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Abstract

Some designs are sufficiently creative that they are considered to be inventions. The invention process is typically
characterized by a singular moment when the prevailing thinking concerning a long-standing problem is, in a “flash of
genius,” overthrown and replaced by a new approach that could not have been logically deduced from what was
previously known. This paper discusses such logical discontinuities using an example based on the history of one of the
most important inventions of the 20th century in electrical engineering, namely, the invention of negative feedback by
AT&T’s Harold S. Black. This 1927 invention overthrew the then prevailing idiom of positive feedback championed by
Westinghouse’s Edwin Howard Armstrong. The paper then shows how this historically important discovery can be
readily replicated by an automated design and invention technique patterned after the evolutionary process in nature,
namely, genetic programming. Genetic programming employs Darwinian natural selection along with analogs of
recombination~crossover!, mutation, gene duplication, gene deletion, and mechanisms of developmental biology to
breed an ever improving population of structures. Genetic programming rediscovers negative feedback by conducting
an evolutionary search for a structure that satisfies Black’s stated high-level goal~i.e., reduction of distortion in
amplifiers!. Like evolution in nature, genetic programming conducts its search probabilistically without resort to logic
using a process that is replete with logical discontinuities. The paper then shows that genetic programming can
routinely produce many additional inventive and creative results. In this regard, the paper discusses the automated
rediscovery of numerous 20th-century patented inventions involving analog electrical circuits and controllers, the
Sallen–Key filter, and six 21st-century patented inventions. In addition, two patentable new inventions~controllers!
have been created in the same automated way by means of genetic programming. The paper discusses the promising
future of automated invention by means of genetic programming in light of the fact that, to date, increased computer
power has yielded progressively more substantial results, including numerous human-competitive results, in synchrony
with Moore’s law. The paper argues that evolutionary search by means of genetic programming is a promising approach
for achieving creative, human-competitive, automated design because illogic and creativity are inherent in the evolu-
tionary process.
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1. INTRODUCTION

Design is a major activity of practicing engineers. Engi-
neers are often called upon to design complex structures
~e.g., electrical circuits, controllers, antennas, aerodynamic

shapes, mechanical systems, and networks of chemical reac-
tions! that satisfy prespecified high-level design and perfor-
mance goals. Some designs are sufficiently creative that
they are considered to be inventions.

In designing complex structures, human engineers typi-
cally employ logic and previously known domain knowl-
edge about the field of interest. Conventional approaches to
automated design~such as those employing artificial intel-
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ligence! are typically knowledge intensive, logically sound,
and deterministic.

Two of the most successful approaches to design, namely,
the evolutionary process~occurring in nature! and the inven-
tion process~performed by creative humans!, are not logi-
cal, deterministic, or knowledge intensive. The fact that
these two highly successful approaches are so different from
conventional approaches to automated design suggests that
there may be important lessons to be learned from them.

The design of complex entities by the evolutionary pro-
cess in nature is a nondeterministic process that is not gov-
erned by logic. In nature, solutions to design problems are
discovered by means of evolution and natural selection.
Evolution is not deterministic. It does not rely on a knowl-
edge base. Also, it is certainly is not guided by mathemat-
ical logic. Indeed, one of the most important characteristics
of the evolutionary process is that it actively generates and
actively maintains inconsistent and contradictory alterna-
tives throughout the process. Logically sound systems, of
course, do not do that. In fact, the generation and mainte-
nance of inconsistent and contradictory alternatives~called
genetic diversity! is a precondition for the success of the
evolutionary process.

Likewise, the invention process~performed by creative
humans! is a nondeterministic process that is not governed
by logic. The invention process is typically characterized
by a singular moment when the prevailing thinking con-
cerning a long-standing problem is, in a “flash of genius,”
overthrown and replaced by an new approach that could
not have been logically deduced from what was previously
known. That is, inventions are characterized by a logical
discontinuity that distinguishes the creative new design
from that which can be logically deduced. In this connec-
tion, it is noteworthy that a new idea that can be logically
deduced from facts that are known in a field, using trans-
formations that are known in a field, is not considered to
be worthy of a patent. A new idea is patentable only if
there is an “illogical step,” that is, a logically unjustified
step. In the patent law, this legally required illogical step
is sometimes referred to as a flash of genius, and it is the
essence of inventiveness and creativity. In short, both the
invention process and the evolutionary process in nature
and are very different from conventional approaches to
automated design~such as those employing artificial
intelligence!.

Section 2 provides general background on genetic pro-
gramming: an automated design and invention technique
patterned after the evolutionary process in nature.

Section 3 discusses the logical discontinuities inherent in
the invention process using an example based on the his-
tory of one of the most important inventions of the 20th
century in electrical engineering, namely, the invention of
negative feedback by AT&T’s Harold S. Black. This 1927
invention overthrew the then prevailing idiom of positive
feedback championed by Westinghouse’s Edwin Howard
Armstrong. This section shows how negative feedback can

be readily reinvented in an automated way by means of
genetic programming. Genetic programming accomplishes
this by searching for a structure that satisfies Black’s stated
high-level goal~i.e., reduction of distortion in amplifiers!.
Like evolution in nature, the genetic search is conducted
probabilistically without resort to logic, without a knowl-
edge base, and using a process that is replete with logical
discontinuities.

Section 4 describes how an additional significant 20th-
century invention~the Sallen–Key filter! can be readily
reinvented in a similar automated way by means of genetic
programming. Section 5 then shows that six 21st-century pat-
ented inventions can be reinvented by genetic programming.
~Section 2 demonstrates that a 19th-century patented inven-
tion in mechanical engineering and numerous 20th-century
patented inventions can be similarly reinvented by genetic
programming.! Section 6 shows that patentable new inven-
tions can be invented by means of genetic programming in a
similar automated way. Together, Sections 3–6 show that
genetic programming can routinely produce inventive and
creative results.

Section 7 discusses the promising future of automated
invention by means of genetic programming in light of the
fact that, to date, increased computer power has yielded
progressively more substantial results in synchrony with
Moore’s law. Section 8 discusses the commercial practical-
ity of automated analog circuit synthesis by means of genetic
programming. Section 9 is the conclusion.

2. BACKGROUND ON GENETIC
PROGRAMMING

Genetic programming starts from a high-level statement of
what needs to be done and automatically creates a com-
puter program to solve the problem. Genetic programming
uses the Darwinian principle of natural selection along with
analogs of recombination~crossover!, mutation, gene dupli-
cation, gene deletion, and mechanisms of developmental
biology to breed an ever improving population of programs
~Koza, 1990, 1992, 1994a, 1994b; Koza & Rice, 1992; Ban-
zhaf et al., 1998; Koza, Bennett, Andre, & Keane, 1999;
Koza, Bennett, Forrest, Andre, Keane, & Scott, 1999; Koza,
Keane, Streeter, Mydlowec, Yu, & Lanza, 2003; Koza,
Keane, Streeter, Mydlowec, Yu, Lanza, & Fletcher, 2003!.
Genetic programming is an extension of the genetic algo-
rithm ~Holland, 1975! to the arena of computer programs.
For additional sources of information about genetic pro-
gramming, visit www.genetic-programming.org.

2.1. The genetic programming algorithm

Genetic programming typically starts with a population of
randomly generated computer programs composed of the
available programmatic ingredients. Genetic programming
iteratively transforms a population of computer programs
into a new generation of the population by applying ana-
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logs of naturally occurring genetic operations. These oper-
ations are applied to individual~s! selected from the popu-
lation. The individuals are probabilistically selected to
participate in the genetic operations based on their fitness
at solving the problem at hand. The iterative transforma-
tion of the population is executed inside the main loop
~called ageneration! of a run of genetic programming.

Specifically, genetic programming breeds computer pro-
grams to solve problems by executing the following three
steps:

1. Generate an initial set~called thepopulation! of com-
positions~typically random! of the functions and ter-
minals~explained later! appropriate for the problem.

2. Iteratively perform the following group of substeps
~called ageneration! on the population of programs
until the termination criterion has been satisfied:

A. Execute each program in the population and assign
it a fitness value using the problem’s fitness
measure.

B. Create a new population~the next generation! of
programs by applying the following operations to
program~s! selected from the population with a
probability based on fitness~with reselection
allowed!.

i. Reproduction:Copy the selected program to
the new population.

ii. Crossover:Create a new offspring program
for the new population by recombining ran-
domly chosen parts of two selected programs.

iii. Mutation: Create one new offspring program
for the new population by randomly mutating
a randomly chosen part of the selected program.

iv. Architecture-altering operations:Create one
new offspring program for the new population
by applying a selected architecture-altering
operation to the selected program.

3. Designate an individual program~e.g., the individual
with the best fitness! as the run’s result. This result
may be a solution~or approximate solution! to the
problem.

2.2. Human-competitive results produced by
genetic programming

Genetic programming can be applied to problems in a vari-
ety of fields, including design problems.

There are, at the time of this writing, 24 known instances
where genetic programming has duplicated the functional-
ity of a previously patented invention, infringed a previ-
ously issued patent, or created a patentable new invention
~Koza, 2003!. Specifically, there is one instance where
genetic programming has created an entity that either
infringes or duplicates the functionality of a previously pat-
ented 19th-century invention, 15 instances where genetic

programming has done the same with respect to a previ-
ously patented 20th-century invention, six instances where
genetic programming has done the same with respect to a
previously patented 21st-century invention, and two instances
where genetic programming has created a patentable new
invention~discussed later in Section 6!.

Table 1 provides information on 22 of the above human-
competitive results that relate to previously patented inven-
tions. ~The two patentable new inventions are discussed
later in Section 6.! Twelve of the results in Table 1 infringe
previously issued patents, and 10 duplicate the functional-
ity of previously patented inventions in a noninfringing way.

It should also be mentioned that there are, at the time of
this writing, 14 other known instances where genetic pro-
gramming has produced a human-competitive result~using
the detailed definition of this term found in Koza, Keane,
Streeter, Mydlowec, Yu, & Lanza, 2003! that are not patent
related. These include the design of an X-Band Antenna for
NASA’s Space Technology 5 Mission~Lohn et al., 2004!,
quantum computing elements~Spector et al., 1998; Spec-
tor, Barnum, & Bernstein, 1999; Spector, Barnum, Bern-
stein, & Swamy, 1999; Spector, 2004!, a sorting network
~Koza, Bennett, Andre, & Keane, 1999!, game-playing strat-
egies~Luke, 1998; Andre & Teller, 1999!, algorithms for
cellular automata~Andre et al., 1996!, and algorithms for
protein segment classification~Koza, Bennett, Andre, &
Keane, 1999!.

