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Abstract

Genetic programming is a systematic method for getting computers to automatically solve problems. Genetic programming
uses the Darwinian principle of natural selection and analogs of recombination (crossover), mutation, gene duplication,
gene deletion, and certain mechanisms of developmental biology to progressively breed, over a series of many generations,
an improved population of candidate solutions to a problem. This paper makes the points that genetic programming now
routinely delivers human-competitive machine intelligence for problems of automated design and can serve as an automa-

ted invention machine.
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1. INTRODUCTION

Design is a major activity of practicing engineers. Engineers
are often called upon to design complex structures (e.g.,
electrical circuits, controllers, antennas, aerodynamic shapes,
optical lens systems, and mechanical systems) that satisfy
prespecified high-level design and performance goals.
Some designs are sufficiently creative that they are considered
to be inventions.

In designing complex structures, human engineers typi-
cally employ logic and previously known domain knowledge
about the field of interest. Conventional approaches to auto-
mated design (such as those employing artificial intelligence)
are typically knowledge intensive, logically sound, and deter-
ministic.

Two of the most successful approaches to design, namely,
the evolutionary process (occurring in nature) and the
invention process (performed by creative humans), have
characteristics that are significantly different from conven-
tional approaches to automated design employing artificial
intelligence. The evolutionary process in nature is not logical,
deterministic, or knowledge intensive. The invention process
(performed by creative humans) is not logical or determinis-
tic. The fact that these two highly successful approaches to
design are significantly different from conventional artificial
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intelligence approaches suggests that the evolutionary pro-
cess and the invention process may contain significant les-
sons for the field automated design.

In nature, solutions to design problems are discovered by
means of evolution and natural selection. Evolution is not de-
terministic. It does not rely on a knowledge base. In addition,
evolution is certainly is not guided by mathematical logic. In-
deed, one of the most important characteristics of the evolu-
tionary process is that it actively generates and encourages
the maintenance of inconsistent and contradictory alterna-
tives throughout the entire duration of the process. Logically
sound systems do not do that. They never entertain either in-
consistency or contradictions. In contrast, the generation and
maintenance of inconsistent and contradictory alternatives
(called genetic diversity) is a known precondition for the suc-
cess of the evolutionary process.

Likewise, the invention process (performed by creative hu-
mans) is a nondeterministic process, and it is not governed by
logic. The invention process is typically characterized by a
singular moment when the prevailing thinking concerning a
longstanding problem is, in a “flash of genius,” overthrown
and replaced by a new approach that could not have been
logically deduced from what was previously known. That
is, inventions are characterized by a logical discontinuity
that distinguishes the creative new design from that which
can be logically deduced from what was previously known.
In this connection, it is noteworthy that a purported invention
is not considered to be worthy of a patent if the new idea can
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be logically deduced from facts that are well known in a field
by means of transformations that are well known in the field.
A new idea is patentable only if there is an “illogical step,”
that is, a logically unjustified step. In the patent law, this le-
gally required illogical step is sometimes referred to as a flash
of genius, and it is the essence of inventiveness and creativity.

In short, both the invention process and the evolutionary
process in nature and are very different from conventional
artificial intelligence approaches to automated design.

Genetic programming is a method for getting computers to
automatically solve problems. Genetic programming starts
from a high-level statement of what needs to be done and au-
tomatically creates a computer program to solve the problem.
Genetic programming is patterned after the evolutionary pro-
cess in nature. Specifically, genetic programming employs
the Darwinian principle of natural selection and analogs of re-
combination (crossover), mutation, gene duplication, gene
deletion, and certain mechanisms of developmental biology
to progressively breed, over a series of many generations,
an improved population of candidate solutions to a problem.
As will be demonstrated here, genetic programming can be
employed to automatically synthesize designs for complex
structures: it can be used to automate the design process.
When genetic programming is so used, the process starts
from a high-level specification of the structure’s desired per-
formance, which is the structure’s characteristics and behav-
ior. The outcome of a successful run of genetic programming
is a structure that satisfies the user’s prespecified performance
requirements.

