
THE GENETICS OF POPULATIONS

The fundamental idea of population genetics is that of a 'gene
frequency'. Consider a population of diploid organisms, and sup-
pose that at a particular locus there are two, and only two alleles,
A and a, present in the population. Then there are three possible
genotypes present in the population, AA, Aa and aa. In principle it
would be possible to count these genotypes and find their pro-
portions, PAA:QAa:Raa, where P+Q + R = i. (In practice, it is
usually difficult to distinguish the heterozygote Aa from one of the
homozygotes AA or aa.) P, Q and R are then the genotype fre-
quencies. From them we can calculate the gene frequencies pAiqa
aS follows:

In so doing, we have 'counted* the A and a genes in the popula-
tion, by allowing two A genes in an AA homozygote, two a genes in
an aa homozygote, and one A and one a gene in an Aa hetero-
zygote.

A. The Hardy-Weinberg ratio
The relations (5.1) hold for all 'autosomal* (i.e. not sex-linked) loci
in a diploid, whatever the mating system. The relations enable us to
calculate p and q if we know P, Q and R. Thus if a population
consists of 60 % AA> 10 %Aa, and 30 %aa> then p = 0-65 and
q = 0-35. But the reverse is not true; we cannot calculate P, Q andi?
merely from a knowledge of p and q.

It is however possible to find P, Q and R iromp and q if we assume
' random mating'; that is, if we assume that the probability that an
individual will mate with an AA> Aa or aa partner is independent of
the genotype of the individual. Thus, if the frequences of genes A
and a are p and q respectively, the probability that a child will
inherit gene A from its father is p. The probability that a child will
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72 GENETICS OF POPULATIONS
inherit gene A from its mother is likewise p> and, if mating is
random, is independent of whether the child also inherited gene A
from its father.

Hence the probability that a child inherits gene A from both
parents is p2, and this is equal to P, the frequency of the AA geno-
type in the population.

This argument can be extended in a tabular form:

frequency

pq
pq

Hence the * Hardy-Weinberg* ratio, which states that if in a
diploid population two allelic genes are present in the frequencies
pAiqa, then random mating will give rise to zygotes with genotypes
in the proportions/)2AA:2pqAa:q2aa. This ratio is reached in a
single generation of random mating, whatever the genotype
frequencies in the parental population.

The Hardy-Weinberg ratio is widely assumed to be true in
population genetics. The assumption is justified only if mating is
random for the genotypes concerned. How are we to decide whether
mating is random ? In general we cannot. But if we can identify all
three genotypes in a sample of a population, we can count them and
see whether they agree with the Hardy-Weinberg ratio. If they do,
this confirms that mating is random. For example, mating has been
shown to be near enough random in this way for blood groups in
man, and for black, ginger and tortoise-shell in London's cats. On
the other hand, it is known that tall people tend to marry one another,
and likewise short people, so mating is not random for genes
affecting height. Finally, if we count genotypes in an adult popula-
tion and find that they depart significantly from the Hardy-
Weinberg ratio, this does not prove that mating is non-random;
the discrepancy could equally well be caused by differential
mortality.
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B. Selection
Suppose that in a random-mating population there are two allelic
genes A and a, A being dominant to a, and that the probabilities of
survival from fertilised egg to breeding adult are:

for AA and Aa9 S
and for aa, S(i — k).

Thus if k is positive, aa has a lower * fitness' than AA or Aa, It is
assumed that the fertilities of the three genotypes are the same.
What will happen to such a population, and how rapidly will it
happen? For simplicity, we will assume that generations are
separate. The procedure is then to calculate the gene frequency in
one generation in terms of the gene frequency at the same stage of
the preceding one.

Let the frequency of A in the adults of the nth generation bepn.
Then with random mating, zygotes of the (n+ i)th generation will
be formed with the frequencies.

plAA:zpn(i -pn)Aa:(i -pnfaa.