2.3. Automatic design of analog electrical circuits
by means of genetic programming

Starting in Section 3, this paper presents a number of
instances where genetic programming has automatically cre-
ated both the topology~graphical structure! and sizing
~numerical component values! for analog electrical circuits
composed of transistors, capacitors, resistors, and other com-
ponents. In each instance, genetic programming starts from
a high-level statement of a circuit’s desired behavior and
characteristics~e.g., its desired output given its input!. The
process entails creation of both the topology and the sizing
of a satisfactory circuit.

Specifically, thetopologyof a circuit comprises

• the total number of components in the circuit;

• the type of each component~e.g., resistor, capacitor,
transistor! at each location in the circuit; and

• a list of all the connections that may exist between the
leads of the circuit’s components, input ports, output
ports, power sources~if any!, and ground.

The sizing of a circuit consists of the value~s!, if any,
associated with each component. The sizing of a compo-
nent is usually a numerical value~e.g., the capacitance of a
capacitor!.

As Aaserud and Nielsen~1995! noted,
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Table 1. Twenty-two previously patented inventions reinvented by genetic programming

Invention Date Inventor Place Patent Reference

Mechanical system composed of rigid
members for drawing a straight line
without reference to another straight
line 1841 Robert Willis Great Britain British 6258 Lipson~2004!

Ladder filter 1917 George Campbell AT&T US 1,227,113 Section 25.15.1 of Koza et al.~1999a!
and Section 5.2 of Koza et al.~2003b!

Crossover filter 1925 Otto Julius Zobel AT&T US 1,538,964 Section 32.3 of Koza et al.~1999a!
“M-derived half section” filter 1925 Otto Julius Zobel AT&T US 1,538,964 Section 25.15.2 of Koza et al.~1999a!
Cauer~elliptic! topology for filters 1934–1936 Wilhelm Cauer University of Gottingen US 1,958,742,

US 1,989,545
Section 27.3.7 of Koza et al.~1999a!

Negative feedback 1937 Harold S. Black AT&T US 2,102,670,
US 2,102,671

Chapter 14 of Koza et al.~2003b!

Proportional, integrative, and derivative
controller 1939 Albert Callender & Allan Stevenson Imperial Chemical Limited US 2,175,985 Section 9.2 of Koza et al.~2003b!

Second-derivative controller 1942 Harry Jones Brown Instrument Co. US 2,282,726 Section 3.7 of Koza et al.~2003b!
Darlington emitter–follower section 1953 Sidney Darlington Bell Telephone Laboratories US 2,663,806 Section 42.3 of Koza et al.~1999a!
Philbrick circuit 1956 George Philbrick George A. Philbrick Research US 2,730,679 Section 4.3 of Koza et al.~2003b!
Sorting network 1962 Daniel G. O’Connor &

Raymond J. Nelson
General Precision, Inc. US 3,029,413 Sections 21.4.4, 23.6, and 57.8.1 of

Koza et al.~1999a!
NAND circuit 1971 David H. Chung & Bill H. Terrell Texas Instruments Inc. US 3,560,760 Section 4.4 of Koza et al.~2003b!
Computational circuits Numerous Numerous Numerous Numerous Section 47.5.3 of Koza et al.~1999a!
Electronic thermometer Numerous Numerous Numerous Numerous Section 49.3 of Koza et al.~1999a!
Voltage reference circuit Numerous Numerous Numerous Numerous Section 50.3 of Koza et al.~1999a!
60- and 96-dB amplifiers Numerous Numerous Numerous Numerous Section 45.3 of Koza et al.~1999a!
Cubic function generator 2000 Stefano Cipriani &

Anthony A. Takeshian
Conexant Systems, Inc. US 6,160,427 Section 15.4.5 of Koza et al.~2003b!

Mixed analog–digital variable capacitor
circuit 2000 Turgut Sefket Aytur Lucent Technologies Inc. US 013,958 Section 15.4.2 of Koza et al.~2003b!

Voltage–current conversion circuit 2000 Akira Ikeuchi & Naoshi Tokuda Mitsumi Electric Co., Ltd. US 6,166,529 Section 15.4.4 of Koza et al.~2003b!
Low-voltage balun circuit 2001 Sang Gug Lee Information and Communications

University
US 6,265,908 Section 15.4.1 of Koza et al.~2003b!

High-current load circuit 2001 Timothy Daun–Lindberg &
Michael Miller

IBM US 6,211,726 Section 15.4.3 of Koza et al.~2003b!

Tunable integrated active filter 2001 Robert Irvine & Bernd Kolb Infineon Technologies AG US 6,225,859 Section 15.4.6 of Koza et al.~2003b!
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@M#ost . . . analog circuits are still handcrafted by the
experts or so-called “zahs” of analog design. The design
process is characterized by a combination of experience
and intuition and requires a thorough knowledge of the
process characteristics and the detailed specifications of
the actual product.

Analog circuit design is known to be a knowledge-
intensive, multiphase, iterative task, which usually
stretches over a significant period of time and is per-
formed by designers with a large portfolio of skills. It is
therefore considered by many to be a form of art rather
than a science.

In addition, as Balkir, Dundar, and Ogrenci~2003! stated,

The major reason underlying this lack of analog design
automation tools has been the difficulty of the problem,
in our opinion. Design in the analog domain requires
creativity because of the large number of free parameters
and the sometimes obscure interactions between them. . . .
Thus, analog design has remained more of an “art” than
a “science.”

Genetic programming can be used to automatically cre-
ate both the topology and sizing of an electrical circuit by

1. establishing a representation for electrical circuits suit-
able for use in a run of genetic programming, and

2. defining a fitness measure that measures how well the
behavior and characteristics of a candidate circuit sat-
isfy the problem’s high-level design requirements.

The representation and fitness measure are then used dur-
ing the run of genetic programming. During the run, the
evaluation of the fitness of each individual in the popula-
tion involves

1. converting each individual program tree in the popu-
lation into the type of input accepted by a circuit sim-
ulator ~i.e., a netlist listing each component in the
circuit and the connections between the leads of the
components!,

2. obtaining the behavior of the individual circuit by sim-
ulating it, and

3. using the circuit’s behavior and characteristics to cal-
culate its fitness.

When genetic programming is used to automatically cre-
ate computer programs, the programs are usually repre-
sented as program trees~i.e., rooted, point-labeled trees with
ordered branches! in the style of the LISP programming
language. A program tree is anacyclicgraph. However, the
structures that engineers typically desire to design are usu-
ally not acyclic graphs. In particular, electrical circuits are
composed of loops~and, in fact, no dangling leads!, and are
therefore ordinarily represented by cyclic graphs~or hyper-

graphs!. Genetic programming can be applied to the prob-
lem of automatic circuit synthesis by searching for a
computer program~an acyclic structure! consisting of the
instructions necessary to construct the circuit~a cyclic
structure!.

Specifically, our approach to the automatic synthesis of
circuits using genetic programming employs a developmen-
tal process inspired by the principles of developmental biol-
ogy,Wilson’s~1987! pioneering application of developmental
biology to genetic algorithms, the use of developmental
genetic algorithms to evolve neural networks~Kitano, 1990!,
the use of developmental genetic programming~cellular
encoding! to evolve neural networks~Gruau, 1992a, 1992b!,
and the use of developmental genetic programming to evolve
Lindenmayer systems~Koza, 1993!.

The developmental process here is used to transform a
program tree~an acyclic graph! into a fully developed
electrical circuit~a cyclic graph or hypergraph!. The devel-
opmental process entails the execution of functions in a
circuit-constructing program tree.

The starting point for the developmental process consists
of a simple initial circuit. The initial circuit consists of an
embryo and a test fixture.

The embryo herein consists of a single isolated modifi-
able wire that is not initially connected to external inputs or
outputs. If the original modifiable wire is not modified by
the developmental process, the circuit produces only trivial
output. All development originates from the embryo’s mod-
ifiable wire~s!. An analog electrical circuit is developed by
progressively applying the functions in a circuit-constructing
program tree to the embryo’s initial modifiable wire~s! and
to succeeding modifiable wires and modifiable components.

The execution of the functions in the program tree trans-
forms the initial circuit into a fully developed circuit. That
is, the functions in the circuit-constructing program tree
progressively side effect the embryo and its successors until
a fully developed circuit eventually emerges.

Test fixtures are commonly used in electrical engineer-
ing to measure the behavior of a circuit. When genetic pro-
gramming is being used to automatically synthesize an
electrical circuit, the test fixture is the entity~external to the
circuit that is being automatically created! that facilitates
measurement of the behavior of the fully developed circuit.
The test fixture feeds external input~s! into the circuit of
interest. It also enables the circuit’s output~s! to be probed.
The test fixture is a hard-wired structure composed of non-
modifiable wires and nonmodifiable electrical components.
The test fixture has one or more ports that enable the embryo
~and, later, the fully developed circuit! to be embedded into
it. In turn, the embryo~and, later, the fully developed cir-
cuit! has one or more ports that enable it to communicate
with the test fixture in which it is embedded. The hard-
wired components of the test fixture often include a source
resistor and a load resistor. The test fixture supplies the
measurements that enable the fitness measure to assign a
single numerical value of fitness to the behavior and char-
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acteristics of the fully developed circuit. The test fixture
can obtain the measurements needed by the fitness measure
in various ways. One way~the way that is used for the work
described in this paper! is to simulate individual candidate
circuits or controllers using a general-purpose simulator,
such as SPICE~Quarles et al., 1994!. Another way is to
create, at very high speeds, a temporary physical embodi-
ment of each candidate circuit using a field-programmable
transistor array~Stoica et al., 2001! and directly measure
the circuit’s behavior and characteristics. Although it would
be impractical, another way would be to create a physical
embodiment of each candidate circuit on a breadboard or
silicon and directly measure the circuit’s behavior and
characteristics.

The functionsin the circuit-constructing program trees
are divided into five categories:

• topology-modifying functions~e.g., series division, par-
allel division, cut, via connecting two distant points in
a circuit, via connecting a point in the circuit to ground,
via connecting a point to a power supply, via connect-
ing a point to an incoming signal, via connecting a
point to an output port! that modify the topology of the
developing circuit;

• component-creating functions that insert components
~e.g., resistors, capacitors, transistors! into the devel-
oping circuit;

• development-controlling functions that control the
developmental process by which the embryo and its
successor circuits are converted into a fully developed
circuit ~e.g., the no-operation function!;

• arithmetic-performing functions~e.g., addition, sub-
traction! that may appear in a value-setting subtree
that is an argument to a component-creating function
and that specifies the numerical value of the compo-
nent; and

• automatically defined functions that enable certain sub-
structures to be reused~including parameterized reuse!.

