibrium equation that p* must satisfy in the form
of a cubic polynomial = 0. This shows there are at most three

equilibria.

b. Two equilibria are easy to guess. (What possible allele frequencies
would not change, no matter what the relative fitness values were?)

What are they?

c. Use your guesses in part (b) to help you factor the cubic polynomial

in part (a) completely.

d. Use part (c) to show the third equilibrium can be written as

(waa - wAa)
(waa - wAa) + (wAA - wAa)
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6.4.14. The third equilibrium for the selection model that was found in the
preceeding problem is only biologically meaningful if it is a possible
value for an allele frequency.

a. Explain why the third equilibrium is only biologically meaningful
if

(waa - wAa)(wAA - wAa) > 0.

b. Explain why the third equilibrium is only biologically meaningful
if either wpas > wy, and w,, > wyu, (homozygote advantage), or
if wag < way and w,, < wy, (heterozygote advantage).

6.4.15. Use a program such as cobweb to investigate the stability of the se-
lection model equilibria under the following conditions. Use a variety
of parameter choices for each. Express your conclusions in biological
terminology.

a. Wway > Wa, and w,, > wy, (homozygote advantage)
b. was < wy, and w,, < wy, (heterozygote advantage).

6.4.16. In the selection model, the quantity
W, = WaAP; + Waa2PiGs + Waad}

is called the mean fitness of the population at time ¢. It is possible to
show that w;;; > w,. Why is such a result reasonable biologically?

6.4.17. Use a computer program, such as genesim to explore the phe-
nomenon of genetic drift. For a population of size N = 30, begin
with equal allele frequencies and do several simulations. Repeat for
N =300 and N = 3000. Describe your observations on how popu-
lation size affects drift.

6.4.18. The program genesimcan model genetic drift with selection effects
due to varying relative fitness levels of genotypes. For a population
size that exhibits strong drift when all genotypes have the same fitness,
run simulations with interesting choices of relative fitness values. De-
scribe your observations and discuss whether they seem biologically
reasonable.

6.4.19. What is the expected value of the number of A alleles in the situation
described by Table 6.14? How does this fit with the idea of Hardy-
Weinberg equilibrium?

6.4.20. In a population of size N, if genetic drift causes changes in allele
frequencies p and g, then genotype frequencies change, too. One way
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to measure the effect of genetic drift is by monitoring the frequency

H of heterozygotes, the heterozygosity, of a population.

a. If genetic drift tends to eliminate an allele, what will the effect be
on the value of H over time? Explain.

b. A good model (which we will not justify here) to describe the effect
of genetic drift on the heterozygosity of a population is H;,| =
(1 - ﬁ)Ht. Use the program onepop to explore the effect of
population size on genetic drift and heterozygosity. Start with an
initial value of Hy = .5 and vary the population size N. What
happens to H if N =100? If N =1,000? If N is huge? How
would your answers change if the initial value was Hy = .2 or
Hy = .9?

c. Give a formula for H, in terms of N, Hy, and .

Projects

1. Investigate the phenomenon of genetic drift in a simulated population.

Study a gene with two alleles, A and a, that occur in a diploid pop-
ulation of size N in frequencies p and g. Assume that these alleles are
selectively neutral (i.e., the resulting genotypes are all equally fit).

Use the MATLAB program genesim to observe changes in allele
frequencies in a simulated population over a number of generations.
This program assumes that the population size N remains constant from
generation to generation and that mating is random.

Explore the effect of genetic drift on allele frequencies under a variety
of assumptions.

* The population size N is small, medium, or large.
* The initial allele frequency of A is py = .5, po > .5, or pg < .5.

The main issues to consider are:

1. What happens to the allele frequency p over the long run? Is it stable?
Does the allele A become fixed in the population? Is A eliminated
entirely? If either of these happens, how quickly does it occur?

2. How does the population size affect your answer to question 1 above?

Suggestions

* To get a feel for the effects of genetic drift, use the program genesim
to explore changes in allele frequencies for lots of reasonable choices
of N and py. Make a note of any unusual behavior and try to explain
it.
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* After a large number k of generations, how does the allele frequency
pi compare with py? Is there a tendency for fixation or elimination of
an allele? Explore this question for different population sizes.

e If pp = .5, how likely is it that A becomes fixed in the population?
For fixed N, do many simulations, record the results, and from them
estimate the probability of fixation. Repeat for other N.

* Investigate the last question for specific py > .5 and py < .5.

* Does genetic drift tend to increase or decrease genetic variation within
a population? How does the population size affect your answer?

* If one population is separated into two populations by migration (early
humans leaving Africa; farm-raised fish being released into two lakes),
what effect might genetic drift have on the variability between the two
populations?

* If you perform many genetic drift simulations for a fixed value of pg
and N and average the values psg, what will you get? Does your answer
depend on the initial value py? N?

2. Fora gene with two alleles, A and a, both the simple selection model and
genetic drift often lead to fixation of one of the alleles and elimination
of the other. Why, then, do we observe so many genes with multiple
alleles in real populations? Are all of them either selectively neutral, or
in populations so large that drift is negligible?

Explore and discuss one or more of the following models that offer
further reasons for the stability of polymorphic genes.

* Heterozygote advantage: In this selection model, ws, > ws4 and
Wag > Weq. (This is the mechanism by which the persistence of the
sickle cell allele is generally explained.)

* Frequency-dependent selection: In this type of selection model, the
fitness coefficients depend on allele frequencies. One example is

was =1-— ”pz’ Way =1 — szq, Waq =1 — uq27

for some value of u between 0 and 1. In this model, the more prevalent
an allele is, the less its fitness. (In certain plants, pollen with one allele
can only successfully fertilize plants with other alleles, giving rare
alleles an advantage.)

* Mutation-selection balance: This model modifies the classical selec-
tion model to account for recurrent mutations that continually renew
the stock of an allele that might otherwise disappear. For instance, if
a fraction p of alleles that would have been A in each new generation

https://doi.org/10.1017/CBO9780511790911.008 Published online by Cambridge University Press


https://doi.org/10.1017/CBO9780511790911.008

6.4. Gene Frequency in Populations 277

mutate to a, and p; tracks the frequency of A, such a model is

WaAPE + WaaPrdr
WaAP? + Wad2Piqs + Waaq?

(I = w).

Pr+1 =

Suggestions

* Investigate these models experimentally using onepop and cobweb
for a variety of parameter choices. Describe your observations and
insights.

* Ifpossible, compute equilibria for the models and discuss their stability.
(If you cannot do this in general, at least do it for a few parameter
choices, or by making special choices, suchas was = wa, = 1, wy, =
1 — s in the selection-mutation model.)

* Meiotic drive, the preferential creation of gametes of a certain type, is
another mechanism that can lead to polymorphic stability. Modify the
basic selection model to take meiotic drive into account and analyze
your model.
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