The adults of the (n -f i)th generation will then be in the relative
proportions:

SplAA-.2SPn{i -pn)Aa:S{i -pnf{i -k)aa. (5.2)

And/>w+1, the frequency of A genes in the adults of the (n+ i)th
generation, could then be found by * counting' the A genes as a
fraction of all genes in (5.2). However, this procedure leads to a
rather clumsy expression forpn+1 in terms of pn. It turns out that we
get a neater expression if we work with un = pj(i ~pn); i.e. the ratio
of A genes to a genes in the nth generation.

Thus if we divide each term in (5.2) by (1 —pn)
2, we see that the

adults in the (n + i)th generation are formed in the proportions

Si&AA:zSunAa:S{i-k)aa,

and hence un+1 = -^ ^~——~ = - ^ - ^ — / . (5.3)
71+1 zSu + 2S(i-k) un+i-k ° *'

This is a recurrence relation which enables us to calculate the
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74 GENETICS OF POPULATIONS

frequency of A genes in the (n+ i)th generation in terms of the
frequency in the nth generation. Knowing the initial frequency of
gene A, and the ' selective disadvantage' k of aa> we could calculate
the frequency of gene A in any subsequent generation by numerical
iteration.

It would be convenient to find an analytical solution of (5.3), so
that we could find for example u100 in terms of u0 and k without the
labour of 100 iterative steps. Unfortunately, this is not in general
possible. However, it is possible to solve the important case when k

n n+l

Fig. 21. The solution of a recurrence relation which could safely
be replaced by a differential equation.

is small (say o-oi or less). This we do by turning (5.3) into a dif-
ferential equation—a procedure which is only justified when the
change in un in one generation is not greatly different from the change
in the preceding and in the following generation. Thus fig. 21 shows
a possible graph of un against n which satisfies this condition. The
graph consisting of a series of straight segments can safely be
replaced by a continuously curving one whose slope at generation n
is given by
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i.e. by a graph whose equation is

dn n+1 n'

We will therefore replace equation (5.3) by

Before attempting to solve (5.4), we note that if k is small,
un+1-un does not change rapidly with time, so it is safe to replace
the recurrence relation by a differential equation. Also, if k is small,
(5.4) can be replaced by dun _ k^_

~dn~un+i- ( 5 ' S )

This is a differential equation with variables separate, so that

J(i + i/un)dun = kjdn = kn.

^. (5.6)

Thus suppose we have a recessive gene with a selective dis-
advantage of 1 % (k = o-oi) and an initial frequency of 99-9 %.

Then un = ^ o-ooi, and hence
0-999

kn = wn - o-ooi+In ^ ; . (5.7)

From (5.7) we can calculate the number of generations taken for
a given change in gene frequency, as shown in table 1.

Table 1

Pn

O'OOI

O'OI

o-i

o-S
o-9
0-99

0-999

Un

O'OOI

O'OI

O'lII

I'O

9
99
999

Un

O'OOI

I

10

III

1,000

9,000

99,000

999,000

In Un

inO'OOI

0

2-303

4-71

6-91

9'ii

n-52

13*83

kn

0

2-312

4-82

7-91

I8-II

110-52

1012*83

n

0

231

482
791
1811

11052

101283
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76 GENETICS OF POPULATIONS

Thus with a i % advantage, an initially rare dominant gene will
increase in frequency from o-i % to 10 % in 482 generations, from
10 to 90 % in 1329 generations, and will take almost one hundred
thousand generations to increase from 90 to 99-9 %. The slowness,
with which the recessive is finally eliminated is due to the fact that
a rare recessive is almost always present in heterozygotes, and so is
not exposed to selection; for the same reason a rare but advantageous
recessive gene increases in frequency very slowly.

c. Selection when all three genotypes have different fitnesses
If the fitnesses of the three genotypes have the relation

AA <Aa< aa,

then A will be replaced by a, as in the case when AA = Aa < aa,
but at a greater rate, particularly when a is rare. But a novel type of
behaviour arises when AA < Aa > aa; it will now be shown that an
equilibrium exists with both A and a present in the population.

