
THE GENETICS OF FAMILIES

A. The concepts of probability and independence
The main mathematical concept needed in genetics is that of
probability. When we speak of the 'probability' of an event, we
mean the frequency with which that event occurs in a long sequence
of trials. Thus the probability that a six will turn up in a single throw
of a six-sided die is approximately 1/6. For most dice it is not
exactly 1/6, because the spots are marked with small depressions
on the surface, so that the six face is lighter than the others and
so finishes uppermost more often. The important points then
are:

(i) The probability of an event is defined as the frequency with
which it occurs in a long sequence of trials: i.e. it is the number of
'successes' (e.g. sixes) divided by the total number of 'trials' (e.g.
throws). A probability is therefore a number lying between o (the
event never happens) and i (the event always happens).

(ii) All statements of probability rest ultimately on empirical
measurements. Thus we know that the probability of a six is 1/6,
not merely because a die has six sides, but because such dice have
been thrown a large number of times, and the six falls upper-most
on about 1/6 of the throws.

To take a genetical example, it is approximately true that the
probability that baby born in this country will be a boy is one half.
Actually the fraction of all babies born that are boys varies somewhat.
In England and Wales at the present time approximately 106 boys
are born for every ioo girls; but to simplify the argument the
proportion of boys will be taken to be exactly one half.

We can then ask the question: what is the probability that a family
consisting of two children will consist of two boys ? A simple but
erroneous argument is as follows: there are three possible kinds of
family—two boys, two girls, and one boy and one girl—so the
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58 GENETICS OF FAMILIES

probability of two boys is one third. The argument is false because
families of one boy and one girl are more probable (i.e. occur more
frequently) than the other two kinds of family.

There are two lines of argument which lead to the correct con-
clusion. The first is to argue that when birth order is taken into
account, there are four kinds of family and not three—boy boy, boy
girl, girl boy and girl girl. If we assume that these four are equally
frequent, the probability of two boys is one quarter. Observation
shows this answer to be correct, but why was it correct to assume
that these four kinds of family are equally frequent ?

The assumption that has been made becomes a little clearer if we
express the argument in a different form, as follows. In one half of
all families of two, the older child is a boy; and in one half of these,
the second child is also a boy. Hence the probability of two boys is
i x i = i- Similarly, the probability of each of the other kinds of
family is J. In this argument, we have not only assumed that half
of all births are boys, but also that this remains true of the second
child when it is known that the first child was a boy. In other words,
we have assumed that the sex of the second child is independent of
that of the first.

The concept of independence is important. It is defined as follows.
Let there be two events, A and B, with probabilities P(A) and P(B).
The events are independent if the probability that both occur,
P(A and JS), is equal to P(A) x P(B). In other words, two events are
independent if the frequency with which both events occur is equal
to the product of the frequencies of the two events taken singly. In
the example, event A is that the older child is a boy, and event B that
the younger child is a boy; we assumed that the probability that
both are boys is equal to P(A) x P(B).

The grounds for assuming that two events are independent are
ultimately empirical. Thus if one quarter of all families of two
children in fact consist of two boys, we can take this as evidence
that the sexes of the first and second child are independent. Actually
there are slightly more families of two boys than would be expected
from the frequency of male births. There are many possible reasons
for this; for example, some women may provide a uterine environ-
ment more favourable to the survival of male foetuses, others of
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PROBABILITY AND INDEPENDENCE 59

female foetuses. But the effect is a small one, and in what follows
I shall assume that the sexes of successive births are independent.

To summarise:
(i) The probability of an event is the frequency with which it

occurs in a long sequence of trials. If two events are mutually
exclusive and the only ones possible (e.g. head and tail in a single
toss, or boy and girl in a single birth), and their probabilities are/)
and q respectively, then p + q = i.

(ii) Two events are said to be independent if the probability
that both occur (e.g. that in two tosses of a die, both are sixes) is equal
to the product of the probabilities of the two events taken separately
(i.e. 1/6 x 1/6 = 1/36).

(iii) Statements about the probabilities and about the inde-
pendence of events rest ultimately on empirical evidence.

B. The binomial theorem
Assuming that the sex ratio is 1:1 and that the sexes of successive
children are independent, we can ask what is the probability, in a
family of three children, of 1 boy and 2 girls. It is fairly easy to see
the answer to this question, but as an introduction to more difficult
questions it is worth taking it slowly.

We first ask what is the probability of a particular kind of family,
taking into account birth order, with 1 boy and 2 girls—for example
boy girl girl. The answer is clearly \ x \ x \ = %.

