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A genetics model

7.1 Introduction

Consider a population of N independent individuals. At each time k ∈ {0, 1, 2, . . . } each
individual can be in one of n states. The total number, N , of individuals in the population
remains constant in time. However, the distribution of the N individuals among the n states
changes.

We suppose that initially all random variables are defined on a probability space
(�,F, P). For 1 ≤ i, j ≤ n, p ji is the probability that an individual in the population
will jump from state i at time k − 1 to state j at time k. That is, we suppose each individ-
ual in the population behaves like an independent time-homogeneous Markov chain with
transition matrix P = (p ji ).

Note
∑n

j=1 p ji = 1.
Write p j = (p1 j , p2 j , . . . , pnj )′ for the j-th column of P .
Write �(N ) for the set of all partitions of N into n summands; that is, z ∈ �(N ) if

z = (z1, z2, . . . , zn), where each zi is a nonnegative integer and z1 + z2 + · · · + zn = N .
Write X (k) = (X1(k), X2(k), . . . , Xn(k)) ∈ �(N ) for the distribution of the population

at time k.
It is easily checked that

E[X (k) | X (k − 1)] = P X (k − 1). (7.1.1)

However, the population is sampled by withdrawing (with replacement), at each time k, M
individuals from the population and observing to which state they belong. That is, at each
time k a sample

Y (k) = (Y1(k), Y2(k), . . . , Yn(k)) ∈ �(M)

is obtained, where �(M) is the set of partitions of M .
Clearly this sequence of samples, Y (0), Y (1), Y (2), . . . enables us to revise our estimates

of the state X (k).

7.2 Recursive estimates

For

α = (α1, α2, . . . , αn) ∈ Rn and

s = (s1, s2, . . . , sn) ∈ �(N ),
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write

F(α, s) =
n∏

j=1

〈p j , α〉s j ,

where 〈, 〉 denotes the scalar product in Rn .
For r = (r1, r2, . . . , rn) ∈ �(N ) write

prs = P(X (k) = r | X (k − 1) = s).

Then prs is the coefficient of α
r1
1 α

r2
2 . . . αrn

n in F(α, s). That is,

prs = (r1!r2! . . . rn!)
∂ N

∂α
r1
1 ∂α

r2
2 . . . ∂α

rn
n

F(α, s). (7.2.1)

For y = (y1, y2, . . . , yn) ∈ �(M) write

(
M

y1 y2 . . . yn

)
for the multinomial coefficient

M!

y1!y2! . . . yn!
. This is just the number of ways of selecting y1 objects from M into state 1,

y2 into state 2 and so on.
Then, under the original probability measure P ,

P(Y (k) = y | X (k) = r ) =
(

M
y1 y2 . . . yn

) ( r1

N

)y1
( r2

N

)y2

. . .
(rn

N

)yn

.

Write Gk for the complete σ -field generated by X (0), X (1), . . . , X (k) and Y (0), Y (1),
Y (2), . . . , Y (k − 1).
Yk will denote the complete σ -field generated by Y (0), Y (1), Y (2), . . . , Y (k). We wish

to introduce a new probability measure P under which the probability of withdrawing an
element in any one of the n states is just 1/n. For this define factors

γk(Y (k)) =
(

1

n

)M (
X1(k)

N

)−Y1(k) ( X2(k)

N

)−Y2(k)

. . .

(
Xn(k)

N

)−Yn (k)

,

and write

�k =
k∏

�=0

γk .

A new probability measure can be defined by putting
dP

dP

∣∣∣
Gk

= �k .

Lemma 7.2.1 For y ∈ �(M), r ∈ �(N ),

P(Y (k) = y | Gk) =
(

M
y1 y2 . . . yn

) (
1

n

)M

.

Proof P(Y (k) = y | Gk) = E[I (Y (k) = y) | Gk] and by a version of Bayes’ Theorem
(4.1.1), this is

= E[�k I (Y (k) = y) | Gk]

E[�k | Gk]
.
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Now γk is the only factor of �k not Gk-measurable, so this is

= E[γk I (Y (k) = y) | Gk]

E[γk | Gk]
.

The denominator E[γk | Gk] equals

(
1

n

)M

E

[(
X1(k)

N

)−Y1(k) ( X2(k)

N

)−Y2(k)

. . .