Let̂ > be the frequency of gene A in the adult breeding population
in the nth generation, and let q = 1 —p be the frequency of a. Let the
relative fitnesses of the three genotypes AA, Aa and aa be
i-K:i:i-k.

Then if N zygotes are formed by random mating, we have:

genotype
AA
Aa
aa

number of
zygotes

Np2

zNpq
Nq*

Total N

number of surviving
adults in generation (n +1)

Np\i-K)
zNpq
Nq\i-k)
N(i-Kp2-kq2).

Then the number of A genes in the adult population is

zNp2(i -K) + zNpq = zNp(p -pK+q)

= zNp(i -pK).

Hence ifp' is the frequency of gene A in the n+ ith generation,

_ 2Np(i-pK)
P ~ 2N{l-Kp*-hfY KS '
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Now if the population is in equilibrium, p does not change from
generation to generation; i.e. p = p\ and so at equilibrium either

p = o or i -Kp2-kq2 = i -pK.

Substituting q = i — p, and collecting terms in p2 and p, this
becomes (K+k)p2 ~(K+ zk)p + k = o,

.'. (p-i)[(K+k)p-k]=oy

or at equilibrium p = o or i or -=—7. (5*9)

The equilibria at/) = o and 1 are trivial, but that at/) = k/(K+k)
is of great interest. An equilibrium is only meaningful if p lies
between o and 1, and this requires that K and k have the same sign.
Thus an equilibrium exists if the heterozygote is the fittest of the
three genotypes, (K and k positive), or if the heterozygote is the
least fit (K and k negative).

Are these equilibria stable ? We can get a preliminary answer by
asking how the gene frequency will change when A is rare, and when
a is rare. Consider the case when K and k are positive. When A is
rare, most A genes occur in heterozygotes (i.e. Aa is much com-
moner than AA), Then since k is positive, Aa is fitter than aay and
since AA is too rare to influence the result, A will increase in
frequency. Similarly, when a is rare it will increase in frequency if K
is positive.

It follows that when K and k are positive (i.e. the heterozygote
is the fittest of the three genotypes) the equilibrium is stable;
similarly, when K and k are negative, the equilibrium is unstable.

But this argument does not tell us whether, when K and k are
positive, p will oscillate about its equilibrium value.

To settle this question we investigate small departures from the
equilibrium.

In the nth generation, let p = k/(K+k) + d> where S is a small
departure from the equilibrium, and let/)' = kl(K+k) + 8'.

These values can be substituted in equation (5.8). After some
algebraic manipulation, the resulting equation reduces to

* +K+k [K+k
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78 GENETICS OF POPULATIONS

This can be further simplified if we remember that since 8 is
small, terms in 82 can be ignored. Hence

8 = K+k-Kk S- ( 5 ' I 0 )

Let -rp—z—=pr = R- Then if R lies between o and i, the equi-
K. + k — J\.R

librium is stable and non-oscillatory. In fact, when the heterozygote
is the fittest of the three genotypes these conditions are satisfied.
In this case, K and k are positive, but both must lie between o and i,
since if for example K > i, then i — K, the fitness of AA, would be
negative, and negative fitnesses are meaningless. If K and k lie
between o and i, it is easy to verify that R also lies between o and i.

If K and k are both negative, R > i, and the equilibrium is
unstable. If K and k have different signs, it has already been shown
that no equilibrium exists.

D. The balance between selection and mutation

What will be the frequency of a gene which reduces fitness, but
which is continuously reappearing by mutation ?

This problem will first be solved for a deleterious dominant gene
A, such that if the fitness of the 'normal' recessive homozygote aa
is i, the fitness of AA and Aa is i — K. K is then a number between
o and i.

