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Abstract—Decompilation is a reconstruction of a program in
a high-level language from a program in a low-level language.
Typical applications of decompilation are software security
assessment, malware analysis, error correction and reverse
engineering for interoperability.

Native code decompilation is traditionally considered in the
context of the C programming language. C++ presents new
challenges for decompilation, since the rules of translation from
C++ to assembly language are far more complex than those of
C. In addition, when decompiling a program that was originally
written in C++, reconstruction of C++ specific constructs is
desired.

In this paper we discuss new methods that allow partial
recovery of C++ specific language constructs from a low-
level code provided that this code was obtained from a C++
compiler. The challenges that arise when decompiling such
code are described. These challenges include reconstruction of
polymorphic classes, class hierarchies, member functions and
exception handling constructs. An approach to decompilation
that is used to overcome these challenges is presented.

SmartDec, a native code to C++ decompiler that is being
developed by the authors at Select LTD is presented. It
reconstructs expressions, function arguments, local and global
variables, integral and composite types, loops and compound
conditional statements, C++ class hierarchies and exception
handling constructs. An empirical study of the decompiler is
provided.

Keywords-C++, Decompilation, Reverse Engineering, Class
Hierarchy Reconstruction, Exception Reconstruction

I. INTRODUCTION

Today it is not uncommon for a software development

company to use third-party components that are provided

without source code. In such cases it is often desired to

verify that these components do not include malicious code

and have no security loopholes. It is also a common situation

when some legacy software is used for years and no source

code is available. In such situation a need may arise to fix

errors in this software, improve its performance, or adapt it

to the changed requirements.

Such problems are addressed by reverse engineering.

Software reverse engineering may involve decompilation —

translation of machine code or bytecode obtained from a

compiler back into the source code in the original high

level language. In order for decompilation to be correct, this

source code, when compiled, must produce an executable

with the same behaviour as that of the original program.

Decompilation output won’t be textually equivalent to the

original source code, and is likely to be less comprehensible

to a human.

Native code decompilation is usually considered in the

context of the C programming language. A lot of research

has been done on decompilation of C programs and existing

decompilation methods show good results for programs that

were originally written in C. Several successful commercial

tools for C decompilation exist, including Hex-Rays [1],

Boomerang [2] and REC [3]. However, generally they do

not perform well for C++ programs.

Nowadays a great deal of software is written in C++

utilizing modern coding practices and patterns. The use

of complex class hierarchies and exception handling in

present-day software is becoming more and more common,

even in performance-critical applications, such as database

management systems. For example, C++ exceptions are used

for error reporting in the kernel of the MongoDB document-

oriented database [4]. As the C++ specific constructs play

significant role in internal workings of present-day software,

it is important to reconstruct them fully during decompila-

tion. Besides, decompilation of C++ programs into C results

in undesirable artifacts, such as unrelated compound types

and unions instead of C++ inheritance hierarchy.

In this paper we discuss new methods that allow partial

recovery of the C++ specific language constructs from a low-

level code provided that this code was compiled by a C++

compiler. Compared to the C programming language, C++

introduces several new concepts, presenting new challenges

for decompilation. These challenges include reconstruction

of classes and class hierarchies, virtual and non-virtual mem-

ber functions, calls to virtual functions, exception raising

and handling statements. We propose solutions to these

challenges and describe how they were implemented in

SmartDec, a C++ decompiler.

We considered C++ ABI (application binary interface) of

Microsoft Visual Studio compiler on Windows platform and

C++ ABI of GNU C++ compiler on Linux. We use MSVC

10.0 and g++ 4.5.0 for empirical study, but SmartDec also
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works for other versions of these compilers provided they

use the same C++ ABI.

The rest of this paper is organized as follows. Section

II discusses related work. Challenges of C++ decompilation

along with possible solutions are described in Section III. In

Section IV SmartDec decompiler is presented and its internal

workings are described. Experimental results are discussed

in Section V. Our conclusions and directions for future work

are presented in the last section.

II. RELATED WORK

Currently there exists no decompiler that is capable of

reconstructing C++ code. There is some support for C++ in

the latest version of the Rec Studio, which supports mangled

names and honors class inheritance hierarchy [3].

Skochinsky [5], [6] has given a detailed description of

RTTI (run-time type information) and exception handling

structures used by MSVC, along with implementation de-

tails of some of the C++ concepts, such as constructors

and destructors. He has presented tools for reconstruction

of polymorphic class hierarchies and exception handling

statements in the assembly code. However, these tools are

based on pattern matching and do not always provide correct

results and cannot be used with compilers other than MSVC.