The automatic synthesis of the designs described in this pa-
per is done ab initio, that is, without starting from a preexist-
ing good design and without prespecifying the number of
components in the structure being designed or the topological
relationship among the components. The designs were cre-
ated in a substantially similar and routine way, suggesting
that the approach described in the paper can be readily applied
to other similar design problems. The genetically evolved de-
signs are instances of human-competitive results produced by
genetic programming in the field of design.

Section 2 provides general background on genetic pro-
gramming utilizing an automated design and invention tech-
nique patterned after the evolutionary process in nature.

Section 3 lists sources of additional information about
genetic programming.

2. BACKGROUND ON GENETIC
PROGRAMMING

The goal of getting computers to automatically solve prob-
lems is central to artificial intelligence, machine learning,
and the broad area encompassed by what Turing called “ma-
chine intelligence” (Turing, 1948, 1950).

In his 1983 talk entitled “Al: Where It Has Been and Where
It Is Going,” machine learning pioneer Arthur Samuel (1983)
stated the main goal of the fields of machine learning and ar-
tificial intelligence: “[TThe aim [is] to get machines to exhibit
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behavior, which if done by humans, would be assumed to
involve the use of intelligence.”

Genetic programming is a systematic method for getting
computers to automatically solve a problem starting from a
high-level statement of what needs to be done. Genetic pro-
gramming is a domain-independent method that genetically
breeds a population of computer programs to solve a problem.
Specifically, genetic programming iteratively transforms a pop-
ulation of computer programs into a new generation of
programs by applying analogs of naturally occurring genetic
operations. Genetic programming uses the Darwinian principle
of natural selection along with analogs of recombination (cross-
over), mutation, gene duplication, gene deletion, and mecha-
nisms of developmental biology to breed an ever-improving
population of programs (Koza, 1989, 1990, 1992, 199%4a,
1994b; Koza & Rice, 1992; Banzhaf et al., 1998; Koza, Ben-
nett, Andre, & Keane, 1999; Koza, Bennett, Andre, Keane, &
Brave, 1999; Koza et al., 2000; Koza, Keane, & Streeter,
2003; Koza, Keane, Streeter, Mydlowec, Yu, & Lanza, 2003;
Koza, Keane, Streeter, Mydlowec, Yu, Lanza, & Fletcher,
2003).

Genetic programming is an extension of John Holland’s
genetic algorithm (Holland, 1975) to the arena of computer
programs. Current concepts of genetic programming devel-
oped from the seminal work of numerous researchers in the
1970s and 1980s. Holland discussed the possibility of using
the genetic algorithm to evolve sequences of assembly code.
In 1978, Holland also proposed a broadcast language in
which the genetic algorithm operated on structures more com-
plex than fixed-length character strings. Holland and Reitman
(1978) introduced the genetic classifier system in which sets
of if-then logical production rules were evolved by means of
a genetic algorithm. In 1980, Stephen F. Smith introduced the
variable-length genetic algorithm and applied it to popula-
tions consisting of a hierarchy of if-then rules (Smith,
1980). In 1981, Forsyth introduced a highly innovative sys-
tem called BEAGLE (Biological Evolutionary Algorithm
Generating Logical Expressions) in which logical expres-
sions were evolved in an evolutionary process (Forsyth,
1981). In the mid-1980s Nichael Cramer described highly
innovative experiments in program induction employing
Smith’s crossover operation (Cramer, 1985); Hicklin
(a student of John Dickinson at the University of Idaho) de-
scribed a system with mutation and reproduction of programs
(Hicklin, 1986); Fujiki (another student of Dickinson) ap-
plied all genetic operations to logical programs (Fujiki,
1986); Fujiki and Dickinson (1987) performed induction of
if—then clauses for playing the iterated prisoner’s dilemma
game; Antonisse and Keller (1987) applied genetic methods
to higher level representations; and Bickel and Bickel (1987)
applied genetic methods to if-then expert system rules.