The 'mutation rate' from a to A will be taken as ju,. This has the
following meaning. Every gene present in a zygote has arisen by
a series of replications from a gene present in the zygote from which
one of its parents developed. The mutation rate fi is the probability
that a mutation has taken place in this time interval of one generation.

Knowing fi and Ky we want to find/>#, the equilibrium frequency
of gene A. Before proceeding in detail, it will help to outline the
method to be adopted:

(i) We assume that in one generation of zygotes the frequency of
A is/) and of a is q, wherep + q = i.

(ii) We then calculate successively the effects on p of selection
and of mutation, and hence find the value/)' of the frequency of A
in the next generation of zygotes, in terms of fi and K.
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(iii) We then argue that at equilibrium there is no change in gene

frequency, and hence that ̂  = pf = pE.
In the initial population of zygotes, if mating is random, the

genotype frequencies are p2AA:zpqAa:q2aa. Thus if we start
with a population of N zygotes and hence of zN genes, we have
after selection:

genotype
AA
Aa

aa

Total

number after
selection xi/N

p^i-K)
Zpq(l-K)

q2

i-K(p2+2pq)

gene
A
a

number after
selection xi/N

(2p*+2Pq)(l-K) = 2p(l-K)
2q2 + 2pq (i -K) = 2q - 2pqK
Total 2-2Kp(i+q)

= 2-2K(p2+2pq)

Note that the totals check; the number of genes is twice the
number of individuals.

Mutation does not alter the total number of genes, but increases
the number of A genes by /i{zq — 2pqK)y and decreases the number
of a genes by the same amount. Hence after selection and mutation
the frequency of A is

P 2

p-pK+fiq-fipqK

This expression can be greatly simplified if we make the assump-
tion that p is very small. The assumption is justified because
mutation rates are small (of the order of io~5 or less) and hence
genes which lower fitness can be maintained only at very low
frequency by mutation.

If p is small, i —Kp(p + 2q) ^ i, and /ipqK in the numerator is
small compared to /iq. Hence (5.11) becomes

p' =p-pK+/iqy
and at equilibrium

PE=PE~ KPE

or pE = — ^ — ~ -^. (5.12J

This simple result could have been reached more quickly if it
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80 GENETICS OF POPULATIONS

had been assumed from the outset that p is small. Note that the
assumption is justified provided that [i <̂  K.

Equation (5.12) sometimes enables us to determine mutation
rates in human populations. Suppose we know F> the frequency at
birth of an abnormality determined by a dominant gene A. Then
provided that there is no difference in foetal mortality between
normal and abnormal individuals, and that mating is random,

F =p2 + zpq or, Up is small F ~ zp

FK
and hence fi = pK = — . {S^Z)

Now if the fitness of affected individuals is very low—either
through sterility or because they die before reaching reproductive
age—then K ~ 1, and the mutation rate ji equals half the frequency
of abnormal births.

In the case of a rare and harmful recessive gene a, with frequency
p, if the relative fitnesses of AA> Aa and aa are 1:1:1 — k, it can be
shown that at equilibrium 7 „ , x

H l* = kp\ (5.14)
If we again assume random mating and no foetal mortality, the

frequency of abnormal births is p2. However, we cannot use
equation (5.14) to estimate mutation rates from known frequencies
of abnormal births, for two reasons:

(i) Equation (5.14) assumes random mating. But in human popu-
lations cousin marriages, and other marriages between relatives,
occur frequently enough to have a large effect on the frequency of
individuals homozygous for rare genes (see p. 86, example 6). This
could perhaps be allowed for, but:

(ii) It is impossible to be sure that AA and Aa have the same
fitness. If Aa is only slightly fitter than AA, this would keep gene a
at a frequency considerably higher than could be maintained by
mutation alone.

