A genetics model

7.1 Introduction

Consider a population of N independent individuals. At each time k € {0, 1, 2, ...} each
individual can be in one of n states. The total number, N, of individuals in the population
remains constant in time. However, the distribution of the N individuals among the n states
changes.

We suppose that initially all random variables are defined on a probability space
(2, F, P). For 1 <i,j<n, pj; is the probability that an individual in the population
will jump from state i at time k — 1 to state j at time k. That is, we suppose each individ-
ual in the population behaves like an independent time-homogeneous Markov chain with
transition matrix P = (pj;).

Note Zl;zl Pji = 1.

Write p; = (p1j, p2j, .- ., pnj) for the j-th column of P.

Write TI(N) for the set of all partitions of N into n summands; that is, z € TI(N) if
z =(z1, 22, - - -, Zn), Where each z; is a nonnegative integer and z; + 2z, + -+ + 2, = N.

Write X (k) = (X(k), Xa(k), ..., X,(k)) € I[I(N) for the distribution of the population
at time k.

It is easily checked that

E[X(k) | Xtk —1)] = PX(k — 1). (7.1.1)

However, the population is sampled by withdrawing (with replacement), at each time k, M
individuals from the population and observing to which state they belong. That is, at each
time k a sample

Y (k) = (Y1 (k), Y2(k), ..., Y,(k)) € TI(M)

is obtained, where IT(M) is the set of partitions of M.
Clearly this sequence of samples, Y (0), Y (1), Y(2), ... enables us to revise our estimates
of the state X (k).

7.2 Recursive estimates
For
o = (o, 0,...,a,) € R" and

S=(S1,S2,...,SH)GH(N),
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write

Fa,s)=[](pj, )",
=1

J
where (, ) denotes the scalar product in R".
Forr = (ry, 72, ..., ry) € II(N) write
prs = P(X(k) =71 | X(k —1) = ).

Then p,, is the coefficient of o'y’ . .. /" in F(a, s). That is,

N

prs = (!l .ory)) —F(a, s). (7.2.1)

For y = (y1, y2, ..., yn) € II(M) write (

M!

yl!.yz! oo
¥2 into state 2 and so on.

Then, under the original probability measure P,

row=sixw=n=(, " ) GGG

Write Gy for the complete o-field generated by X(0), X(1),..., X(k) and Y(0), Y (1),
YQ2),...,Y(k—=1).

Vi will denote the complete o-field generated by Y (0), Y(1), Y(2), ..., Y (k). We wish
to introduce a new probability measure P under which the probability of withdrawing an
element in any one of the n states is just 1/n. For this define factors

1 M X (k —Yi(k) X (k —Ya(k) X, (k =Y (k)
- (2 (52 (5 (a0

and write

) for the multinomial coefficient
YiY2 «oo n

. This is just the number of ways of selecting y; objects from M into state 1,

k
Ay = l_[ Vi
=0

dpP
A new probability measure can be defined by putting —| = Ay.

dPlg

k

Lemma 7.2.1 For y € TI(M), r € TI(N),

_ \M
P =y |G = ( M ) (-) .
Yi Y2 -.o Yn n

Proof P(Y(k)=y|G) = E[I(Y(k)=y)]| Gl and by a version of Bayes’ Theorem
(4.1.1), this is

_ EAd(Y () =) | Gil
E[Ax | Gl
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Now 4 is the only factor of A; not Gy-measurable, so this is

_ ElndY &) =) | Gi]
Elyi | Gkl

The denominator E[y; | Gi] equals

M —Yi(k) —Ya(k) —Yu(k)
<1> E[(n(k)) (Xz(k)) m(Xn(k)) m},
n N N N

and the only variables not G;-measurable are Y;(k), ..., ¥, (k). Consequently, this condi-

tional expectation is
(111 ) ( ) !
yell(M) Yoo Yn

1 M
Elpd(Y() = y) | Gl = ( M ) (—) .
YiY2 «-o n n

The numerator is

Consequently,
_ M 1\
PY(K) =y |G = -
YIY2 --- Wn n
[Bpt] = P(Y(k) = y).
That is, under P the n states are i.i.d. with probability 1/n. ]

Remark 7.2.2 Under P, P(X(k) = r | X(k — 1) = s)isstill p,, givenby (7.2.1). However,
as we saw in Lemma 7.2.1,

PY(k)y=y|G)=PXKk)=y|X(k)=r)

_ M 1\
YiY2 oo Wn n

To return from P to P the inverse density must be introduced. That is, with

(VXN (Xam PP X\
= =\ N N U ’
o k
Ak:Ak_IZHVZ’

=0

dp
the probability P can be defined by putting i

= Ay
g

k
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If {¢y} is a {G)} adapted process then Bayes” Theorem (4.1.1) implies

E[Argx | Vil

Elpe | V] = .
o = R

E[Ax¢r | Y] is, therefore, an unnormalized conditional expectation of ¢ given ). The
denominator E[A | Vi1 is a normalizing factor.
For r € TI(N) write g, (k) = E[AJ(X(k) = r) | Y;]. Note that Y, .y, I(X (k) = r) =

Isothat Y, oy, gr(k) = E[Ag | Vil
We then have the following recursion.

Theorem 7.2.3 If
Y(k) = (Yi(k), Ya(k), ..., Yu(k)) = (y1, Y2, ..., yu) € TI(N),

= () () ()" % ik

sell(N)

(Note we take 0° = 1.)