Recent work on genetic programming is reported in the an-
nual Genetic and Evolutionary Computation Conference
(GECCO; Deb et al., 2004), the annual Euro-Genetic
Programming conference (Keijzer et al., 2005), the annual
Genetic Programming Theory and Applications workshop
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(Yu et al., 2005), the annual Asia-Pacific Workshops on
Genetic Programming (Cho et al., 2003), and in various other
conferences and journals in the field of genetic and evolution-
ary computation, such as Genetic Programming and Evolva-
ble Hardware. Additional sources of information about
genetic programming, including links to available software
for implementing genetic programming, can be found at
wWWww.genetic-programming.org.

2.1. Preparatory steps of genetic programming

Genetic programming starts from a high-level statement of
the requirements of a problem and attempts to produce a com-
puter program that solves the problem.

The human user communicates the high-level statement of
the problem to the genetic programming algorithm by per-
forming certain well-defined preparatory steps.

The five major preparatory steps for the basic version of ge-
netic programming require the human user to specify

e the set of terminals (e.g., the independent variables of
the problem, zero-argument functions, and random con-
stants) for each branch of the program to be evolved,

o the set of primitive functions for each branch of the pro-
gram to be evolved,

o the fitness measure (for explicitly or implicitly measur-
ing the fitness of individuals in the population),

e certain parameters for controlling the run, and

e the termination criterion and method for designating the
result of the run.

The first two preparatory steps specify the ingredients that
are available to create the computer programs. A run of ge-
netic programming is a competitive search among a diverse
population of programs composed of the available functions
and terminals.

The identification of the function set and terminal set for a
particular problem (or category of problems) is usually a
straightforward process. For some problems (such as sym-
bolic regression), the function set may consist of merely the
arithmetic functions of addition, subtraction, multiplication,
and division as well as a conditional branching operator.
The terminal set may consist of the program’s external inputs
(independent variables) and numerical constants.

For many other problems, the ingredients include spe-
cialized functions and terminals. For example, if the goal is
to get genetic programming to automatically program a robot
to mop the entire floor of an obstacle-filled room, the human
user must tell genetic programming what the robot is capable
of doing. For example, the robot may be capable of executing
functions such as moving, turning, and swishing the mop. If
the goal is the automatic creation of a controller, the function
set may consist of integrators, differentiators, leads, lags,
gains, adders, subtractors, and the like, and the terminal set
may consist of signals such as the reference signal and plant
output. If the goal is the automatic synthesis of an analog
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electrical circuit, it is necessary to provide ingredients that
will enable genetic programming to construct circuits consist-
ing of electrical components such as transistors, capacitors,
and resistors, and to make connections among the compo-
nents and the circuit’s input and output ports.

The third preparatory step concerns the fitness measure for
the problem. The fitness measure specifies what needs to be
done. The fitness measure is the primary mechanism for com-
municating the high-level statement of the problem’s require-
ments to the genetic programming system. For example, if the
goal is to get genetic programming to automatically synthe-
size an amplifier, the fitness function is the mechanism for
telling genetic programming to synthesize a circuit that am-
plifies an incoming signal (as opposed to, say, a filter circuit
that suppresses the low frequencies of an incoming signal or a
computational circuit that computes the square root of the in-
coming signal). The first two preparatory steps define the
search space, whereas the fitness measure implicitly specifies
the search’s desired goal.

The fourth and fifth preparatory steps are administrative.
The fourth preparatory step entails specifying the control
parameters for the run. The most important control parameter
is the population size. Other control parameters include the
probabilities of performing the genetic operations, the maxi-
mum size for programs, and other details of the run.

The fifth preparatory step consists of specifying the termi-
nation criterion and the method of designating the result of
the run. The termination criterion may include a maximum
number of generations to be run as well as a problem-specific
success predicate. The single best-so-far individual is usually
then harvested and designated as the result of the run.

2.2. Executional steps of genetic programming

After the user has performed the preparatory steps for a prob-
lem, the run of genetic programming can be launched. Once
the run is launched, a series of well-defined, problem-
independent steps is executed.