The component-creating functions have value-setting
subtree~s!, whereas topology-modifying functions and
development-controlling functions do not.

The terminals in the circuit-constructing program trees
may include

• constant numerical values,

• perturbable numerical values,

• symbolic values~e.g., discrete alternative types for cer-
tain components!,

• externally supplied free variables, and

• zero-argument functions~e.g., the development-ending
function!.

In applying the genetic programming algorithm~Sec-
tion 2.1! to a particular problem of circuit synthesis, the
first step is to generate an initial population~generation 0!

of random compositions of the above functions and termi-
nals. These functions and terminals permit the construction
~through the developmental process just described! of any
circuit composed of transistors, resistors, and capacitors.

Most of the randomly created circuits in generation 0 are,
of course, very poor at solving the problem at hand~i.e.,
have very poor fitness!. Many of these randomly created
individuals are functionless or nonsensical. For example,
many randomly created circuits in generation 0 do not make
a connection to all input signals, all output ports, and all
necessary power sources. Moreover, many randomly cre-
ated circuits are so pathological that they cannot even be
simulated by the general-purpose circuit simulator~SPICE,
described in Quarles et al., 1994! used for the work herein.
Nonetheless, even in this primordial ooze of randomly gen-
erated circuits, some score a better value of fitness than
others. The evolutionary process builds on small differen-
tial advantages among the randomly created circuits of gen-
eration 0 ~and the differential advantages of circuits in
successive generations of the run of genetic programming!.

In each generation, after the fitness of each individual in
the population is ascertained, genetic programming proba-
bilistically selects relatively more fit individuals from the
population to participate in the problem-independent genetic
operations used in generation programming~e.g., reproduc-
tion, mutation, and crossover!. An important feature of Dar-
winian selection is that the selection is not greedy. Individuals
that are known to be inferior will be selected to a certain
degree. The best individual in the population in a given
generation is not guaranteed to be selected. Moreover, the
worst individual in the population in a given generation
will not necessarily be excluded.

The genetic operations are applied to the selected indi-
viduals in the population to create a new population~i.e., a
new generation! of offspring individuals. This process of
executing each individual in the population to develop a
circuit, evaluating the fitness of each fully developed cir-
cuit, selecting individuals from the population to partici-
pate in the genetic operations, and creating a new population
is iterated over many generations.

Over successive generations, the fitness of the best indi-
vidual in the population and that of the average individual
in the population tend to progressively improve. At the same
time, functionless, nonsensical, and nonsimulatable individ-
uals tend to disappear as the run of genetic programming
progresses. For example, the percentage of nonsimulatable
individuals is sometimes as high as 90% for the randomly
created individuals of generation 0. However, this percent-
age typically drops to low single digits after just a couple of
generations~because of the effect of selecting more fit indi-
viduals to participate in the genetic operations that create
the next generation!.

Note that, in automatically synthesizing analog electrical
circuits composed of transistors, resistors, and capacitors,
genetic programming uses only ade minimusamount of
platitudinous knowledge about analog circuits. Specifi-
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cally, genetic programming employs a circuit simulator~e.g.,
SPICE! for the analysisof already created candidate cir-
cuits, but it does not use any knowledge about how tosyn-
thesizeelectrical circuits.

The runs of genetic programming for the various prob-
lems described in this paper are intentionally highly uni-
form. For example, the same function set, the same terminal
set, and the same developmental process is used on each
particular design problem described in this paper~and also
in applying this process to many other problems over a
period of years!. The main difference between the runs is
that a different fitness measure is used for each problem.
Construction of a fitness measure requires translating the
problem’s high-level requirements into a precise computa-
tion using measurable characteristics or behavior of the
circuit ~obtained by means of a general-purpose circuit
simulator!. In particular, the fitness measure for a problem
reflects the performance and characteristics of the desired
circuit. The fitness measure specifies the desired time-
domain or frequency-domain output value~s!, given vari-
ous specified input value~s!. A problem-specific test fixture
consisting of certain fixed components~such as an incom-
ing signal source, a source resistor, a load resistor, and
output probe points! is connected to the relevant input
port~s! and the output port~s! of each candidate circuit.

3. INVENTION OF NEGATIVE FEEDBACK
IN 1927

In a commencement address at Worcester Polytechnic
Institute in 2000, C. Michael Armstrong, CEO of AT&T,
recounted the following:

On a sweltering summer morning in August 1927, a young
man was seated on a passenger ferry as it churned across
Upper New York Bay toward Manhattan. He was gazing
idly at the Statue of Liberty when suddenly he jumped
from his seat and began frantically searching his pockets
for a scrap of paper.

Coming up empty, he raced to the newsboy on deck
and bought a copy ofThe New York Times. The man tore
through the pages until he found one that was nearly free
of type. He uncapped his fountain pen, sketched a couple
of crude diagrams, and surrounded them with mathemat-
ical equations.

Holding up the now-famous page fromThe New York
Times~Fig. 1!, C. Michael Armstrong continued:

When the ferryboat docked at Manhattan, he raced to his
office at Bell Laboratories. He showed his diagrams and
equations to one of his coworkers who read them care-
fully. Then his friend let out a big whoop and they both
scrawled their initials on the newspaper page.

The young man on the ferryboat was Harold Black,
Worcester Polytechnic Institute Class of 1921. And the

scribblings on his newspaper were the blueprint for the
negative-feedback amplifier, a device that played a vital
role in 20th century electronics.

Referring to the scribblings on this newspaper page,
Mervin Kelly, then president of Bell Labs, said the follow-
ing in 1957~Black, 1977!:

Although many of Harold’s inventions have made great
impact, that of the negative feedback amplifier is indeed
the most outstanding. It easily ranks coordinate with De
Forest’s invention of the audion as one of the two inven-
tions of broadest scope and significance in electronics
and communications of the past 50 years . . . It is no
exaggeration to say that without Black’s invention, the
present long-distance telephone and television networks
which cover our entire country and the transoceanic tele-
phone cables would not exist. The application of Black’s
principle of negative feedback has not been limited to
telecommunications. . . . @T#he entire explosive exten-
sion of the area of control, both electrical and mechan-
ical, grew out of an understanding of the feedback
principle.

3.1. The once universal idiom of positive feedback

In The Design of CMOS Radio-Frequency Integrated Cir-
cuits, Lee~1998! recounts the history that predated Black’s
1927 invention of negative feedback.

Early work on feedback in amplifiers employed posi-
tive feedback. This work included rocket pioneer Robert
Goddard’s 1915 patent for a vacuum tube oscillator using
positive feedback~Goddard, 1915! and Edwin Howard
Armstrong’s 1914 patent on amplifiers, again using posi-
tive feedback~Armstrong, 1914!. As Lee~1998! observes,

@P#rogress in electronics in those early years was largely
made possible by Armstrong’s regenerative@positive feed-
back# amplifier, since there was no other economical way
to obtain large amounts of gain from the primitive~and
expensive! vacuum tubes of the day. . . .

Armstrong was able to get gain from a single stage
that others could obtain only by cascading several. This
achievement allowed the construction of relatively inex-
pensive, high-gain receivers and therefore also enabled
dramatic reductions in transmitter power because of the
enhanced sensitivity provided by this increased gain. In
short order,the positive feedback (regenerative) ampli-
fier became a nearly universal idiom, and Westinghouse
~to whom Armstrong had assigned patent rights! kept its
legal staff quite busy trying to make sure that only licens-
ees were using this revolutionary technology.@emphasis
added#

However, Westinghouse’s “nearly universal idiom” did
not solve a major problem facing AT&T at the time, namely,
distortion in amplifiers. As Lee~1998, p. 387! points out,
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Although Armstrong’s regenerative amplifier pretty much
solved the problem of obtaining large amounts of gain
from vacuum tube amplifiers, a different problem pre-
occupied the telephone industry. In trying to extend com-
munications distances, amplifiers were needed to
compensate for transmission-line attenuation. Using
amplifiers available in those early days, distances of a
few hundred miles were routinely achievable and, with
great care, perhaps 1,000–2,000 miles was possible, but
the quality was poor. . . .

The problem wasn’t one of insufficient amplification;
it was trivial to make the signal at the end of the line
quite loud. Rather the problem was distortion. Each ampli-
fier contributed some small~say, 1%! distortion. Cascad-
ing a hundred of these things guaranteed that what came
out didn’t very much resemble what went in.

The main “solution” at the time was to~try to! guar-
antee “small signal” operation of the amplifiers. That
is, by restricting the dynamic range of the signals to a

tiny fraction of the amplifier’s overall capability, more
linear operation could be achieved. Unfortunately, this
strategy is quite inefficient since it requires the construc-
tion of, say, 100-W@att# amplifiers to process milliwatt
signals. Because of the arbitrary distance between a
signal source and an amplifier~or possibly between amp-
lifiers!, though, it was difficult to guarantee that the
input signals were always sufficiently small to satisfy
linearity.

3.2. Black’s first solution in 1923

Such was the state of affairs when Harold S. Black started
working in 1921 at AT&T on the problem of reducing ampli-
fier distortion.

As will be seen below, Black solved the problem twice.
Black’s first solution ~described in this subsection! was
physically implemented, but was ultimately regarded as
impractical. Black’s second solution~described in the next

Fig. 1. Notes written by Harold S. Black on a page ofThe New York Timeswhile commuting on the Lackawanna Ferry in 1927.
Reprinted with permission of Lucent Technologies Inc.0Bell Labs Inc.
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subsection! is now regarded as one of the most important
inventions of the 20th century in electrical engineering.

Both of Black’s solutions were characterized by a logical
discontinuity and a singular moment when the previous
thinking about this vexatious and long-standing problem
was, in a “flash of genius,” overthrown and replaced by a
new approach that could not have been logically deduced
from what was previously known.

After 2 years of work on the problem, Black had tenta-
tively reached the conclusion in 1923, “There was just no
way to meet our ambitious goal”~Black, 1977!. As Black
then recounts,

This might have been the end of it, except that, on March
16, 1923, I was fortunate enough to attend a lecture by
the famous scientist and engineer, Charles Proteus Stein-
metz. . . .

I no longer remember the subject, but . . . I was so
impressed by how Steinmetz got down to the fundamen-
tals that when I returned home at 2 A.M., I restated my
own problems as follows: Remove all distortion prod-
ucts from the amplifier output. In doing this, I was accept-
ing an imperfect amplifier and regarding its output as
composed of what was wanted plus what was not wanted.
I considered what was not wanted to be distortion~regard-
less of whether it was due to nonlinearity, variation in
the tube gain, or whatever!, and I asked myself how
to isolate and then eliminate this distortion. I immedi-
ately observed that by reducing the output to the same
amplitude as the input, and subtracting one from the
other, only the distortion would remain. This distortion
could then be amplified in a separate amplifier and
used to cancel out the distortion in the original ampli-
fier. . . .