Next we ask how many kinds of families there are with 1 boy and
2 girls. The answer is three—boy girl girl, girl boy girl and girl
girl boy. Hence the probability of a family with 1 boy and 2 girls is
3x1 = 1-

This is an example of a theorem known as the binomial theorem.
Before stating this in its general form, a more difficult example will
be given. If an albino and a coloured mouse are crossed, the F± (i.e.
the first generation offspring) are coloured, and in the F2 (i.e. the
second generation obtained by mating together two individuals
from the Fx) we * expect' 3 coloured to 1 white. By * expect *, we mean
that if we count a large number of offspring from such crosses, one
quarter will be white. Suppose we have a single litter of 5 F2 mice;
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60 GENETICS OF FAMILIES

what is the probability that it will consist of 3 coloured and 2 white
mice?

As before, we calculate first the probability of a particular litter,
allowing for birth order; for example, a litter in which the first two
mice born were white and the last three coloured, represented as
follows:

birth position 1 2 3 4 5
colour O O • • •

The probability that the first two mice will be white is J x J, and
that the last three will be coloured is § x f x f. Hence the probability
of this particular litter is (J)2 (f )3.

We now want to know how many kinds of litter there are with two
white mice, allowing for birth order. This is equivalent to asking * In
how many ways can I select two birth positions, corresponding to
the two white mice, out of five ?' The first position can be selected in
5 ways, and once this has been done, there are 4 ways in which the
second position can be selected. This might suggest that there are
5 x 4 = 20 kinds of litter, but this is a mistake. In the twenty litters,
we would count the litter represented above twice; we would count
a litter in which the first birth position was selected first and the
second birth position was selected second, and also a litter in which
the second position was selected first and the first position was
selected second. The same is true for all other kinds of litter—for
example, O • • • O. Thus the number of distinguishable kinds of
litter is K5 x 4) = 10. You should satisfy yourself of the truth of this
statement by listing the ten possible litters.

Hence the probability of a litter with 2 white and 3 coloured mice is

Notice that the answer could be written

where 5! denotes 5 x 4 x 3 x 2 x 1 , and is read as * 5 factorial'.
This suggests the following general theorem: If in each of
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THE BINOMIAL THEOREM 61

n independent trials, the probability of a success is p> then the
probability of r successes is

I

r\(n-r)\p{ p) m

If, as is customary, we write i — p = q, we can reformulate this
theorem as follows:

If in each of n independent trials the probability of a success is/>,
the probabilities of o, 1,2, ...,r,...,» successes are given by suc-
cessive terms of the expansion of (q+p)n... i.e. by

, ...p*.

No formal proof of this theorem will be given. The proof
resembles that given in the particular case just considered. Thus the
probability that the first r trials out of n are successes and the rest
failures ispr(i —p)n~r, and the number of ways of choosing r objects

(i.e. successful trials) out of n (total trials) is -., * . . .

This * binomial theoremr can be used to calculate the probability
of any particular family from known parents. There is one additional
trick which is often useful in calculating probabilities. Suppose for
example that we want to know the probability that, in a litter of 8 F2

mice from a cross of an albino to a coloured mouse, there will be at
least one white mouse. It would be very laborious to calculate the
probabilities that there will be 1,2,3 ... up to 8 white mice, and add
these probabilities together. Fortunately there is no need. We
calculate the probability that there will be no white mice, i.e.

P(o) = (f)8 ~ O-IOOI.

Then the probability that there is at least one white mouse
follows directly, because

P (at least 1) = 1 -P(o) ^ 0-8999.

In other words, when it is laborious to calculate the probability
that something will happen, try calculating the probability that it
won't.
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62 GENETICS OF FAMILIES

c. Conditional probability
So far we have considered only events which are independent. But
we often want to know the probability that two events will occur,
when the probability of one of them depends on whether the other
has or has not occurred.

What for example is the probability that two cards drawn at
random from a pack are both spades ? The probability that the first
card drawn is a spade is 13/52 = J. Once a spade has been drawn,
there are 51 cards left in the pack, of which 12 are spades. Hence the
probability that the second card is a spade, given that the first one is,
is 12/51 and not J. Hence the probability that both are spades is
| x 12/51 = 1/17. (At this point, you should ponder the fact that
the same conclusion would follow if both cards were drawn
simultaneously).

This class of problem arises in contexts other than gambling.
Suppose for example we want to know the probability that a girl who
is a member of a family of three children has an older brother.
Obviously this will depend on whether the girl is the first, second or
third child in the family. To solve the problem, it will help to be
clear what we mean by probability in this case. A probability refers
to the frequency of 'successes' to 'trials'. In this case, we might
imagine ourselves collecting all the girls in this country, and asking
each one whether she belonged to a family of three children. Those
who answered yes would constitute our population of 'trials'. Each
of these would then be asked whether she had an older brother;
those answering yes a second time would be 'successes'.