Genetic programming typically starts with an initial popu-
lation of randomly generated computer programs composed
of the available programmatic ingredients (as provided by
the human user in the first and second preparatory steps).
These programs are typically generated by recursively
generating a rooted point-labeled program tree composed of
random choices of the primitive functions and terminals.
The initial individuals are usually generated subject to a pre-
established maximum size (specified by the user as a minor
parameter in the fourth preparatory step). In general, the
programs in the population are of different size (number of
functions and terminals) and of different shape (the particular
graphical arrangement of functions and terminals in the
program tree).

Genetic programming iteratively transforms a population
of computer programs into a new generation of the population
by applying analogs of naturally occurring genetic opera-
tions. These operations are applied to individual(s) selected
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from the population. The individuals are probabilistically
selected to participate in the genetic operations based on their
fitness (as measured by the fitness measure provided by the
human user in the third preparatory step). The iterative trans-
formation of the population is executed inside the main loop
(called a generation) of a run of genetic programming. The
basic genetic operations are reproduction, crossover, and mu-
tation. Architecture-altering operations and domain-specific
operations are sometimes also used (although they are not
used for the particular work described in this paper).

Specifically, genetic programming breeds computer pro-
grams to solve problems by executing the following three
steps:

1. Generate an initial set (called the population) of compo-
sitions (typically random) of the functions and termin-
als appropriate for the problem.

2. Iteratively perform the following group of substeps
(called a generation) on the population of programs un-
til the termination criterion has been satisfied:

a. Execute each program in the population and assign it
a fitness value using the problem’s fitness measure.

b. Create a new population (the next generation) of
programs by applying the following operations to
program(s) selected from the population with a prob-
ability based on fitness (with reselection allowed).

i. Reproduction: copy the selected program to the
new population.

ii. Crossover: create a new offspring program for
the new population by recombining randomly
chosen parts of two selected programs.

iii. Mutation: create one new offspring program for
the new population by randomly mutating a ran-
domly chosen part of the selected program.

iv. Architecture-altering operations: create one
new offspring program for the new population
by applying an operation to the selected program
that alters the arrangement of the program’s
branches (e.g., subroutines, result-producing
branches), the number of arguments possessed
by each branch, and the nature of the hierarchical
references allowed among the branches.

v. Domain-specific operations: domain-specific
operations are sometimes added to take advan-
tage of design principles that are known to be
helpful in a particular domain.

3. Designate an individual program (e.g., the individual
with the best fitness) as the run’s result.

This result may be a solution (or approximate solution) to the
problem.

Genetic programming is problem independent in the sense
that the above sequence of executional steps is not modified
for each new run or each new problem. There is usually no
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discretionary human intervention or interaction during a run
of genetic programming (although a human user often exer-
cises judgment as to when to terminate a run).

2.3. Developmental genetic programming

The vast majority of the work applying genetic program-
ming to design problems (including the work in this paper)
employs a developmental process. When developmental
genetic programming is used, the individuals that are ge-
netically bred during the run of genetic programming are
not themselves candidate structures in the domain in-
volved. Instead, the individuals are computer programs
consisting of instructions that transform a very simple in-
itial structure (called the embryo) into a fully developed
structure. For example, when developmental genetic pro-
gramming is used to automatically design electrical cir-
cuits, the individuals in the population are not circuits
but, instead, computer programs that specify how to con-
struct a circuit, step by step, from some simple initial struc-
ture (often just a single wire).

The developmental representations used to apply genetic
programming to design problems arise from early work
in the field of genetic algorithms and genetic program-
ming. In 1987 Wilson stated the following (Wilson,
1987, pp. 247-251):

The genetic algorithm observes the genotype—phenotype
distinction of biology: the algorithm’s variation operators
act on the genotype and its selection mechanisms apply
to the phenotype. In biology, the genotype—phenotype dif-
ference is vast: the genotype is embodied in the chromo-
somes whereas the phenotype is the whole organism that
expresses the chromosomal information. The complex de-
coding process that leads from one to the other is called bi-
ological development and is essential if the genotype is to
be evaluated by the environment. Thus to apply the genetic
algorithm to natural evolution calls for a representational
scheme that both permits application of the algorithm’s op-
erators to the genotype and also defines how, based on the
genotype, organisms are to be “grown,” i.e., their develop-
ment.