E. Inbreeding

If two cousins marry, they may at any locus transmit to a child
a pair of genes both of which are derived by successive replications
from the same individual gene in one of the grandparents they have
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INBREEDING 81
in common. In other words, two DNA molecules, each of which is a
direct' copy' of the same DNA molecule in an ancestor, may come
together in a child.

In what follows, we will assume that two genes which are copies
of the same gene in a recent ancestor are identical; that is, we will
ignore the small probability that a mutation has occurred in the
recent past. We will also assume that two genes at the same locus
which are not copies of the same gene in a recent ancestor have a
probability Po of being identical; in general, we do not know the
value of Po.

We will now define the * coefficient of inbreeding' and the
' coefficient of parentage \

/, the coefficient of inbreeding, is a property of an individual.
It is the probability that, at any autosomal locus, the two genes
present in that individual are identical.

i?, the coefficient of parentage, is a property of two individuals.
It is the probability that, at any autosomal locus, if one gene is
drawn at random from each individual, those two genes will be
identical. (For those already familiar with population genetics R
corresponds to Malecot's 'coefficient de parente* when Po = o; I have
used definitions of / and R which are unorthodox but which seem
to me simpler to understand.)

It follows from these definitions that, if two individuals A and B
have an offspring C, then

RAB = 7 C {$-*$)

We will calculate first the value of / for individual C in the
pedigree shown in fig. 22. C is in fact the offspring of a mating
between half-sibs. Considering the two genes at any autosomal
locus in C:

where Ps is the probability that both genes in C are copies of the same
gene in male G.

Consider the gene which C inherits from A: there is a probability
of I that this gene was inherited from G; if so, there is a probability
of \ that G transmitted an identical gene to B; and if so, there is a
probability of \ that B transmitted an identical gene to C.
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82 GENETICS OF POPULATIONS

Hence Ps = (|)3,

and Ic = J + £P0.

The coefficient of parentage between half-sibs is likewise | + £P0.
The argument whereby Ps was calculated can be generalised. It

amounted to saying that a gene was certainly transmitted from A
to C, and that for each of the steps A-GyG-B and B- C, there

Fig. 22. Pedigree showing a mating between half sibs.

is a probability of J that an identical gene was transmitted. The
general proposition is then as follows:

If an individual C has parents A and B who have a common
ancestor G, and if the 'loop' C-A-X- Y - G - Z - J B - C has n
steps connecting parent and offspring, then

What if there are two common ancestors, as in the pedigree in
fig. 23, showing the mating of a bother and sister?

There are three mutually exclusive possibilities:
(i) the gene pair in C are copies of the same gene in Gv with

probability (|)3 = | ;
(ii) the gene pair in C are copies of the same gene in G2, with

probability | ;
(iii) the gene pair in C are not copies of a single gene in a recent

ancestor, with probability 1 — | — | = f.

Hence Ic = RAB =
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We are now ready to tackle the problem of the rate of approach to
homozygosity in a brother-sister mated line (fig. 24). Suppose that
a male and female are selected from a large population to be the
original parents (generation o) of such an inbred line, and that at
N loci the 4 genes present (2 in each parent) are all different.

0—3

- 2

A B

cf

?•

6«-i

Fig. 23. Pedigree showing
a mating between full sibs.

Fig. 24. Pedigree showing suc-
cessive generations of brother-
sister mating.

Then if for these loci In and Rn are the coefficients of inbreeding
and parentage respectively in the nth generation, we have, remem-

bering(5.I5) IQ = O a n d * o = 7 l = o. ( 5 , ? )

(If we supposed that the original parents were homozygous at all
loci, but homozygous for different alleles at iV loci, then for these
loci our initial conditions would be Io — 1 and Ro — I1 = o.)

We want to find /n, the proportion of N originally segregating loci
for which an individual in the nth generation is homozygous; since
In = i?w_i, this will also give a measure of the genetic similarity
between members of the population.