Of girls belonging to families of three children:
J would be the first child, and of these none would have an older

brother;
^ would be the second child, and of these half would have an

older brother;
J would be the third child, and of these f would have an older

brother (1 - | = £ is the probability that, of two older sibs, at least
one is a boy).

Thus the required probability is
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CONDITIONAL PROBABILITY 63

The procedure adopted here is made easier in complex cases by
introducing a new notation. We write

P(A) = The probability (P) that A happens.

P(A\H) = The probability that A happens, given that H is the
case.

Then if Hly H2 and Hz are three states of affairs of which one and
only one is the case (Hiy H2 and H3 are then said to be ' mutually
exclusive and the only possible'), then

P(A) = P(A\HX) x P{HJ+P{A\Hj x P(H2)+P(A\H3) x P(HS).

No formal proof of this theorem will be given. It is merely a
shorthand way of writing the procedure adopted for the problem of
the girl and her elder brother, with A meaning' the girl has an elder
brother', and Hly H2 and Hs meaning that the girl is, respectively,
the first, second and third child out of three. The method can be
applied for any finite number of possible conditions Hiy H2y..., Hn.

Hly H2y etc., are sometimes referred to as 'hypotheses', but the
term is unfortunate, since it suggests that they resemble a universal
hypothesis such as Avogadro's hypothesis. If they did, it would be
absurd to write P(HX), etc., since one cannot sensibly speak of the
frequency with which Avogadro's hypothesis is the case. In the
example considered, Hu etc., refer to particular states of affairs
which are true in a certain proportion of cases.

The main utility of (4.1) will emerge in the next chapter, but a
few examples will be given here. Returning to the F2 between an
albino and a coloured mouse, suppose that a single coloured F2

mouse, whom we will call Minnie, is crossed to an albino, and a litter
of 5 obtained. What is the probability that all five are coloured?

Clearly this will depend on whether Minnie is homozygous
coloured (CC) or heterozygous for the albino gene (Cc). In the
former case all her offspring will be coloured; in the latter, we
expect 1 coloured to 1 albino. Thus we can write P (all 5 coloured) = P
(all 5 coloured I Minnie is CC) x P (Minnie is CC) + P (all 5 coloured |
Minnie is Cc) x P (Minnie is Cc) = 1 x 1 + (±)5 x f =* 17/48.

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511565144.006 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511565144.006


64 GENETICS OF FAMILIES

Now consider a more difficult example. Suppose that in man blue
eyes are recessive to brown—i.e. that BB and Bb have brown eyes
and bb have blue eyes (this is only approximately true). Suppose also
that in a particular human population 36 % of people have blue eyes,
16 % are homozygous for brown eyes, and 48 % are heterozygous.
Given that a man has blue eyes and has a brother, what is the
probability that the brother's eyes are also blue ?

Clearly this depends on whether the man's parents were, for
example, both bb, in which case the brother is certain to have blue
eyes, or were for example both Bb, in which case the brother may
well have brown eyes.

The first step is to set out a table, giving the different kinds of
marriage, with their frequencies, and the proportion of blue-eyed
children, as follows:

Father

BB
BB

bb

BB
Bb

Bb

Bb
bb

bb

Total 0*3600

In writing down the frequencies of different kinds of marriages,
we have assumed that the genotypes of husband and wife are
independent as far as eye colour is concerned. This would not be
the case if, for example, blue-eyed people tend to marry one another.
But some assumption has to be made if the original question is to be
answered.

It is easy to make mistakes when writing down tables of this kind;
fortunately a number of checks are available. First, since there are

X

X

X

X

X

X

X

X

X

Mother

BB

bb \
BB)
Bb \
BB)
Bb

bb \
Bb)
bb

Frequency
of

marriage
/

o-i6 xo-i6

2xo*i6 xo*36

2x0-16x0-48

0-48 x 0-48

2 x 0-48 x 0-36

0-36x0-36

Proportion
of blue-eyed
children in

family
P
0

0

0

1

i
1

Relative
proportions of

blue-eyed children
in population

n =fxp
0

0

0

0-0576

0-1728

0-1296
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CONDITIONAL PROBABILITY 65

3 kinds of parent there are 9 kinds of marriage, and we have listed
them all. Second, we should verify that the sum of the entries in the
/ column is unity. (A final check is provided by the fact that the
frequency of blue-eyed children, 0-3600, equals the frequency of
blue-eyed parents. But this is only the case, as will emerge in the
next chapter, because we have assumed' random mating', and have
chosen frequencies for the parental genotypes which fit the' Hardy-
Weinberg' ratio.)