Sabanal and Yason [7] along with RTTI-based approach

to class hierarchy reconstruction have proposed a technique

based on the analysis of vtables (virtual function tables) and

constructors that can be applied even when RTTI structures

are not present in the assembly. Constructors are identified

by searching for operator new calls followed by a function

call. Vtable analysis is used for polymorphic class identifi-

cation. Class relationship inference is done via analysis of

constructors. Authors have also presented several examples

of successful class hierarchy reconstruction. However, sev-

eral cases in which presented techniques may fail are not

considered. These cases include operator new overloading,

constructor inlining and elimination of vtable references in

constructors due to optimizations. The presented techniques

also heavily rely on the use of MSVC-specific thiscall
calling convention.

In [8] authors have proposed a method for automatic

reconstruction of class hierarchies that does not rely on RTTI

and performs well in cases when aggressive optimizations

are used by the compiler.

III. CHALLENGES OF C++ DECOMPILATION

Compared to the C programming language, C++ intro-

duces several new concepts, including:

• Polymorphic classes and class hierarchies.

• Virtual and non-virtual member functions.

• Exceptions and exception handling.

Existing decompilation methods show good results for

programs that were originally written in C. However, when

decompiling C++ programs, C++ exception handling blocks

are decompiled as several unreferenced functions in place of

catch blocks, virtual function calls are not recognized, and

classes are not reconstructed.

For quality C++ decompilation, the following constructs

must be recovered:

• Virtual functions,

• Classes,

• Class hierarchies, i.e. inheritance relations between

classes,

• Constructors and destructors,

• Types of pointers to polymorphic classes,

• Non-virtual member functions,

• Layout and types of class members,

• Calls to virtual functions,

• Exception raising and handling statements.

A. Virtual functions

In C++, a virtual function is a function with behaviour

that can be overridden within an inheriting class by a

function with the same signature [9]. Virtual functions are

an important part of the implementation of polymorphism

in C++.

The C++ standard [9] does not mandate exactly how the

virtual function dispatch must be implemented. In GCC [10]

and MSVC [11] ABIs it is implemented using vtables. Each

vtable is an array of pointers to virtual functions, therefore

the problem of identification of virtual functions for MSVC

and GCC can be reduced to the problem of locating all

vtables.

In SmartDec vtables are located by scanning the data

segment of the low-level code and checking each location

in it as it is described in [8].

B. Classes and class hierarchies

The first approach to class hierarchy reconstruction uti-

lizes run-time type information as it is described in [8],

[7], [6]. For each polymorphic class, an RTTI structure

that contains information about its parents is emitted by

the compiler. All classes and complete polymorphic class

hierarchy can then be reconstructed by examining all RTTI

structures.

In GCC and MSVC C++ ABIs, a pointer to the RTTI

structure of a class always precedes its vtable [10], [11].

Therefore, the problem of finding RTTI structures can be

reduced to the problem of locating vtables.

Layout of RTTI structures is defined by the ABI that is

used by the C++ compiler. Once the layout is known, RTTI

structures can be parsed, thus giving a complete polymorphic

class hierarchy exactly as it was in the source C++ program.

Since run-time type information structures contain mangled

class names, class names can also be recovered.

However, RTTI is considered to be frequently misused

[12], and some modern applications written in C++ refrain

from using it. The use of RTTI increases binary size, and
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Figure 1. Example of a class hier-
archy.

Figure 2. Example of a type lattice.

Figure 3. Outline of constructor execution for class C from Fig 1.
Initializations of vtable pointer field are marked with �.

this is why it is frequently disabled in code-size critical

applications for embedded systems [13], [14]. Some frame-

works replace RTTI with hand-rolled solutions because it

imposes a runtime overhead or is not powerful enough for

the framework’s needs. Examples of such frameworks are

Qt [15] and LLVM [16]. RTTI can be disabled at compile

time, and in this case the above described approach to class

hierarchy reconstruction cannot be used.

In case RTTI structures are not present in the assembly, an

approach based on the analysis of vtables, constructors and

destructors can be used for reconstruction of polymorphic

class hierarchies as it is described in [8].

In SmartDec both approaches are implemented.

C. Constructors and destructors

In SmartDec constructors and destructors are detected for

polymorphic classes only. Constructors and destructors of

non-polymorphic classes do not differ from ordinary mem-

ber functions, and therefore are difficult to detect reliably.

This is one of the directions of future work.

Constructors and destructors are detected by checking

the operations they perform as it is described in [8]. A

constructor of a class performs the following sequence of

operations [9], [11]:

1) calls constructors of direct base classes;

2) calls constructors of data members;

3) initializes vtable pointer field(s) and performs user-

specified initialization code in the body of the construc-

tor.