The next day, March 17, I sketched two such embodi-
ments and thereby invented the feed-forward ampli-
fier. . . .

Later that day, I set up each embodiment in the labo-
ratory. Both worked as expected.

Unfortunately, Black’s 1923 invention did not turn out to
be practical. As Black~1977! laments,

@T#he invention required precise balances and subtrac-
tions that were hard to achieve and maintain with the
amplifiers available at that time. . . .

Over the next four years, I struggled with the problem
of turning my intention into an amplifier that was prac-
tical. . . .

@F#or my purpose the gain had to be absolutely perfect.
For example, every hour on the hour—24 hours a day—

somebody had to adjust the filament current to its correct
value. . . .

In addition, every six hours it became necessary to
adjust the B battery voltage, because the amplifier gain
would get out of hand.

There were other complications too, but these were
enough!

The bottom line concerning the feed-forward amplifier
that Black invented in 1923 was “Nothing came of my
efforts, however, because every circuit I devised turned out
to be far too complex to be practical.”

3.3. Black’s second solution in 1927: The flash of
genius on the Lackawanna Ferry

Despite this false start, Black continued to work on the
problem of reducing distortion in amplifiers for several addi-
tional years.

After working on the problem for a total of 6 years, Black
~1977! recounted the following:

Then came the morning of Tuesday, August 2, 1927, when
the concept of the negative feedback amplifier came to
me in a flash while I was crossing the Hudson River on
the Lackawanna Ferry, on my way to work. For more
than 50 years, I have pondered how and why the idea
came, and I can’t say any more today than I could that
morning. All I know is that after several years of hard
work on the problem, I suddenly realized that if I fed the
amplifier output back to the input, in reverse phase, and
kept the device from oscillating~singing, as we called it
then!, I would have exactly what I wanted: a means of
canceling out the distortion of the output. I opened my
morning newspaper and on a page ofThe New York Times
I sketched a simple canonical diagram of a negative feed-
back amplifier plus the equations for the amplification
with feedback. I signed the sketch, and 20 minutes later,
when I reached the laboratory at 463 West Street, it was
witnessed, understood, and signed by the late Earl C.
Blessing.

As previously mentioned, Edwin Howard Armstrong’s
approach to amplification using positive feedback was “a
nearly universal idiom” during the early part of the 20th
century. Black’s approach did not flow logically from
Armstrong’s approach or from existing knowledge. Instead,
Black’s approach represented a logical break from prevail-
ing thinking.

Despite the elegance and demonstrated practical effec-
tiveness of negative feedback, Armstrong’s approach was
so entrenched in the thinking of electrical engineers that
there was widespread resistance to Black’s concept of neg-
ative feedback for many years after its invention. As Black
~1977! recalls,

Although the invention had been submitted to the US
Patent Office on August 8, 1928, more than nine years
would elapse before the patent was issued on December
21, 1937. . . . Onereason for the delay was thatthe con-
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cept was so contrary to established beliefs.@emphasis
added#

The British Patent Office was even more resistant. Black
~1977! recounted “. . . our patent application was treated in
the same manner as one for a perpetual motion machine.”

The British Patent Office continued to maintain that neg-
ative feedback would not work despite the fact that AT&T
had “70 amplifiers working successfully in the telephone
building at Morristown” for a number of years.

We believe that one reason why it took an inordinate
amount of time for negative feedback to gain acceptance
was that human thinking often becomes channeled along
the well-traveled paths of “established beliefs.” In this sit-
uation, logical thinking can become the enemy of creativity.

Of course, when we say that the invention process is
inherently illogical, we do not mean that inventors are obliv-
ious to logic or that logical thinking is not helpful to inven-
tors. Logical thinking often plays the important role of setting
the stage for an invention. As Black~1977! himself noted,
“ @s#everal years of hard work on the problem” brought his
thinking into the proximity of a solution. However, Black
was not able to arrive at the invention by means of logic.
Then, at the critical moment, Black made the necessary
illogical leap during his now famous ferryboat ride.Although
logical thinking may play a role in invention and creativity,
at the end of the day, the critical element is a logical dis-
continuity from established ideas.

Many inventions over the years~like Black’s two solu-
tions to the problem of reducing distortion in amplifiers!
were conceived in a singular moment when the prevailing
thinking was replaced by a new approach that could not
have been logically deduced from what was previously
known.

3.4. Reinvention of negative feedback by genetic
programming

In this section, we will show how the once perplexing prob-
lem of designing an electrical circuit to reduce distortion in
amplifiers can be readily solved in an automated way by
means of genetic programming. As will be seen below,
Black’s solution involving negative feedback readily flows
from an evolutionary search guided by a high-level state-
ment of the problem.

Beforeproceeding,note thatonedifferencebetweenBlack’s
solution in 1927 and our present-day run of genetic program-
ming is that Black invented negative feedback in the era of
vacuum tubes. We did not have access to accurate models for
the vacuum tubes actually used by Black. However, his pat-
ents state levels of performance that he achieved with his
inventions. Present-day transistors operate in a manner sim-
ilar to vacuum tubes. In particular, field-effect transistors
~FETs! closely resemble the behavior of vacuum tubes in that
they are voltage controlled.Therefore, the transistor-inserting
function that we used in our present-day run of genetic pro-

gramming inserts an IRFZ44 FET into the developing cir-
cuit. We maintained substantial consistency with the
performance levels obtained by Black in 1927 by using an
initial circuit with a voltage source supplying an incoming
sine wave with a 4-V amplitude, a 50-ohm source resistor, a
100-ohm load resistor, and a 60-V power supply.

3.4.1. Preparatory steps

The human user communicates the high-level statement
of the problem to the genetic programming system by per-
forming certain well-defined preparatory steps.

The five major preparatory steps for the basic version of
genetic programming require the human user to specify the
following:

1. the set of terminals~e.g., the independent variables of
the problem, zero-argument functions, and random con-
stants! for each branch of the program that is to be
evolved,

2. the set of primitive functions for each branch of the
program that is to be evolved,

3. the fitness measure~for measuring the fitness of indi-
viduals in the population!,

4. certain parameters for controlling the run, and
5. the termination criterion and method for designating

the result of the run.

As previously mentioned, we approach each problem of
synthesis of analog electrical circuits~including the eight spe-
cific problems discussed in this paper! in substantially the
same way. We employ the generic set of functions described
in Section 2.3 of this paper~e.g., generic component-creating
functions that insert resistors, capacitors, and transistors;
generic topology-modifying functions; generic development-
controlling functions! and we employ the generic set of ter-
minals described in Section 2.3~e.g., constant numerical
values, perturbable numerical values, symbolic values, zero-
argument development-ending functions!.

In preparing a run of genetic programming on a particular
problem~e.g., the problem of reducing distortion in ampli-
fiers!, the emphasis is on the fitness measure. The construc-
tion of a problem’s fitness measure requires the human user
to identify exactly what is wanted. Focusing on what Black
wanted leads to a multiobjective fitness measure based on
the degree to which a candidate electrical circuit

• amplifies the incoming signal,

• minimizes distortion, and

• minimizes the number of expensive components.

Suppose that we adopt the usual convention that a smaller
value of fitness is better, with zero being the~perhaps
unattainable! ideal value. Suppose also that the specified
amount of amplification is 10 dB. In that event, if a circuit
were to receive a perfect sine wave as its input, the desired
output of the circuit would be an inverted perfect sine wave
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whose amplitude is 3.16 times that of the incoming signal.
The fitness measure for a candidate circuit can thus be based
on the difference between this desired waveform and the
output actually produced by the candidate circuit.

We first consider the first element of the three-element
fitness measure. If the average absolute difference between
a candidate circuit’s output and the desired output is small
~say,,1%!, the circuit can be deemed to deliver a satisfac-
tory amount of amplification and this first element of the
fitness measure can be set to 0. Otherwise, the first element
of the fitness measure is set to the average absolute differ-
ence between the desired output and the actual output.

The second element of the fitness measure is based on
total harmonic distortion~THD!:

THD 5
!(

i52

N

Ai
2

A1

,

whereA1 is the magnitude of the first harmonic~i.e., the
fundamental frequency! andAi is the magnitude of theith
harmonic~Vladimirescu, 1994!. For audio signals of inter-
est over a telephone, it would be reasonable to choose
1000 Hz as the fundamental frequency and to considerN5
9 harmonics. If the total harmonic distortion is less than,
say,245 dB, a circuit can be deemed to be satisfactory in
terms of reducing distortion and the second element of the
fitness measure can be set to 0. Otherwise, the second ele-
ment is equal to

103 ~11 6THD 2 ~245!6!.

The third element of the fitness measure assigns a cost of
1.0 for each transistor and 0.01 for each resistor and capac-
itor ~a choice suggestive of the cost difference in the 1920s
of a vacuum tube and a resistor!.

The three required elements of this multiobjective prob-
lem can be combined in a lexicographic way as follows:
fitness can be defined as the sum of the first element~ampli-
fication!, 1026 times the second element~distortion!, and
10218 times the third element~parsimony!. This lexico-
graphic scheme causes the search process to first look for a
circuit that provides the desired amplification. Once the
contribution of the first element~amplification! reaches zero,
the second element’s contribution remains significant and
distortion is taken into account. Once the contribution of
the second element~distortion! reaches zero, the third ele-
ment’s contribution remains significant and parsimony is
taken into account. This multiobjective fitness measure pro-
vides a way to take each of the three required elements into
account and to readily compare the performance~desirabil-
ity! of one candidate circuit to another.

Note that this fitness measure was created by focusing the
problem’s high-level requirements: amplification, distor-
tion, and parsimony. The fitness measure is concerned with

“what needs to be done,” not with “how to do it.” Notice that
the fitness measure does not mandate a feed-forward approach
~i.e., Armstrong’s well-established approach!, a feedback
approach,oranyotherparticularapproach. Inaddition, if feed-
back is used at all, the fitness measure is agnostic as to whether
the feedback is Armstrong’s positive type of feedback or
Black’s negative type of feedback.

The remaining preparatory steps for Black’s problem of
designing a circuit to reduce distortion in amplifiers are
identical to those for numerous other problems of circuit
synthesis that have been solved using genetic program-
ming. For details, see Koza, Keane, Streeter, Mydlowec,
Yu, and Lanza~2003!.