Kitano (1996) used a developmental process in conjunc-
tion with genetic algorithms to design neural networks using
a graph generation system in 1990.

In 1992 Gruau described a technique in which genetic
programming is used to concurrently evolve the architec-
ture of a neural network, along with the weights, thresh-
olds, and biases of each neuron in the neural network
(Gruau, 1992a). In Cellular Encoding of Genetic Neural
Networks, each individual program tree in the population
of the run of genetic programming is a program for devel-
oping a complete neural network from a starting
point consisting of a single embryonic neuron. In cellular
encoding (sometimes also called “developmental genetic
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programming”), the developmental process for a neural
network starts from an embryonic neural network consist-
ing of a single neuron. The functions in the program tree
specify how to develop the embryonic neural network
into a full neural network. Certain functions permit a
particular neuron to be subdivided in a parallel or sequen-
tial manner. Other functions can change the threshold of a
neuron, the weight of a connection, or the bias of a neuron.
Genetic programming is then used to breed populations of
network-constructing program trees to evolve a neural
network that is capable of solving particular problems.
Gruau also described a version of his system using recur-
sion (Gruau, 1992b, 1993, 1994a, 1994b; Gruau & Whit-
ley, 1993). Whitley et al. (1995) applied developmental ge-
netic programming to neurocontrol problems.

In 1993, Koza used genetic programming to evolve devel-
opmental rewrite rules (Lindenmayer system rules) using a
“turtle” to create shapes such as the quadratic Koch island
(Koza, 1993).

In 1994 Dellaert and Beer described “the synthesis of au-
tonomous agents using evolutionary techniques” and pre-
sented “a simplified yet biologically defensible model of
the developmental process” (Dellaert & Beer, 1994).

In 1994 Hemmii et al. noted, “Using a rewriting system, the
system introduces a program development process that imi-
tates the natural development process from the pollinated
egg to adult and gives the HDL-program flexible evolvabil-
ity” (Hemmi et al., 1994).

In 1994 Sims describes a system in which the morphologi-
cal and behavioral components of virtual creatures are repre-
sented by directed graphs that evolve through the use of a
graph-based genetic algorithm (Sims, 1994).

In 1996 Koza, Bennett, Andre, and Keane used develop-
mental genetic programming to automatically synthesize a
large body of analog electrical circuits, including several pre-
viously patented circuits (Koza et al., 1996a, 1996b, 1996¢,
1996d). Circuit-constructing functions in the program tree
specified how to develop a simple embryonic circuit (often
containing just a single modifiable wire) into a fully devel-
oped circuit (containing transistors, capacitors, resistors,
and other electronic components). Their method permitted
distant connectivity within circuits by using vias. Koza and
colleagues (1996¢) provided for reuse of portions of circuits
(by means of subroutines and iterations), parameterized re-
use, and hierarchical reuse of substructures in evolving cir-
cuits.

In 1996 Brave used developmental genetic programming
to evolve finite automata (Brave, 1996).

In 1996 Tunstel and Jamshidi used developmental methods
for fuzzy logic systems (Tunstel & Jamshidi, 1996).

In 1996 Spector and Stoffel extended the notion of devel-
opment to what they called “ontogenetic programming”
(Spector & Stoffel, 1996a, 1996b).

In nature, the structure and behavior of a mature organ-
ism is determined not only by its genetic endowment,
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but also by complex developmental processes that the
organism undergoes while immersed in its environment
(ontogeny). . . .

Biologists refer to the developmental progression of an indi-
vidual through its life span as ontogeny. In this paper we
describe how rich ontogenetic components can be added to
genetic programming systems, and we show how this can al-
low genetic programming to produce programs that solve
more difficult problems. . . .

Various morphological systems have been used in previous
genetic programming systems to allow programs to “grow”
into more complex forms prior to evaluation. Runtime mem-
ory mechanisms allow evolved programs to acquire informa-
tion from their environments while they solve problems,
and to change their future behavior on the basis of such
information.