It follows from the table that of all blue-eyed children, a fraction
0-0576, , , 0-1728, , ,
— r̂— have two brown-eyed parents, —-z— have one brown-eyed
0-3600 0-3600

parent, and —j— have two blue-eyed parents.

We are now in a position to use (4.1) to calculate the probability,
P, that if a blue-eyed man has a brother, the brother will also have
blue eyes:

n 0-0576 - 0-1728 1 0-1296
P = — z z ~ x i + —7— X H — z ^ X I =0-64.0-3600 0-3600 0-3600

A reason why one might wish to find such a probability will
emerge later, when discussing twin diagnosis.

D. Inverse probability
Calculations of probability start by assuming the truth of some
general propositions (e.g. that half the babies born are boys, and
that the sexes of successive babies are independent) and calculating
the probability (i.e. frequency) of some particular event (e.g.
families of 2 boys and 2 girls). The problem of inverse probability
is to start from the fact that a particular event or group of events
takes place, and to calculate the probability that some general
proposition is true. So formulated, the problem is clearly insoluble,
and indeed is meaningless if by * probability' we mean * frequency of
occurrence*. General propositions cannot be true in a certain
proportion of cases.

Thus suppose for example we use the genes vestigial and arista-
pedia in Drosophila in an experiment intended to test Menders law
of independent assortment, and obtain in the F2 numbers closely
agreeing with the' expected * 9:3:3:1 ratio. We cannot then ascribe
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66 GENETICS OF FAMILIES

a numerical value to the probability that Mendel's law is true,
because a probability is a measure of frequency, and Mendel's law
is not sometimes true of vestigial and aristapedia and sometimes
false.

What we can do is calculate the probability of getting this observed
result if Mendel's law is true. We can go further, and calculate,
again assuming Mendel's law is true, the probability of obtaining a
result whose fit with the expected ratio is as bad as or worse than the
one we actually obtained—this is what is usually calculated in
statistical * significance tests'. But there is a class of problems in
which we adopt a kind of inverse argument to calculate the
probability that some proposition is true. The proposition must
not be a general one, but one which is sometimes true and sometimes
false. An example will make the method clear.

Suppose that a woman of blood group O marries an AB man, and
has a pair of boy twins of blood group B. If this is all we know, what
is the probability that the twins are monovular—i.e. from a single
egg?

Our difficulty is this: if we knew that a pair of twins from such a
marriage were monovular, it would be easy to calculate the
probability that both had the B blood group; but we have been
asked to solve the inverse problem. However, let us do the easy part
first. The genetics of the situation is as follows:

o
o x

i

A
B

i.e. group A i.e. group B

Thus for binovular twins, the probability of two B children is
i x \ — J. For monovular twins, the probability that the first born
is B is ^; if he is, the second is sure to be. Hence the probability of
two B twins is ^.

Using the notation introduced on page 63, we will write these
conclusions as follows:

P(2B|bin) = J; P(2B|mon) = f.
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INVERSE PROBABILITY 67

What we want to know is P(mon|2B)—i.e. the probability that
the twins are monovular if both are B. This problem we can only
solve if we have some a priori knowledge of the frequency of mono-
vular and binovular twins, knowing only that they are of the same
sex.

This we can deduce from the observation that 32 % of all twin
pairs are of unlike sex (the proportion varies from population to
population). These 32 % are necessarily all binovular, and since
equal numbers of binovular pairs will be of like and of unlike sex,
a further 32 % of twin pairs must be binovular pairs of like sex,
giving 64 % of binovular pairs in all. This leaves 36 % of mono-
vular pairs. The argument is illustrated in fig. 20.

Deduced Known

36% 32% 32%

Like Unlike

sex

Monovular Binovular

Fig. 20. Method of estimating the frequency of monovular twins.

It follows that of all like-sex twins, a fraction 0-36/0-68 are mono-
vular, and 0-32/0-68 are binovular.