An important point about the just-described preparatory
steps supplied by the human user prior to a run of genetic
programming is that genetic programming requires only a
de minimusamount of platitudinous knowledge about ana-
log circuits. No knowledge base concerning the synthesis
of analog electrical circuits is used.~Indeed, we know of no
knowledge-based approach that is capable of automatically
synthesizing the topology and sizing of analog circuits from
a high-level statement of design requirements!. Instead, we
use a generic set of primitive functions~capable of creating
any circuit composed of resistors, capacitors, and transis-
tors!, a generic set of terminals, and a fitness measure that
expresses the high-level design requirements of the prob-
lem at hand. In the present instance, we used Black’s high-
level requirements~amplification, distortion, and parsimony!
to specify “what needs to be done.”

3.4.2. Results for the problem of reducing
amplifier distortion

The best circuit from among the 1,000,000 individuals in
the population at generation 0 delivers amplification of
22.91 dB. That is, the best-of-generation circuit acts as an
attenuator rather than an amplifier. However, even amplifi-
cation of22.91 dB can provide a toe-hold for the evolu-
tionary process aimed at creating an amplifier.

The first best-of-generation circuit that acts as an ampli-
fier appeared in generation 9. Specifically, this individual
acts as a 5.37-dB amplifier. In addition to having inade-
quate amplification, this circuit is unsuitable in that it has a
total harmonic distortion of25.65 dB.

The first circuit in the run satisfying the problem’s ampli-
fication criterion~10 dB! and having a total harmonic dis-
tortion of less than245 dB appeared in generation 46. This
circuit has a total harmonic distortion of254.2 dB.

This best-of-generation circuit from generation 46~Fig. 2!
consists of three FETs and two resistors~ignoring the source
resistor RSRC and the load resistor RLOAD that were hard
wired into the test fixture!. In viewing the figures, note that
a FET’s source corresponds to a vacuum tube’s cathode, the
FET’s drain corresponds to the tube’s anode, and the FET’s
gate corresponds to the tube’s grid. In this circuit, transistor
Q3 is biased off so its removal does not affect the circuit’s
behavior. However, transistors Q1 and Q2 are overlaid in
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parallel and together act as a single transistor with twice the
transconductance and interelectrode capacitance of Q1. The
removal of one of these two identical transistors slightly
decreases the circuit’s amplification~to 9.64 dB!, adversely
affects its total harmonic distortion~to 251.9 dB!, and
changes its bias.

The 174-ohm resistor R2 in Figure 2 is the mechanism
for providing negative feedback from Q1 and Q2. Because
Q1 and Q2 reverse the phase of the incoming signal, the
feedback is negative; that is, the signal from the drains
~corresponding to a vacuum tube’s plate! of Q1 and Q2 is
subtracted from the incoming signal at the point-labeled
VINSRC.

Table 2 shows, in column 2, the amplitude~decibels! of
the fundamental frequency~1000 Hz! and various harmon-
ics for the best-of-generation circuit from generation 46
~Fig. 2!. Column 3 shows the amplitude~decibels! with
respect to the fundamental frequency.

The best-of-run circuit~Fig. 3! emerged in generation
48. The average absolute error~measuring amplification!
of this best-of-run circuit from generation 48 is 0.065 V

~about two-thirds of that of the best-of-generation circuit
from generation 46!. The best-of-run circuit has amplifica-
tion of 10.06 dB and total harmonic distortion of251.2 dB.
This circuit is more parsimonious than the best-of-generation
circuit from generation 46 in that it has only one transistor
and two resistors~again ignoring RSRC and RLOAD!. As
can be seen, the 182-ohm resistor R2 is the mechanism for
providing the negative feedback from the drain of transistor
Q1 to the point-labeled VINSRC.

Table 3 shows, in column 2, the amplitude~decibels! of
the fundamental frequency~1000 Hz! and various harmon-
ics for the best-of-run circuit from generation 48~Fig. 3!.
Column 3 shows the amplitude~decibels! with respect to
the fundamental frequency.

Thus, after 48 generations, genetic programming suc-
ceeded in recreating the invention of negative feedback. In
reinventing negative feedback, the genetic programming
algorithm did not rely on logic. Instead, it conducted a prob-
abilistic search in the space of circuit-constructing com-
puter programs. This probabilistic search was guided by the

Fig. 2. The best-of-generation circuit from generation 46 for the problem
of reducing amplifier distortion.

Table 2. Distortion for the best-of-generation circuit from
generation 46 for the problem of reducing amplifier distortion

Harmonic Amplitude
Amplitude wrt

Fund. Freq.

1000~fund. freq.! 9.96 0
2000 244.3 254.3
3000 261.5 271.5
4000 268.7 278.7
5000 271.0 281.0
6000 278.8 288.8
7000 285.6 295.6
8000 281.6 291.6
9000 281.4 291.4

Fig. 3. The parsimonious best-of-run circuit from generation 48 for the
problem of reducing amplifier distortion.

Table 3. Distortion of the best-of-run circuit from generation
48 for the problem of reducing amplifier distortion

Harmonic Amplitude
Amplitude wrt

Fund. Freq.

1000~fund. freq.! 10.06 0
2000 241.3 251.4
3000 254.7 264.8
4000 273.2 283.3
5000 266.9 277.0
6000 268.8 218.9
7000 273.2 283.3
8000 269.9 280.0
9000 273.3 283.4
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high-level requirements of Black’s problem of minimizing
distortion in amplifiers. In addition, this probabilistic search
process arrived at the same creative solution that Black
conceived in 1927.

Black received US patents 2,003,282~Black, 1935!,
2,102,670~Black, 1937a!, and 2,102,671~Black, 1937b!
that relate to his work on the problem of reducing distortion
in amplifiers, as well as US patent 1,686,792~Black, 1928,!
for the earlier impractical solution described in Section 1.2.
The overall goal of all these efforts is stated in the descrip-
tion of US patent 2,102,670~Black, 1937a!:

It is common experience that increase of the power out-
put of vacuum tubes or electric space discharge devices
tends to increase distortion of signaling or other waves
transmitted by the devices, and tends to lower the gain of
the circuits of the devices. . . .

Therefore, a major problem in devising vacuum tube
systems, as for example vacuum tube amplifier systems,
is the securing of high output of power without atten-
dant disadvantages, as for example without increase of
first cost or decrease of operating efficiency of the sys-
tems, and especially in the case of vacuum tube ampli-
fiers and repeaters, without sacrifice of quality of signal
reproduction.

The best-of-run circuit from generation 48~Fig. 3!
infringes claims 1 and 3 of US patent 2,102,671~Black,
1937b!. Claim 1 covers,

In a wave translating device or system having amplifying
properties, an input portion and an output portion, means
to apply fundamental waves to said input portion, said
system carrying fundamental components in said output
portion, and having means producing other wave com-
ponents in said output portion, and means controlling the
relative magnitudes of said components in said output
portion comprising means to feed waves from said out-
put portion to said input portion to decrease the gain of
the system.

The FET Q1 is the “wave translating device or system.”
The incoming voltage signal source is the “means to apply
fundamental waves to said input portion.” Resistor R2 is
the “means to feed waves from said output portion to said
input portion to decrease the gain of the system.” The neg-
ative feedback “decrease@s# the gain of the system.”

Claim 3 of US patent 2,102,671~Black, 1937b! covers
the following:

In a wave translating system operating to amplify applied
fundamental waves, and to produce distortion compo-
nents as a function of nonlinearity in the system, means
to increase the ratio of the amplified fundamental wave
component to distortion components comprising means
to utilize a portion of the waves translated by said system

to reduce the gain of the system below the gain with zero
feedback in the system of the waves translated by the
system.

Thus, we have seen that if one begins with a high-level
statement of the problem that Black was trying to solve,
Black’s solution readily flows from a run of genetic pro-
gramming. It does so because Black’s solution is a correct
solution to the problem of reducing distortion in amplifiers
and, as they say, necessity is the mother of invention.

One of the virtues of genetic programming is that it
approaches a problem in an open-ended way that is not
encumbered by previous human thinking. Genetic program-
ming is not aware, much less concerned, about whether a
solution is “contrary to established beliefs.” For this rea-
son, genetic programming often unearths solutions that might
have never occurred to human scientists and engineers who
are steeped in the thinking of the day.

4. REINVENTION OF A SALLEN–KEY FILTER
BY GENETIC PROGRAMMING

Genetic programming can routinely produce inventive and
creative results. We illustrate this point in this section by
considering the problem of automatically synthesizing a
circuit that duplicates the behavior of another important
invention in the field of electrical engineering, namely, the
Sallen–Key active filter composed of op amps~Kardontchik,
1992; Lancaster, 1995; Karki, 1999!.

4.1. Preparatory steps

As previously mentioned, we approach each problem of
analog circuit synthesis in substantially the same way. We
use the generic set of functions described in Section 2.3
~e.g., generic component-creating functions that insert resis-
tors, capacitors, and transistors; generic topology-modifying
functions; and generic development-controlling functions!
and the generic set of terminals described in Section 2.3
~e.g., constant numerical values, perturbable numerical val-
ues, symbolic values, zero-argument development-ending
functions!. Thus, in preparing for a run of genetic program-
ming on the problem of synthesizing a Sallen–Key filter,
the emphasis is on the fitness measure.

The fitness measure consists of 10 elements. The 10 ele-
ments are divided into two groups, each consisting of 5
elements. Within each group of 5 elements, the first ele-
ment of each group evaluates the circuit in the frequency
domain with the aim of getting a circuit whose frequency-
domain behavior matches that of the model circuit whose
behavior represents that of a Sallen–Key filter. For the sec-
ond and third elements of each group, the circuit is evalu-
ated in the passband with the aim of getting its output to
match the incoming waveform as closely as possible. For
the fourth and fifth elements within each group, the circuit
is evaluated in the stopband with the aim of getting its
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output to be suppressed to nearly zero~without regard to
the shape of the suppressed waveform!.

For all elements of the fitness measure, all internal points
of the circuit are probed. If any voltage at any point in the
circuit ever falls outside the interval@230, 130# , the indi-
vidual receives a high-penalty fitness~e.g., 108!. An indi-
vidual also receives a high-penalty fitness if the circuit cannot
be simulated. In the absence of these two extreme situa-
tions, fitness is a weighted sum of theperformance penalty
and theparsimony penalty. The performance penalty is the
sum, over all 10 elements of the fitness measure, of the
detrimental contribution to fitness associated with that ele-
ment of the fitness measure. The parsimony penalty is equal
to the number of op amps in the circuit plus 0.25 times the
number of other components in the circuit.