Ontogenetic programming combines these ideas to allow
for runtime modification of program structure. In par-
ticular, an ontogenetic programming system includes
program self-modification functions in the genetic pro-
gramming function set, thereby allowing evolved pro-
grams to modify themselves during the course of the
run. . . .

[W]e show how ontogenetic programming can be
used to solve problems that would otherwise not be solv-
able. . . .

We have shown that it is possible to use genetic pro-
gramming to produce programs that themselves develop
in significant, structural ways over the course of a run.
We use the term “ontogenetic programming” to describe
our technique for achieving this effect, which involves
the inclusion of program self-modification functions in
the genetic programming function set.

In 1996 Spector and Stoffel applied their methods to a sym-
bolic regression problem (Spector & Stoffel, 1996a), a se-
quence prediction problem (Spector & Stoffel, 1996a), and
a robotic agents problem (Spector & Stoffel, 1996b). They
also describe how their methods can be used in conjunction
with both tree and linear representations (Spector & Stoffel,
1996b).

In 1996 Luke and Spector described yet another variation
on the developmental process (Luke & Spector, 1996):

Like a cellular encoding, an edge encoding is a tree-struc-
tured chromosome whose phenotype is a directed graph,
optionally with labels or functions associated with its
edges and nodes. . . .

Edge encoding, like cellular encoding, allows one to
use standard S-expression-based Genetic Programming
techniques to evolve arbitrary graph structures. The re-
sulting graphs may be employed in various ways,
for example as neural networks, as automata, or as
knowledge-base queries. Each encoding scheme biases
genetic search in a different way; for example, cellular
encoding favors graphs with high edge/node ratios
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while edge encoding favors graphs with low edge/node
ratios. For this reason, we believe that certain domains
will be much better served by one scheme than by the
other.

2.4. Human-competitive results produced by genetic
programming

Genetic programming can be applied to problems in a variety
of fields, including design problems.

We say that a result produced by an automated method is
“human-competitive” if it satisfies one of the following eight
criteria (Koza et al., 2000; Koza, Keane, Streeter, Mydlowec,
Yu, & Lanza, 2003):

1. The result was patented as an invention in the past, is an
improvement over a patented invention, or would qual-
ify today as a patentable new invention.

2. The result is equal to or better than a result that was ac-
cepted as a new scientific result at the time when it was
published in a peer-reviewed scientific journal.

3. The result is equal to or better than a result that was
placed into a database or archive of results maintained
by an internationally recognized panel of scientific ex-
perts.

4. The result is publishable in its own right as a new scien-
tific result, independent of the fact that the result was
mechanically created.

5. The result is equal to or better than the most recent
human-created solution to a long-standing problem
for which there has been a succession of increasingly
better human-created solutions.

6. The result is equal to or better than a result that was con-
sidered an achievement in its field at the time it was first
discovered.

7. The result solves a problem of indisputable difficulty in
its field.

8. The result holds its own or wins a regulated competition
involving human contestants (in the form of either
live human players or human-written computer pro-
grams).

Focusing on patented inventions, there are at least 28 in-
stances in which genetic programming has duplicated the
functionality of a previously patented invention, infringed a
previously issued patent, or created a patentable new inven-
tion (Koza, Keane, Streeter, Mydlowec, Yu, & Lanza,
2003). Specifically, there is one instance where genetic pro-
gramming has created an entity that either infringes or dupli-
cates the functionality of a previously patented 19th century
invention, 15 instances where genetic programming has
done the same with respect to a previously patented 20th
century invention, 6 instances where genetic programming
has done the same with respect to a previously patented
21st century invention, and 2 instances where genetic pro-
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gramming has created a patentable new invention (discussed
in Section 6).

Table 1 provides information on these 28 human-competitive
results that relate to previously patented inventions. Twelve of
the results in Table 1 infringe previously issued patents and
10 duplicate the functionality of previously patented inven-
tions in a noninfringing way.