(
Xn(k)

N

)−Yn (k)

| Gk

]
,

and the only variables not Gk-measurable are Y1(k), . . . , Yn(k). Consequently, this condi-
tional expectation is

=
(

1

n

)M ∑
y∈�(M)

(
M

y1 . . . yn

)
= 1.

The numerator is

E[γk I (Y (k) = y) | Gk] =
(

M
y1 y2 . . . yn

) (
1

n

)M

.

Consequently,

P(Y (k) = y | Gk) =
(

M

y1 y2 . . . yn

) (
1

n

)M

[3pt] = P(Y (k) = y).

That is, under P the n states are i.i.d. with probability 1/n.

Remark 7.2.2 Under P , P(X (k) = r | X (k − 1) = s) is still prs given by (7.2.1). However,
as we saw in Lemma 7.2.1,

P(Y (k) = y | Gk) = P(Y (k) = y | X (k) = r )

= P(Y (k) = y) =
(

M

y1 y2 . . . yn

) (
1

n

)M

.

�

To return from P to P the inverse density must be introduced. That is, with

γ k = γ −1
k =

(
1

n

)−M (
X1(k)

N

)Y1(k) ( X2(k)

N

)Y2(k)

. . .

(
Xn(k)

N

)Yn (k)

,

�k = �−1
k =

k∏
�=0

γ �,

the probability P can be defined by putting
dP

dP

∣∣∣
Gk

= �k .
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If {φk} is a {Gk} adapted process then Bayes’ Theorem (4.1.1) implies

E[φk | Yk] = E[�kφk | Yk]

E[�k | Yk]
.

E[�kφk | Yk] is, therefore, an unnormalized conditional expectation of φk given Yk . The
denominator E[�k | Yk] is a normalizing factor.

For r ∈ �(N ) write qr (k) = E[�k I (X (k) = r ) | Yk]. Note that
∑

r∈�(N ) I (X (k) = r ) =
1 so that

∑
r∈�(N ) qr (k) = E[�k | Yk].

We then have the following recursion.

Theorem 7.2.3 If
Y (k) = (Y1(k), Y2(k), . . . , Yn(k)) = (y1, y2, . . . , yn) ∈ �(N ),

qr (k) = n−M
( r1

N

)y1
( r1

N

)y2

. . .
(rn

N

)yn ∑
s∈�(N )

prsqs(k − 1).

(Note we take 00 = 1.)

Proof

qr (k) = E[�k I (X (k) = r ) | Yk]

= E[�k I (X (k) = r ) | Yk−1, Y (k) = (y1, y2, . . . , yn)]

= E[�k−1γ k I (X (k) = r ) | Yk−1, Y (k) = (y1, y2, . . . , yn)]

= n−M
( r1

N

)y1
( r2

N

)y2

. . .
(rn

N

)yn

E[ �k−1 I (X (k) = r )

×
( ∑

s∈�(N )

I (X (k − 1) = s)

)
| Yk−1]

= n−M
( r1

N

)y1
( r2

N

)y2

. . .
(rn

N

)yn

E[ �k−1

×
( ∑

s∈�(N )

(X (k − 1) = s)

)
prs | Yk−1]

= n−M
( r1

N

)y1
( r2

N

)y2

. . .
(rn

N

)yn ∑
s∈�(N )

prsqs(k − 1).

Remarks 7.2.4

P(X (k) = r | Yk) = E[I (X (k) = r ) | Yk]

= qr (k)∑
s∈�(N ) qs(k)

.

To obtain the expected value of X (k) given the observations Yk we consider the vector of
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values r = (r1, r2, . . . , rn) for any r ∈ �(N ). Then

E[X (k) | Yk] =
∑

r∈�(N ) qr (k) · r∑
s∈�(N ) qr (k)

.

Unfortunately this does not have the simple form of (7.1.1).
Also note that the transition probabilities prs can be re-estimated using the techniques

described in Chapter 2 of [10]. �

7.3 Approximate formulae

Unfortunately the recursion for qr (k) given by Theorem 7.2.3 is not easily evaluated. One
approximation would be to use a smaller value N ′ for N in the summation. To obtain
nontrivial partitions of N ′ into n summands, N ′ should be greater than n. Substitution of the
observed Y (0), Y (1), Y (2), . . . then would give a sequence of approximate distributions.