Proof
qr(k) = ELAT(X(k) = r) | Di]
= E[Ad(XK) =71) | Vi1, Y = (01, y2, -0 Y]
= E[A1 Vi IXK) = 1) | Viet, YK = (1, Y20+ -5 Y0)]
M r_l M r_z Y2 r_n Yn — .
—n (N) (N) (N) El A I(X(K) = r)
x ( D Xk~ 1)=s>) | V1]
sell(N)
_7Mr_1,Vlr_2y2 r_n,Vn__
=" (N) (N) (N) ETAw-
x ( > Xk—1)= s)) Prs | Vet
sell(N)
__Mr_l)’lr_zyz r_n)’n B
=" (N) (N) (N) ; Prsgsk = 1),
sell(N)
|
Remarks7.2.4

P(X(k)=r | V)= EUXK)=r)| W]
_ qr(k)
ZSEH(N) gs(k)’

To obtain the expected value of X (k) given the observations ), we consider the vector of
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values r = (r1, 12, ...,1,) forany r € TI(N). Then

Zrel‘l(N) qr(k) - r

E[X(K) | Vil = > G
sell(N) 4r

Unfortunately this does not have the simple form of (7.1.1).
Also note that the transition probabilities p,; can be re-estimated using the techniques
described in Chapter 2 of [10]. O

7.3 Approximate formulae

Unfortunately the recursion for ¢, (k) given by Theorem 7.2.3 is not easily evaluated. One
approximation would be to use a smaller value N’ for N in the summation. To obtain
nontrivial partitions of N’ into n summands, N’ should be greater than n. Substitution of the
observed Y (0), Y(1), Y(2), ... then would give a sequence of approximate distributions.

Alternatively, one could replace the martingale “noise” in the dynamics of X (k) by Gaus-
sian noise ([23]). To describe this, first suppose the n states of the individuals in the popu-
lation are identified with the unit (column) vectors ey, ..., e,,¢; =(0,...,1,0,...,0) of
R".Let X' (k) € {ei, ..., e,} denote the state of the i-th individual at time k. Then for each
i,1 <i < N, X(k) behaves like a Markov chain on (2, F, P) with transition matrix P.
Consequently,

X'(k)y=PX'(k—1)+ M (k), (7.3.1)

where E[Mi(k) | Gx—11= E[M (k) | X'(k —1)] = 0.
Write p(0) = (p1(0), ..., p,(0)) = E[X'(0)]. Then from (7.3.1)

E[X (k)] = p(k) = P*p(0).

For (column) vectors x, y € R" write x ® y = xy’ for their Kronecker, or tensor, product,
and diag x for the matrix with x on the diagonal.
Then, because X' (k) is one of the unit vectors ey, . .., e,,

X (k) ® X(k) = diag X' (k)
= P diag X'(k — 1)P' + M' (k) ® (PX'(k — 1))
+(PX'(k—1)® M' (k) + M'(k) ® M' (k)
= diag PX'(k — 1) + diag M' (k).
Taking the expectation, we have
E[M' (k) ® M'(k)] = diag Pp(k — 1) — P diag p(k — 1)P’
= Q(k), say.

For i # j the processes X’ and X/ are independent.
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Define
N i
X (k) = Yo X (k)’
N
N i
M(k) = Loz MK)
N

The (vector) process X (k) describes the actual distribution of the population at time k. Its
components sum to unity and

X(k) = PX(k — 1) + M(k). (7.3.2)

Also, by independence, E[M (k) ® M (k)] is also equal to the matrix Q(k).

The suggestion made in [23] is to replace the martingale increments M (k) in (7.3.2) by
independent (vector) Gaussian random variables W (k) of mean 0 and covariance Q(k).
Write ¢y (w) for the normal density on R” of mean 0 and covariance Q (k).

That is, suppose the signal process X (k), taking values in R", has dynamics

Xk)=PX(k — 1)+ W(k).
Fory = (y1, 2, ..., y») € II(M) and x = (x1, X2, ..., X,) € R", x # 0, define
PG, y) = x| M P xal 2 fx

set p(0, y) = 0 for y € TI(M).
The observation process still gives rise to Y (0), Y(1),...,Y(k) € [I(M) and for y €
I[1(M), x € R" we suppose

M

PY(k)=1y| X(k):x):<
YiY2 --- Wn

) ox, y).

Starting with the probability P, now define 7, = n=™ p(X(k), Y (k)), and A; = lezo Y-

— dpP
Again P can be defined in terms of P by setting Plo = Ak.

A
Suppose f : R" — R is any measurable “test” function. Consider

E[Af(X(K)) | Vi
E[A: | V]

Suppose there is an unnormalized conditional density g (x) such that

ELf(X() | Y] =

E[AfXE) I V= | f(x)qu(x)dx.

R"

The next result gives a recursion for g, which is the analog of Theorem 7.2.3.

Theorem 7.3.1

a(@) =n"Mp(z, y)/ ¢(z — Px)qi—1(x)ds.
er
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Proof
E[Ax f(X(0) | Vil = / F@a)dz
R”,
= M E[ R p(XK), YD FXE) | Vil
= ME[Rp(PX K — 1)+ W), )
X F(PX k= 1)+ W) | Veor, YK) = y]
M E[Rp(PX K — 1)+ W), )
X F(PX K= 1)+ W) | Vo]
= ME[ R p(PX K — 1)+ W), )

x f(Px +w)pr(W)gr—1(x) | Vi-1]

=nM / / 0(z, V) f(@i(z — Px)qi—1(x)dzdx.

As this identity holds for all such f the result follows. |
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