It should also be mentioned that there are over a dozen
additional known instances where genetic programming
has produced a human-competitive result that are not pa-
tent related, including the design of an X-Band Antenna
for NASA’s Space Technology 5 Mission by Jason
Lohn and his group at NASA Ames (Lohn et al.,
2004), Lee Spector’s quantum computing elements (Spec-
tor, Barnum, & Bernstein, 1998, 1999; Spector, Barnum,
Bernstein, & Swamy, 1999; Spector, 2004), a sorting net-
work (Koza, Bennett, Andre, & Keane, 1999), game-
playing strategies (Luke, 1998; Andre & Teller, 1999), al-
gorithms for cellular automata (Andre et al., 1996), and
algorithms for protein segment classification (Koza, Ben-
nett, Andre, & Keane, 1999). Starting in 2004, GECCO
began giving awards for human-competitive results and
many of these results were achieved by means of genetic
programming (http:/www.human-competitive.org).

3. ADDITIONAL SOURCES OF INFORMATION
ABOUT GENETIC PROGRAMMING

In addition to the earlier citations, additional information
about genetic programming may be obtained from books
such as Genetic Programming and Data Structures: Ge-
netic Programming + Data Structures = Automatic Pro-
gramming! (Langdon, 1998); Automatic Re-engineering
of Software Using Genetic Programming (Ryan, 1999);
Data Mining Using Grammar Based Genetic Program-
ming and Applications (Wong & Leung, 2000); Principia
Evolvica: Simulierte Evolution mit Mathematica (Jacob,
1997); Ilustrating Evolutionary Computation with
Mathematica (Jacob, 2001); Genetic Programming (Iba,
1996, in Japanese); Evolutionary Program Induction of
Binary Machine Code and Its Application (Nordin,
1997); Foundations of Genetic Programming (Langdon
& Poli, 2002); Emergence, Evolution, Intelligence:
Hydroinformatics (Babovic, 1996); Theory of Evolution-
ary Algorithms and Application to System Synthesis
(Blickle, 1997); and Automatic Quantum Computer
Programming: A Genetic Programming Approach (Spec-
tor, 2004).