Alternatively, one could replace the martingale “noise” in the dynamics of X (k) by Gaus-
sian noise ([23]). To describe this, first suppose the n states of the individuals in the popu-
lation are identified with the unit (column) vectors e1, . . . , en , ei = (0, . . . , 1, 0, . . . , 0)′ of
Rn . Let Xi (k) ∈ {e1, . . . , en} denote the state of the i-th individual at time k. Then for each
i, 1 ≤ i ≤ N , Xi (k) behaves like a Markov chain on (�,F, P) with transition matrix P .
Consequently,

Xi (k) = P Xi (k − 1) + Mi (k), (7.3.1)

where E[Mi (k) | Gk−1] = E[Mi (k) | Xi (k − 1)] = 0.
Write p(0) = (p1(0), . . . , pn(0))′ = E[Xi (0)]. Then from (7.3.1)

E[Xi (k)] = p(k) = Pk p(0).

For (column) vectors x, y ∈ Rn write x ⊗ y = xy′ for their Kronecker, or tensor, product,
and diag x for the matrix with x on the diagonal.

Then, because Xi (k) is one of the unit vectors e1, . . . , en ,

Xi (k) ⊗ Xi (k) = diag Xi (k)

= P diag Xi (k − 1)P ′ + Mi (k) ⊗ (P Xi (k − 1))

+ (P Xi (k − 1)) ⊗ Mi (k) + Mi (k) ⊗ Mi (k)

= diag P Xi (k − 1) + diag Mi (k).

Taking the expectation, we have

E[Mi (k) ⊗ Mi (k)] = diag Pp(k − 1) − P diag p(k − 1)P ′

= Q(k), say.

For i �= j the processes Xi and X j are independent.
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240 A genetics model

Define

X (k) =
∑N

i=1 Xi (k)

N
,

M(k) =
∑N

i=1 Mi (k)

N
.

The (vector) process X (k) describes the actual distribution of the population at time k. Its
components sum to unity and

X (k) = P X (k − 1) + M(k). (7.3.2)

Also, by independence, E[M(k) ⊗ M(k)] is also equal to the matrix Q(k).
The suggestion made in [23] is to replace the martingale increments M(k) in (7.3.2) by

independent (vector) Gaussian random variables W (k) of mean 0 and covariance Q(k).
Write φk(w) for the normal density on Rn of mean 0 and covariance Q(k).

That is, suppose the signal process X (k), taking values in Rn , has dynamics

X (k) = P X (k − 1) + W (k).

For y = (y1, y2, . . . , yn) ∈ �(M) and x = (x1, x2, . . . , xn) ∈ Rn , x �= 0, define

ρ(x, y) = |x |−M |x1|y1 |x2|y2 . . . |xn|yn ;

set ρ(0, y) = 0 for y ∈ �(M).
The observation process still gives rise to Y (0), Y (1), . . . , Y (k) ∈ �(M) and for y ∈

�(M), x ∈ Rn we suppose

P(Y (k) = y | X (k) = x) =
(

M
y1 y2 . . . yn

)
ρ(x, y).

Starting with the probability P , now define γ k = n−Mρ(X (k), Y (k)), and �k = ∏k
�=0 γ �.

Again P can be defined in terms of P by setting
dP

dP

∣∣∣
Gk

= �k .

Suppose f : Rn → R is any measurable “test” function. Consider

E[ f (X (k)) | Yk] = E[�k f (X (k)) | Yk]

E[�k | Yk]
.

Suppose there is an unnormalized conditional density qk(x) such that

E[�k f (X (k)) | Yk] =
∫

Rn

f (x)qk(x)dx .

The next result gives a recursion for qk which is the analog of Theorem 7.2.3.

Theorem 7.3.1

qk(z) = n−Mρ(z, y)
∫

Rn

φk(z − Px)qk−1(x)ds.
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Proof

E[�k f (X (k)) | Yk] =
∫

Rn

f (z)qk(z)dz

= n−M E[�k−1ρ(X (k), Y (k)) f (X (k)) | Yk]

= n−M E[�k−1ρ(P X (k − 1) + W (k), y)

× f (P X (k − 1) + W (k)) | Yk−1, Y (k) = y]

= n−M E[�k−1ρ(P X (k − 1) + W (k), y)

× f (P X (k − 1) + W (k)) | Yk−1]

= n−M E[ �k−1ρ(P X (k − 1) + W (k), y)

× f (Px + w)φk(w)qk−1(x) | Yk−1]

= n−M
∫ ∫

ρ(z, y) f (z)φk(z − Px)qk−1(x)dzdx .

As this identity holds for all such f the result follows.
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