The performance penalty and the parsimony penalty can
be combined into a multiobjective fitness measure in a lex-
icographic way similar to that used in the previous section
of this paper. During the early part of the run, the emphasis
is on performance. After a satisfactory level of perfor-
mance is achieved, the emphasis is on parsimony.

4.2. Results

The best-of-run individual~Fig. 4! was produced at gener-
ation 183.

Figure 5 shows the behavior, in the frequency domain, of
the genetically evolved best-of-run circuit from generation
183. The attenuation for the decade of frequency between
1000 and 10,000 Hz is 39.1 dB. The frequency response of
this circuit indicates that it is a satisfactory solution to the
problem. Examination of the topology of the circuit~Fig. 4!
reveals that the genetically evolved solution is a Sallen–
Key filter.

5. REINVENTION OF SIX 21ST-CENTURY
PATENTED INVENTIONS BY GENETIC
PROGRAMMING

We further illustrate the point that genetic programming
can routinely produce inventive and creative results by con-

sidering six instances where genetic programming automat-
ically created both the topology and sizing for analog elec-
trical circuits patented after January 1, 2000. The six 21st-
century patented inventions are shown as the last six entries
in Table 1.

The main difference between the runs of genetic program-
ming for the six problems described in this section is that
we supplied a different fitness measure for each problem.
Construction of a fitness measure requires translating the
problem’s high-level requirements into a precise computa-
tion. For each problem, the original patent document was
used to determine the performance the invention was sup-
posed to achieve.

The commercially common 2N3904~npn! and 2N3906
~ pnp! transistor models were used for the problems in this
section, unless the patent document called for a different
model. Five-volt power supplies were used, unless the pat-
ent specified otherwise. The control parameters and termi-
nation criterion were the same for all six problems, except
that different population sizes were used on certain prob-
lems so as to approximately equalize each run’s elapsed
time per generation.

We now describe the six fitness measures. For additional
details, see Koza, Keane, Streeter, Mydlowec, Yu, and Lanza
~2003!.

5.1. Fitness measures for the six 21st-century
patented inventions

5.1.1. Low-voltage balun circuit

The purpose of a balun~balance0unbalance! circuit is to
produce two outputs from a single input, each output hav-
ing half the amplitude of the input, one output being in
phase with the input, while the other is 1808 out of phase
with the input, with both outputs having the same DC off-
set. The patented balun circuit uses a power supply of only
1 V. The fitness measure consisted of a frequency sweep
analysis designed to ensure the correct magnitude and phase
at the two outputs of the circuit and a Fourier analysis
designed to penalize harmonic distortion.

Fig. 4. The genetically evolved best-of-run circuit from generation 183.
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5.1.2. Mixed analog–digital register-controlled
variable capacitor

This mixed analog–digital circuit~Aytur, 2000! has a
capacitance that is controlled by the value stored in a dig-
ital register. The fitness measure employed 16 time-
domain fitness cases. The 16 fitness cases ranged over all
eight possible values of a 3-bit digital register for two
different analog input signals.

5.1.3. Voltage–current conversion circuit

The purpose of the voltage–current conversion circuit
~Ikeuchi & Tokuda, 2000! is to take two voltages as input
and to produce a stable current whose magnitude is propor-
tional to the difference of the voltages. The fitness measure
utilized four time-domain input signals~fitness cases!. A
time-varying voltage source was placed beneath the output
probe point to ensure that the output current produced by
the circuit was stable with respect to any subsequent cir-
cuitry to which the output of the circuit might be attached.

5.1.4. High-current load circuit

The patent covers a circuit designed to sink a time-
varying amount of current in response to a control signal.
The patented circuit employs a number of FETs arranged in
parallel, each of which sinks a small amount of the desired

current. The fitness measure comprised two time-domain
simulations, each representing a different control signal.

5.1.5. Low-voltage cubic signal generator

The patent covers an analog computational circuit that
produces the cube of an input signal as its output. The
circuit is “compact” in that it contains a voltage drop across
no more than two transistors. The fitness measure for this
problem consisted of four time-domain fitness cases using
various input signals and time scales. The compactness
constraint was enforced by providing only a 2-V power
supply.

5.1.6. Tunable integrated active filter

The patent~Irvine & Kolb, 2001! covers a tunable inte-
grated active filter that performs the function of a low-pass
filter whose passband boundary is dynamically specified by
a control signal. The circuit has two inputs: a to-be-filtered
incoming signal and a control signal.

The fitness measure for this problem consisted of a per-
formance penalty and a parsimony penalty. The passband
boundary~ f ! ranges over nine values between 441 and
4414 Hz. The performance penalty is a weighted sum, over
61 frequencies for each of the nine values off, of the abso-
lute weighted deviation between the output of the individ-

Fig. 5. The behavior in the frequency domain of the genetically evolved best-of-run circuit from generation 183.
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ual candidate circuit at its probe point and the target output.
The parsimony penalty is equal to the number of compo-
nents in the circuit.

5.2. Results for the six 21st-century patented
inventions

5.2.1. Low-voltage balun circuit

Genetic programming automatically created the circuit
shown in Figure 6. This best-of-run evolved circuit was
produced in generation 97 and has a fitness of 0.429. The
patented circuit has a fitness of 1.72. That is, the evolved
circuit is roughly a fourfold improvement~less being bet-
ter! over the patented circuit in terms of our fitness mea-
sure. In addition, the evolved circuit is superior to the
patented circuit both in terms of its frequency response and
its harmonic distortion.

In the patent documents, Lee~2001! shows a previously
known conventional~prior art! balun circuit~Fig. 7!.

Lee’s~2001! patented low-voltage balun circuit is shown
in Figure 8. Lee states that the essential difference between
the prior art and his invention is a coupling capacitor~C2!
located between the base and the collector of the transistor
~Q2!. Lee explains the essence of his invention as follows:

The structure of the inventive balun circuit@Fig. 8 of this
paper# is identical to that of@Fig. 7 of this paper# except
that a capacitor C2 are further provided thereto. The capac-
itor C2 is a coupling capacitor disposed between the base
and the collector of the transistor Q2 and serves to block
DC components that may be fed to the base of the tran-
sistor Q2 from the collector of the transistor Q2.

As can be seen, the best-of-run genetically evolved cir-
cuit ~Fig. 6! possesses the very feature that Lee identifies as
the essence of his invention, namely, the coupling capacitor
C302 in Figure 6 and C2 in Figure 8.

The genetically evolved circuit also possesses three addi-
tional elements of claim 1 of Lee’s 2001 patent. Interest-
ingly, although the genetically evolved circuit embodies
the essence of Lee’s invention, it does not infringe Lee’s
patent because it does not possess the remaining elements
of claim 1.

5.2.2. Mixed analog–digital register-controlled
variable capacitor

Over our 16 fitness cases, the patented circuit has an
average error of 0.803 mV. In generation 95, a circuit
emerged with average error of 0.808 mV, or approximately
100.6% of the average error of the patented circuit. During
the course of this run, we harvested the smallest individuals
produced on each processing node with a certain maximum

Fig. 6. An evolved balun circuit.

Fig. 7. A prior art balun circuit shown in US patent 6,265,908~Lee, 2001!.

Fig. 8. The Lee ~2001! low-voltage balun circuit shown in US patent
6,265,908.
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level of error. Examination of these harvested individuals
revealed a circuit from generation 98~Fig. 9! that approx-
imately matches the topology of the patented circuit~with-
out infringing!. The genetically evolved circuit possesses
all but one of the elements of claim 1 of the patented circuit
~and hence does not infringe the patent!.

5.2.3. Voltage–current conversion circuit

A circuit emerged on generation 109 of our run of this
problem with a fitness of 0.619~compared to 1.0 for the
patent circuit! That is, the evolved circuit has roughly 62%
of the average~weighted! error of the patented circuit. The
evolved circuit was subsequently tested on unseen fitness
cases that were not part of the fitness measure and outper-
formed the patented circuit on these new fitness cases. The
best-of-run circuit solves the problem in a different manner
than the patented circuit.

5.2.4. High-current load circuit

On generation 114, a circuit emerged that duplicated
Daun–Lindberg and Miller’s~2000! parallel FET structure.
This circuit has a fitness~weighted error! of 1.82, or 182%
of the weighted error for the patented circuit.

The genetically evolved circuit shares the following fea-
ture found in claim 1 of US patent 6,211,726~Daun–
Lindberg & Miller, 2000!: “ . . . a plurality of high-current
transistors having source-to-drain paths connected in paral-
lel between a pair of terminals and a test load.”

However, the remaining elements of claim 1 in US patent
6,211,726~Daun–Lindberg & Miller, 2000! are very spe-
cific and the genetically evolved circuit does not read on
these remaining elements. In fact, the remaining elements
of the genetically evolved circuit bear hardly any resem-
blance to the patented circuit. In this instance, genetic pro-
gramming produced a circuit that duplicates the functionality
of the patented circuit using a different structure.

5.2.5. Low-voltage cubic signal generator

The best-of-run evolved circuit~Fig. 10! was produced
in generation 182 and has an average error of 4.02 mV. The
patented circuit had an average error of 6.76 mV. That is,
the evolved circuit has approximately 59% of the error of
the patented circuit over our four fitness cases.

The claims in US patent 6,160,427~Cipriani & Takeshian,
2000! amount to a very specific description of the patented
circuit. The genetically evolved circuit does not read on
these claims and, in fact, bears hardly any resemblance to
the patented circuit. In this instance, genetic programming
again produced a circuit that duplicates the functionality of
the patented circuit with a very different structure.

5.2.6. Tunable integrated active filter

Averaged over the nine values of frequency, the best-of-
run circuit from generation 50~Fig. 11! has 72.7-mV aver-
age absolute error for frequencies in the passband and
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0.39-dB average absolute error for frequencies to the right
of the passband.

The best-of-run genetically evolved circuit possesses every
element of claim 1 of US patent 6,225,859~Irvine & Kolb,
2001! and therefore infringes the patent.

6. PATENTABLE NEW INVENTIONS CREATED
BY GENETIC PROGRAMMING

Given that genetic programming has solved problems whose
solutions were previously patented, it is a natural extension
to try to use genetic programming to generate patentable
new inventions.