Additional information about genetic programming may
be obtained from edited collections of papers such as the three
Advances in Genetic Programming books from MIT Press
(Kinnear, 1994; Angeline & Kinnear, 1996; Spector et al.,
1999) and the proceedings of the Genetic Programming Con-
ferences held between 1996 and 1998 (Koza, Goldberg, et al.,
1996; Koza et al., 1997, 1998).
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Invention Date Inventor Origin Patent No. Reference
1 Mechanical system composed 1841 Robert Willis Great Britain G.B. 6258 Lipson (2004)
of rigid members for
drawing a straight line
2 Ladder filter 1917 George Campbell AT&T U.S. 1,227,113 Section 25.15.1 of Koza, Bennett,
Andre, & Keane (1999) and section
5.2 of Koza, Keane, Streeter,
Mydlowec, Yu, & Lanza (2003)
3 Crossover filter 1925 Otto Julius Zobel AT&T U.S. 1,538,964 Section 32.3 of Koza, Bennett, Andre,
& Keane (1999)
4 “M-derived half section” filter 1925 Otto Julius Zobel AT&T U.S. 1,538,964 Section 25.15.2 of Koza, Bennett,
Andre, & Keane (1999)
5 Cauer (elliptic) topology for 1934-1936 Wilhelm Cauer University of Gottingen U.S. 1,958,742  Section 27.3.7 of Koza, Bennett,
filters & U.S. Andre, & Keane (1999)
1,989,545
6  Negative feedback 1937 Harold S. Black AT&T U.S. 2,102,670 Chapter 14 of Koza, Keane, Streeter,
& U.S. Mydlowec, Yu, & Lanza (2003)
2,102,671
7  PID controller 1939 Albert Callender &  Imperial Chemical U.S. 2,175,985 Section 9.2 of Koza, Keane, Streeter,
Allan Stervenson Limited Mydlowec, Yu, & Lanza (2003)
8  Second-derivative controller 1942 Harry Jones Brown Instrument U.S. 2,282,726  Section 3.7 of Koza, Keane, Streeter,
Company Mydlowec, Yu, & Lanza (2003)
9  Darlington emitter—follower 1953 Sidney Darlington Bell Telephone U.S. 2,663,806 Section 42.3 of Koza, Bennett, Andre,
section Laboratories & Keane (1999)
10 Philbrick circuit 1956 George Philbrick George A. Philbrick U.S. 2,730,679 Section 4.3 of Koza, Keane, Streeter,
Research Mydlowec, Yu, & Lanza (2003)
11 Sorting network 1962 Daniel G. O’Connor  General Precision, Inc.  U.S. 3,029,413 Sections 21.4.4, 23.6, and 57.8.1 of
& Raymond Koza, Bennett, Andre, & Keane
J. Nelson (1999)
12 NAND circuit 1971 David H. Chung &  Texas Instruments U.S. 3,560,760 Section 4.4 of Koza, Keane, Streeter,
Bill H. Terrell Incorporated Mydlowec, Yu, & Lanza (2003)
13 Computation of circuits Many Many Many Many Section 47.5.3 of Koza, Bennett,
Andre, & Keane (1999)
14 Electronic thermometer Many Many Many Many Section 49.3 of Koza, Bennett, Andre,
& Keane (1999)
15 Voltage reference circuit Many Many Many Many Section 50.3 of Koza, Bennett, Andre,
& Keane (1999)
16 60- and 96-dB amplifiers Many Many Many Many Section 45.3 of Koza, Bennett, Andre,
& Keane (1999)
17 Cubic function generator 2000 Stefano Cipriani & Conexant Systems, Inc. U.S. 6,160,427 Section 15.4.5 of Koza, Keane,
Anthony Streeter, Mydlowec, Yu, & Lanza
A. Takeshian (2003)
18 Mixed analog—digital variable 2000 Turgut Sefket Aytur  Lucent Technologies U.S. 6,013,958 Section 15.4.2 of Koza, Keane,
capacitor circuit Inc. Streeter, Mydlowec, Yu, & Lanza
(2003)
19 Voltage—current conversion 2000 Akira Ikeuchi & Mitsumi Electric Co., U.S. 6,166,529 Section 15.4.4 of Koza, Keane,
circuit Naoshi Tokuda Ltd. Streeter, Mydlowec, Yu, & Lanza
(2003)
20 Low-voltage balun circuit 2001 Sang Gug Lee Information and U.S. 6,265,908 Section 15.4.1 of Koza, Keane,
Communications Streeter, Mydlowec, Yu, & Lanza
University (2003)
21 High-current load circuit 2001 Timothy Daun- IBM Corporation U.S. 6,211,726 Section 15.4.3 of Koza, Keane,
Lindberg & Streeter, Mydlowec, Yu, & Lanza
Michael Miller (2003)
22 Tunable integrated active filter 2001 Robert Irvine & Infineon Technologies  U.S. 6,225,859 Section 15.4.6 of Koza, Keane,
Bernd Kolb AG Streeter, Mydlowec, Yu, & Lanza
(2003)
23 Telescope eyepiece 1940 Albert Konig Carl Zeiss GmbH U.S. 2,206,195 Koza et al., this issue
24 Telescope eyepiece system 1958 Robert B. Tackaberry American Optical U.S. 2,829,560 Koza et al., this issue
& Robert Company
M. Muller
25 Eyepiece for optical 1953 Maximillian Ernst Leitz GmbH U.S. 2,637,245 Koza et al., this issue
instruments Ludewig
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Table 1. (continued)

J.R. Koza

Invention Date Inventor Origin Patent No. Reference
26 Wide angle eyepiece 1968 Wright H. Scidmore  U.S. Army U.S. 3,390,935 Koza et al., this issue
27 Wide angle eyepiece 1985 Albert Nagler No affiliation listed U.S. 4,525,035 Koza et al., this issue
28 Telescope eyepiece 2000 Noboru Koizumi &  Fuji Photo Optical Co., U.S. 6,069,750 Koza et al. (2005)
Naomi Watanabe Ltd.
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