Hence, if we were to collect all the pairs of boy twins from
marriages of O $ x AB(J we would find

O"32
—77; x i are binovular, and both B,
o-oo

and —^ x I are monovular, and both B.
O'Oo
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68 GENETICS OF FAMILIES

Hence, the probability that a pair of boy twins are monovular,
given that they are both B, is

o-^6 i /o^6 i o-^2 i\ o
o-68 2 \o-68 2 o-68 4/ 13

This is the solution to our problem. Notice that if we had written
the a priori probabilities that a like-sex twin pair are monovular and
binovular as P(mon) and P(bin) respectively, our solution has the
form

p( . m P(2Blmon)xP(mon)
t m O n | j P(2B|mon) xP(mon) + P(2B|bin) xP(bin)*

This is a special case of Bayes' theorem. Thus suppose Hx and H2

are propositions of which one and only one is true, and B is some
result whose probability depends on which proposition is true. The
probability that both H1 and B are true can be written P(H± + B).

Then P(HX + B) = P(#2) PiB]^)

and similarly P(^ + B) = P{B)P^B).

and P(B) =

and so

which is Bayes' Theorem. The theorem can be extended to cases
where three or more alternative a priori propositions exist. The
theorem can be used to calculate the a posteriori probability of some
proposition Hv in the light of additional evidence B, provided that

(i) a priori probabilities of Hx and not -^ , in the absence of
knowledge about By are known.

(ii) the probability of J5, given that H1 or n o t - ^ is the case,
can be calculated.

The first point is crucial; in the examples considered, the
frequency of monovular pairs among like-sexed twins was known.

The theorem can be applied to twin diagnosis even if the geno-
types of the parents are not known, provided that the frequencies of
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genotypes in the population are known and that random mating
can be assumed. For example, what is the probability that two blue-
eyed boy twins are monovular ? With the usual notation

p( , M _ P(26|mon)P(mon)
t\mon\2O) - p ( 2 i | m o n ) p ( m o n ) + p( 2 6 | b i n )p( b i n ) -

Now, if we assume the same genotype frequencies as on page 64,
36 % of people have blue eyes.

Hence P(26|mon) = 0-36.
We have already calculated that for a pair of brothers, and hence

for a pair of binovular twins, if one has blue eyes, there is a proba-
bility of 0-64 that the other has. Hence

P(26|bin) = 0-36 x 0-64.

And assuming as before that

P(mon) = 0-36/0-68 and P(bin) = 0-32/0-68,
we have

P(mon| 2b) = 0-36 x 22* + (0-36 x ̂ g + 0-36 x o-64 x 22|)

= 0-638.

Before it was known that both twins were blue-eyed, the
probability that they were monovular was 0-36/0-68 = 0-530; the
additional evidence has raised the probability to 0-638.

Examples
1 Two unbiased dice are thrown. What is the probability that

the numbers showing (a) add up to 9; (b) differ by 2; (c) are different ?
2 A red and a green die are thrown. What is the probability that
(a) the number on the red die is even and the number on the

green die is less than 3;
(b) the number on the red die is less than three or the number on

the green die is more than three;
(c) the number on the red die is 5 given that the sum of the spots

on the two dice is 9 or more ?
3 5 cards are drawn from a normal pack of 52. What is the
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70 GENETICS OF FAMILIES

probability that (a) they are all the same suit; (b) they include
4 aces ?

4 Albinism in mice is due to a recessive gene. An albino is
crossed to a pure-bred coloured mouse, and a second generation
(F2) litter of 4 mice is obtained (expectation, 3 coloured: 1 albino).
What is the probability that the litter will contain

(a) 3 coloured and 1 albino;
(b) at least 1 albino;
(c) 1 albino, 2 heterozygous coloured, 1 pure-bred coloured;
(d) 2 albino females and 2 coloured males ?
5 What proportion of girls from families of 4 children have at

least two older brothers ?
6 (a) A coloured mouse called Minnie from an F2 litter similar

to that described in question 4 is crossed to an albino male. She has
a litter of 5. What is the probability that at least one of them is an
albino ?

(b) In fact, Minne's litter consists of 5 coloured mice. What is the
probability that Minnie carries an albino gene ?

7 Of three prisoners, Matthew, Mark and Luke, two are to be
executed, but Matthew does not know which. He therefore asks
the jailer * Since either Mark or Luke are certainly going to be
executed, you will give me no information about my own chances
if you give me the name of one man, either Mark or Luke, who is
going to be executed.' Accepting this argument, the jailer truthfully
replied' Mark will be executed\ Thereupon, Matthew felt happier,
because before the jailer replied his own chances of execution were
2/3, but afterwards there are only two people, himself and Luke,
who could be the one not to be executed, and so his chance of
execution is only J.

Is Matthew right to feel happier ?
(This should be called the Serbelloni problem since it nearly

wrecked a conference on theoretical biology at the villa Serbelloni
in the summer of 1966; it yields at once to common sense or to
Bayes' theorem.)
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