A patent application was filed in 2002 for improved pro-
portional, integrative, and derivative~PID! tuning rules and
non-PID controllers that were automatically created by
means of genetic programming~Keane et al., 2002; Koza,
Keane, Streeter, Mydlowec, Yu, & Lanza, 2003!. The genet-
ically evolved tuning rules and controllers outperform con-
trollers tuned using the widely used Ziegler–Nichols tuning
rules ~Ziegler & Nichols, 1942! and the recently devel-
oped Åström–Hägglund tuning rules~Åström & Hägglund,
1995!. We believe that the new tuning rules and controllers
satisfy the statutory requirement of being “improved” and
“useful.” They are certainly “new.” Because they contain
features that would never occur to an experienced control
engineer, they are certainly “unobvious” to someone “hav-
ing ordinary skill in the art.” If a patent is granted~and, just
prior to final editing of this paper, we have been informed
that it will be!, it will ~we believe! be the first patent granted
for an invention that was automatically created by means of
genetic programming. For further discussion of the poten-
tial of genetic programming as an invention machine, see
Koza, Keane, and Streeter~2003!.

Table 4 shows the two inventions generated by genetic
programming for which a patent application has been filed.

The second invention in Table 4 is what we call aparam-
eterized topology. A parameterized topology is a general
~parameterized! solution to a problem in the form of a graph-
ical structure whose nodes or edges represent components
and where the parameter values of the structure’s compo-
nents are specified by mathematical expressions containing
free variables.

In a parameterized topology, the genetically evolved
graphical structure represents a complex structure~e.g., elec-
trical circuit, controller, network of chemical reactions,

Fig. 10. An evolved cubic signal generation circuit.

Fig. 11. An evolved circuit for the tunable integrated active filter.
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antenna, genetic network!. In the automated process, genetic
programming determines the graph’s size~its number of
nodes! as well as the graph’s connectivity~specifying which
nodes are connected!. Genetic programming also assigns,
in the automated process, component types to the graph’s
nodes or edges. In the automated process, genetic program-
ming also creates mathematical expressions that establish
the parameter values of the components~e.g., the capaci-
tance of a capacitor in a circuit, the amplification factor of
a gain block in a controller!. Some of these genetically
created mathematical expressions contain free variables. The
free variables confer generality on the genetically evolved
solution by enabling a single genetically evolved graphical
structure to represent a general~parameterized! solution to
an entire category of problems. Genetic programming can
do all the above in an automated way in a single run.

The capability of genetic programming to create param-
eterized topologies for design problems is illustrated by
the automatic creation of a general-purpose non-PID con-
troller ~Fig. 12! whose blocks are parameterized by math-
ematical expressions containing the problem’s four free
variables: the plant’s time constant~Tr !, ultimate period
~Tu!, ultimate gain~Ku!, and dead time~L!. This geneti-
cally evolved controller~Fig. 12! outperforms PID control-
lers tuned using the widely used Ziegler–Nichols tuning
rules ~1942! and the recently developed Åström and Häg-
glund tuning rules~1995! on an industrially representative
set of plants.

This controller’s overall topology consists of three adders,
three subtractors, four gain blocks parameterized by a con-
stant, two gain blocks parameterized by nonconstant math-
ematical expressions containing free variables, and two lead

Table 4. Two patentable inventions created by genetic programming

Claimed Invention Patent Applic. Date Inventors Reference

Improved general-purpose tuning
rules for a PID controller

July 12, 2002 Martin A. Keane, John R. Koza, &
Matthew J. Streeter

Keane et al.~2002!, Section 12.3 of
Koza et al.~2003b!

Improved general-purpose non-PID
controllers

July 12, 2002 Martin A. Keane, John R. Koza, &
Matthew J. Streeter

Keane et al.~2002!, Section 13.2 of
Koza et al.~2003b!

PID, proportional, integrative, and derivative.

Fig. 12. The parameterized topology for a general-purpose controller.
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blocks parameterized by nonconstant mathematical expres-
sions containing free variables.

For example, gain block 730 of Figure 12 has a gain that
is parameterized by the following nonconstant mathemati-
cal expression@Eq. ~31! in Fig. 12#:

* log*Tr 2 Tu 1 log* log~6L6L !

Tu 1 1 ***
and gain block 760 of Figure 12 has a gain that is param-
eterized by@Eq. ~34! in Fig. 12#

6 log6Tr 1 16 6.

Lead block 740 of Figure 12 is parameterized by the
following nonconstant mathematical expression@Eq. ~32!
in Fig. 12#:

NLM ~log6L62 ~abs~L!L !2Tu
3~Tu 1 1!Tr eL 2 2TueL !,

where NLM is the nonlinear mapping described in Koza,
Keane, Streeter, Mydlowec, Yu, and Lanza~2003!.

Lead block 750 in Figure 12 is parameterized by@Eq.~33!
in Fig. 12#

NLM ~log6L62 TueL~2Ku~ log6KueL 62 log6L6!Tu 1 KueL !!.

7. OBTAINING PROGRESSIVELY MORE
SUBSTANTIAL RESULTS IN SYNCHRONY
WITH INCREASING COMPUTER POWER

Table 5 lists the five computer systems used to produce our
group’s reported work on genetic programming in the 15-year
period between 1987 and 2002. Column 7 shows the num-
ber of human-competitive results~out of 36! generated by
each computer system. These 36 human-competitive results
include 21 of the 22 results in Table 1 along with the two
patentable new inventions in Table 4 and 13 additional
human-competitive results produced by our group that are

not patent related~itemized in Koza, Keane, Streeter, Myd-
lowec, Yu, & Lanza, 2003!.

The first entry in Table 5 is a serial computer. The four
subsequent entries are parallel computer systems. The pres-
ence of four increasingly powerful parallel computer sys-
tems in Table 5 reflects the fact that genetic programming
has successfully taken advantage of the increased compu-
tational power available by means of parallel processing
~thereby avoiding a pitfall that often constrains other pro-
posed approaches to machine intelligence!.

Table 5 shows the following:

• There is an order of magnitude speedup~column 4!
between each successive computer system in the table.
Note that, according to Moore’s law, exponential
increases in computer power correspond approxi-
mately to constant periods of time.

• There is a 13,900:1 speedup~column 5! between the
fastest and most recent machine~the 1000-node paral-
lel computer system! and the slowest and earliest com-
puter system in Table 5~the serial LISP machine!.

• The slower early machines generated few or no human-
competitive results, whereas the faster more recent
machines have generated numerous human-competitive
results.

Four successive order of magnitude increases in com-
puter power are explicitly shown in Table 5. An additional
order of magnitude increase was achieved by making extraor-
dinarily long runs on the largest machine in Table 5~the
1000-node Pentium II parallel machine!. The length of the
run that produced the genetically evolved controller~Fig. 12!
was 28.8 days, almost an order of magnitude increase~9.3
times! over the overall 3.4-day average for runs of genetic
programming that our group has made in recent years. If
this final 9.3:1 increase is counted as an additional order of
magnitude increases in computer power, the overall increase
in computer power shown in Table 5 is 130,660:1.

Table 6 is organized around the five just-explained order
of magnitude increases in the expenditure of computing
power. Column 4 characterizes the qualitative nature of the

Table 5. Human-competitive results produced by genetic programming with five computer systems

System Period

Petacycles
~1015 cycles!0

Day for
System Speed-Up

Speed-Up
Over First

System Used for Work in Book

Human-
Competitive

Results

Serial Texas Instruments LISP 1987–1994 0.00216 1~base! 1 ~base! Koza ~1992! and Koza~1994a! 0
64-node Transtech transputer

parallel 1994–1997 0.02 9 9 A few problems in Koza et al.~1999a! 2
64-node Parsytec parallel 1995–2000 0.44 22 204 Most problems in Koza et al.~1999a! 12
70-node Alpha parallel 1999–2001 3.2 7.3 1,481 A minority~8! of problems in Koza et al.

~2003b!
2

1000-node Pentium II parallel 2000–2002 30.0 9.4 13,900 A majority~28! of the problems in Koza et al.
~2003b!

12
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results produced by genetic programming. The table shows
the progression of qualitatively more substantial results pro-
duced by genetic programming in terms of five order of
magnitude increases in the expenditure of computational
resources.

The order of magnitude increases in computer power
shown in Table 6 correspond closely~albeit not perfectly!
with the following progression of qualitatively more sub-
stantial results produced by genetic programming:

• toy problems,

• human-competitive results not related to patented
inventions,

• 20th-century patented inventions,

• 21st-century patented inventions, and

• patentable new inventions.

This progression demonstrates that genetic programming
is able to take advantage of the exponentially increasing com-
putational power made available by iterations of Moore’s law.

For over 200 years, the US Patent Office has been in the
business of receiving written descriptions of human-designed
inventions and judging whether the purported inventions are

• “new,”

• “improved,”

• “useful,” and

• “ @un#obvious . . . to a person having ordinary skill in
the art to which said subject matter pertains.”~35United
States Code103a!

When the Patent Office passes judgment on a patent appli-
cation, it generally works from written documents and oper-
ates at arms length from the inventor. When an automated
method duplicates the detailed structure of a previously pat-
ented human-created invention, the fact that the human-
designed version originally satisfied the Patent Office’s
criteria for patent worthiness means that an automatically
created duplicate would also have satisfied the Patent Office’s
criteria for patent worthiness had it arrived at the Patent
Office prior to the human inventor’s submission.

When genetic programming is applied to a problem whose
solution is a previously patented invention, there are three
possible outcomes:

• failure of the run to solve the problem,

• creation of a solution that infringes a previously issued
patent, or

• creation of a noninfringing solution that duplicates the
functionality of a previously patented invention.

There are two subcases associated with the third case.
First, a noninfringing solution may be a previously known
solution ~i.e., prior art!. The previously known solution
may or may not have been patented in the past. Second, a
noninfringing solution may be a new solution to the prob-
lem. In this second subcase, a new, genetically evolved,
noninfringing solution may be patentable if it satisfies the
additional requirements of being useful, improved, and
unobvious. A genetically evolved solution would generally
be deemed to be useful for the same reasons that the orig-

Table 6. Progression of qualitatively more substantial results produced by genetic programming in relation to five order
of magnitude increases in computational power

System Period Speed-Up Qualitative Nature of Results Produced by Genetic Programming

Serial Texas Instruments LISP 1987–1994 1~base! • Toy problems of the 1980s and early 1990s from the fields of artificial
intelligence and machine learning

64-node Transtech transputer parallel 1994–1997 9 • Two human-competitive results involving 1-dimensional discrete data~not
patent-related!