Consider a locus in an individual in the nth generation. There are
three mutually exclusive possibilities:

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511565144.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511565144.007


84 GENETICS OF POPULATIONS

(i) the two genes are copies of the same gene in the same grand-
parent, with probability ^ + f = £; if so, the probability that they
are identical is i ;

(ii) the two genes are copies of different genes in the same
grandparent, with probability J; if so, the probability that they are
identical is In_2;

(iii) the two genes are copies of genes from different grandparents,
with probability | ; if so, the probability that they are identical is
i?n_2 = In-v

Hence 4 = i + i4 -2 + 44-i>

or 4 4 = i + 4_ 2 + 24_1. (5.18)

Before finding an analytical solution of (5.18), its behaviour can
be investigated numerically. Thus from (5.17) Io = Ix = o, and
hence T ,, , , N

I2 = J ( i+o + o) = 0-25

73 = | ( i + 0 + 0-5) = 0*375

h = l(i +0-25 + 075) = 0-5

/5 = J(i+o-375 + i) = 0-594

h = i(i+o-5 + i'i88) = 0-672 and so on.
Thus after 6 generations of brother-sister mating, approximately

two thirds of the initially segregating loci would be homozygous.
In seeking an analytical solution of (5.18), we notice that it closely

resembles the equation solved in appendix 4, to which the solution
had the form x = A Ay + B\%. This will not quite do in the present
case, because of the constant term. However, a solution of the form

will work, because when this is substituted in (5.18), the constant
terms cancel out, and we are left with the requirement that Ax and A2

satisfy the equation . 9 .
J H 4A2 - 2A - 1 =0 ,

or Ax =+0-808, A2 = —0-308.

A and B can then be chosen to fit the initial conditions.
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Thus if

and if

and hence

Hence

4 = o,
7X = o, o-8o£

A = 1-172

= 1 — 1-172x0-

and substituting various values

generations

6
10

50

A + l

and

808"-

of n:

1 -

3 = - 1 ,

>*3o8B — — 1,

B = 0-172.

f o-i72(-o-3o8)n,

4
0-672 as before
o-86i

-2-75 x io~5.

(5.19)

Examples
1 A Drosophila population cage is started by introducing 300

flies homozygous for the gene * vestigialJ, 100 wild-type homozygotes,
and 200 heterozygotes, each class consisting of equal number of
males and females. Assuming random mating, write down the
frequencies of different types of mating, and hence the proportions
in which the three genotypes occur in the next generation. Check
that these numbers agree with the Hardy-Weinberg ratio. What
assumptions, other than random mating, have you made ?

2 The ABO blood groups in man are determined by a system of
3 alleles, A, B and O. Genotypes AA and AO are group A, BB and
BO are group B, AB is group AB, and 0 0 is group O. The fre-
quencies of the blood groups in England are 32-1 % A, 22-4 % B,
7-1 % AB and 38-4 % O. Are these proportions consistent with the
assumption of random mating ?

3 Homozygotes for a recessive gene r have a 2 % greater chance
of survival than either R/R or R/r. The initial frequency of r in a
random mating population is 1 per thousand. How many generations
will elapse before the frequency of r reaches 50 % ?

4 There is a gene S in man such that S/S individuals die soon
after birth of anaemia. However, in areas where some +/ +
individuals die of malaria as children, Sj + individuals never do.
In an area of Africa, 10 % of adults are Sj 4-. If this situation is
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stable, what proportion of + / + individuals die of malaria in
childhood ? (The facts, concerning sickle-cell anaemia, have been
simplified for the sake of the example.)

5 Derive equation (5.14).
6 What is the coefficient of parentage of first cousins ? A harmful

recessive gene is present in a population with a frequency of 1/200.
What is the frequency of homozygotes among the children of
(a) unrelated parents, (b) first cousins ?

7 An hermaphroditic organism reproduces by self-fertilisation.
If an ancestral individual has a coefficient of inbreeding of Jo, what
will be the coefficient of inbreeding n generations later ?
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