64-node Parsytec parallel 1995–2000 22 • One human-competitive result involving 2-dimensional discrete data
• Numerous human-competitive results involving continuous signals analyzed

in the frequency domain
• Numerous human-competitive results involving 20th-century patented

inventions
70-node Alpha parallel 1999–2001 7.3 • One human-competitive result involving continuous signals analyzed in the

time domain
• Circuit synthesis extended from topology and sizing to include routing and

placement~layout!
1000-node Pentium II parallel 2000–2002 9.4 • Numerous human-competitive results involving continuous signals analyzed

in the time domain
• Numerous general solutions to problems in the form of parameterized

topologies
• Six human-competitive results duplicating the functionality of 21st-century

patented inventions
Long ~4-week! runs of 1000-node

Pentium II parallel
2002 9.3 • Generation of two patentable new inventions
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inally patented invention was deemed to be useful. Almost
every alternative solution to a particular problem usually
has some attribute that can be reasonably viewed~from
some standpoint! as being improved in some respect or to
some degree. Because genetically evolved solutions often
contain features that would never occur to human scien-
tists or engineers, a genetically evolved alternative solu-
tion will often be unobvious to someone “having ordinary
skill in the art.”

US law suggests that inventions created by automated
means are patentable by saying, “Patentability shall not be
negatived by the manner in which the invention was made”
~35 United States Code103a!.

8. METHODS FOR EXTENDING GENETIC
PROGRAMMING TO MORE COMPLEX
CIRCUITS

Sections 3 and 4 demonstrated that genetic programming
can automatically synthesize analog circuits that duplicate
the functionality of two particular 20th-century inventions.
Section 5 demonstrated that genetic programming can auto-
matically synthesize analog circuits that duplicate the func-
tionality of six circuits that were patented after January 1,
2000. Section 6 presented examples of patentable new inven-
tions that have already been produced by genetic program-
ming. Section 7 discussed the progression of qualitatively
more substantial results produced by genetic programming
in relation to five order of magnitude increases in compu-
tational power. The question therefore arises of whether
and how the techniques described can be extended to auto-
matically synthesize the topology and sizing of more com-
plex circuits.

Table 7 tallies the computer time consumed by the 11
runs of the six post-2000 patented circuits described in Sec-
tion 5 of this paper. Column 2 of this table shows the prod-

uct of the total population size~M ! and the number of
generations~i 1 1! run before the best-of-run individual
was encountered. Column 3 shows the length of the run in
hours.

As can be seen from Table 7, the average number of
hours for runs involving each of the six post-2000 patented
circuits is 25, 88, 99, 83, 170, and 14, respectively. The
average of these averages is 80 h~3.3 days!. ~We use the
average of the averages here because we happened to make
four runs of the problem that took the least computer time.!

All six problems were run on a home-built parallel com-
puter system consisting of 1000 350-MHz Pentium II pro-
cessors~last row, Table 5!. This system operates at an overall
rate of 3.531011 Hz. A 3.3-day~80-h! run represents about
1017 cycles~i.e., 100 petacycles!.

The relentless iteration of Moore’s law promises increased
availability of computational resources in future years. If
available computer capacity continues to double approxi-
mately every 18 months over the next decade, a computa-
tion requiring 80 h will require only about 1% as much
computer time~i.e., about 48 min! a decade from now.

Aside from the promise of increased availability of com-
putational resources in the future, there are two reasons
why we are currently not near the boundary of the current
capability of genetic programming to automatically synthe-
size analog circuits.

One reason is that multiple runs of a probabilistic algo-
rithm are often necessary to solve a problem. However, all
11 runs involving the post-2000 patented circuits~ignoring
partial runs used for debugging purposes! produced a sat-
isfactory solution. A success rate of 100% is unusual with a
probabilistic algorithm. This high rate, over six problems
involving 21st-century patented inventions, suggests that
we are currently not near the boundary of the current capa-
bility of techniques used to produce those results.

A second reason is the intentional uniformity~and, hence,
inefficiency! of our runs of the six problems involving 21st-
century patented circuits. In approaching the six problems,
our goal was to use as little problem-specific human-
supplied knowledge, information, analysis, and intelli-
gence as possible. This “clean hands” orientation is, of
course, entirely irrelevant to a practicing engineer inter-
ested in extending the technique to produce more complex
and more useful results.

Runs of circuit synthesis problems employing genetic
programming can be accelerated in various ways.

First, many pieces of elementary knowledge helpful to
the construction of useful electrical circuits were not made
available to the runs of the six problems involving 21st-
century patented circuits. For example, the initial popula-
tion of individuals in a run of genetic programming is
typically created at random. As the run proceeds, new indi-
viduals are created by probabilistic problem-independent
operations~e.g., crossover, mutation!. Consequently, many
individuals in the population~although syntactically cor-
rect! represent unrealistic or impractical electrical circuits.

Table 7. Computer time consumed by 11 runs of the six
problems involving post-2000 patented inventions

Run M 3 ~i 1 1! Hours

Low-voltage balun circuit 490,000,000 25
Mixed analog–digital variable capacitor 198,000,000 88
High-current load circuit

First run 230,000,000 134
Second run 432,000,000 67

Voltage–current conversion circuit 550,000,000 83
Cubic function generator

First run 915,000,000 206
Second run 654,000,000 135

Tunable integrated active filter
First run 142,000,000 23
Second run 102,000,000 14
Third run 78,000,000 12
Fourth run 56,000,000 6
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One particularly egregious characteristic of the circuits that
appear in unrestricted runs of genetic programming is that
the circuit draws preposterously large amounts of current.
To cull circuits of this type from the population, each cir-
cuit in the population can be examined for the current drawn
by the circuit’s positive power supply and negative power
supply. If the current exceeds a certain generous maximum
~e.g., an absolute value of 250 mA!, the circuit is penalized
~or perhaps eliminated!.

Second, a threshold requirement for a functioning circuit
is that the circuit connect to all input signals, all output
signals, and all necessary sources of power~e.g., the posi-
tive power supply and the negative power supply!. Many
randomly created circuits do not satisfy this threshold
requirement. The process of generating random circuits in
generation 0~and the process of applying the genetic oper-
ations to create the new individuals for later generations!
can be continued until all circuits satisfy this threshold
requirement.

Third, the components that are inserted into a developing
circuit need not be as primitive as a single transistor, a
single resistor, or a single capacitor. Instead, the set of
component-creating functions can be expanded to include
numerous frequently occurring, known useful combina-
tions of components. Examples include current mirrors, volt-
age gain stages, Darlington emitter–follower sections, and
cascodes. Graeb et al.~2001! have identified~for a purpose
entirely unrelated to evolutionary computation! a promis-
ing set of frequently occurring, combinations of transistors
that are known to be useful in analog circuitry. For certain
problems, the set of primitives can also be expanded~from
mere one-, two-, or four-transistor combinations! to include
higher level entities, such as filters, amplifiers, oscillators,
voltage-controller current sources, multipliers, and phase-
locked loops.

Fourth, although the runs of the six post-2000 patented
circuits were intentionally done in a uniform way, a prac-
ticing engineer has no reason to enforce such uniformity.
For example, we did not use automatically defined func-
tions ~subroutines! for any of the six problems involving
post-2000 patented circuits. However, most practical elec-
trical circuits are replete with reuse. A practicing engineer
would recognize that reuse is highly relevant in at least two
of the six problems~namely, the mixed analog–digital inte-
grated circuit for variable capacitance and the low-voltage
high-current transistor circuit for testing a voltage source!.
The practicing engineer would have no reason to forego the
manifest benefits of reuse and automatically defined func-
tions. The benefits of using automatically defined functions
in problems having parallelism, regularity, symmetry, and
modularity are considerable~Koza, 1990, 1992, 1994a; Koza
& Rice, 1991!.

Fifth, there are numerous opportunities to incorporate
problem-specific knowledge into a run of genetic program-
ming. For example, the developmental process need not
start merely with a single modifiable wire. A substructure

of known utility for a particular problem can be hard wired
into every individual in the initial generation of the popu-
lation, thereby relieving genetic programming of the need
to reinvent it. For example, the search for a high-performance
amplifier might begin with a balanced voltage gain stage or
a differential pair as the starting point.

Sixth, it is possible to integrate general knowledge of
electrical engineering into a run of genetic programming.
For example, Sripramong~2001! and Sripramong and Tou-
mazou~2002! combine current-flow analysis into runs of
genetic programming for the purpose of automatically syn-
thesizing CMOS amplifiers.

Seventh, assuming that candidate circuits are simulated
by means of software~as is the case for the work described
in this paper!, the evolutionary process consumes a consid-
erable amount of computer time to evaluate the a circuit’s
fitness. As evolutionary computation is applied to larger
and more complex circuits, computer time can become a
limitation on the ability to produce usable results. Fortu-
nately, considerable work has been done in recent years to
accelerate the convergence characteristics and general effi-
ciency of circuit simulators. Although we used a version of
the SPICE3 simulator~Quarles et al., 1994! that we modi-
fied in various ways~as described in Koza, Bennett, Andre,
& Keane, 1999!, numerous commercial simulators are now
available that are considerably more efficient. Speed-ups of
up to 10:1 are reportedly possible today. Moreover, ongo-
ing progress in the field of evolvable hardware~such as
field-programmable transistor arrays, as described by Sto-
ica et al., 2001! suggest that it may be possible to replace
software simulators by hardware simulations in future years.

Eighth, as pointed out by Sripramong~2001! and Sripra-
mong and Toumazou~2002!, the set of functions and the set
of terminals described in Section 2.3 tend to create circuits
whose connectivity does not resemble the connectivity of
commonly encountered practical circuits. Sripramong~2001!
and Sripramong and Toumazou~2002! have demonstrated
that it is more efficient, in the context of automatically syn-
thesizing CMOS amplifiers by means of genetic program-
ming, to insert transistors in a way that heavily biases the
insertion process so that one lead of each new transistor is
connected to a power source, the circuit’s input, the circuit’s
output, or to a point in the circuit that is not too close to the
just-inserted transistor.

Looking forward, we believe that genetic programming
will be increasingly used to automatically generate ever
more complex human-competitive results.

9. CONCLUSIONS

This paper has argued that creative inventions are charac-
terized by a logical discontinuity and singular moment when
prevailing thinking is, in a “flash of genius,” overthrown
and replaced by a new approach. The paper illustrated this
point by discussing the history of the invention of negative
feedback by Harold S. Black. The paper showed that Black’s
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1927 invention can be automatically created by means of
an automated design and invention process~genetic pro-
gramming! and that this automated invention process is
accomplished by a probabilistic search without resort to
logic. The paper also showed that a 19th-century patented
invention, numerous 20th-century patented inventions, other
20th-century inventions~such as the Sallen–Key filter!, six
21st-century inventions, and two patentable new inventions
have been discovered in a similar automated way by means
of genetic programming. The paper argued that evolution-
ary search is a promising approach for achieving automated
design because illogic, and hence creativity, is inherent in
the evolutionary process.
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