Figure 4. Outline of destructor execution for class C from Fig 1.
Initializations of vtable pointer field are marked with �.

Conversely, a destructor deinitializes the object in the

exact reverse order to how it was initialized:

1) initializes vtable pointer field(s) and performs user-

specified destruction code in the body of the destructor;

2) calls destructors of data members;

3) calls destructors of direct bases.

Interprocedural data flow analysis is used to detect con-

sequent vtable pointer field initializations, thus locating

constructors and destructors. This approach also makes it

possible to detect inlined constructors and destructors.

The order in which vtable pointer field initializations are

performed is determined by the inheritance order. Consider

hierarchy in Fig. 1. Outlines of constructor and destructor

execution for class C are provided on Fig. 3 and 4 corre-

spondingly. As can be seen, in a call to constructor vtable

pointer field is overwritten in a “base-to-derived” order,

while in a call to destructor it is overwritten in a “derived-

to-base” order. Also in a call to constructor, vtable pointer

field is initialized after a call to the constructor of the base

class, while in a call to a destructor, vtable pointer field is

initialized before a call to the destructor of the base class.

These heuristics are used to distinguish constructors from

destructors.

D. Class pointers

Class pointers may appear in several different contexts.

In each of these contexts several different values may be

assigned to a single class pointer:

• A variable or a composite type member may be as-

signed a value several times.

• A function may be called from several different loca-

tions, with pointers to different classes from the same

hierarchy passed to it as parameters.

• A function may have several exit points, and pointers

to different classes may be returned at each of them.

A reconstructed type of a pointer must be compatible with

types of all values assigned to it. That is, it must either

be a superclass of all of them, or a generic void∗ pointer.

This can be achieved using a lattice model for pointer type

reconstruction. First, class hierarchy is recovered and a type

lattice (C,�) is constructed, where C is a set of pointer

types that consists of:
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• the pointers to all recovered class types;

• void∗ pointer;

• special unknown pointer type.

The partial order � is defined by the inheritance relation

on a set of classes with addition of the following elements:

• For all A ∈ C that are the roots of inheritance hierarchy,

A� void∗.

• For all A ∈ C that are the leafs of inheritance hierarchy,

unknown �A.

Example of a Hasse diagram for type lattice is presented

on Fig. 2. For convenience, inheritance relations are depicted

on the diagram in UML notation.

Initially, a type of a pointer is initialized to unknown. On

each assignment, its type is set to the least common ancestor

of its current type and the type of the value that is assigned

to it.

Constructors that were identified on the previous step

are known to return pointers of specific class types. This

type information is then iteratively propagated through the

assignments and function calls using the above described

model for type resolution.

E. Member functions

When reconstructing non-virtual functions, it is often de-

sired to determine if a function at hand is a member function

and to find the class that it belongs to. In GCC ABI member

functions are indistinguishable from free-standing functions

with this pointer passed as the first parameter. With such

ABI reliable reconstruction of member functions is not

generally possible and must be performed manually. MSVC

by default uses thiscall calling convention for member

functions, which passes this pointer in ECX register. In this

case member functions can be reliably distinguished. The

class that the member function belongs to is then determined

by the type of this parameter.

F. Composite types

Type reconstruction algorithms [17], [18] typically assume

that copies of the same pointer always reference values of

the same type. In C++ this assumption is usually broken

because during program execution the same pointer may

point to objects of different classes from the same hierarchy.

As a result, composite type reconstruction algorithm [19]

merges information about the types of the base class fields

and the fields of its subclasses. Since different subclasses

typically have fields of different types at the same offsets,

such aggregation leads to type clashes and incorrect type

reconstruction.

This problem is solved using reconstructed information

about class pointers. All accesses to class fields (i.e. ac-

cesses to memory locations at constant offsets from object

pointer) are considered. For each access, the sum of this

constant offset and corresponding memory location’s size is

; The f o l l o w i n g code p e r f o r m s t h e c a l l
; o b j e c t−>f u n c t i o n ( 2 0 ) .
; P o i n t e r t o o b j e c t i s s t o r e d i n e s i .
; F i r s t , v t a b l e p o i n t e r i s l oa ded t o eax
mov eax , dword ptr [ e s i ]
; V i r t u a l f u n c t i o n p o i n t e r i s l o a d e d t o edx
mov edx , dword ptr [ eax +4]
; Argument i s p as s ed on t h e s t a c k
push 14h
; ‘ t h i s ‘ p o i n t e r i s p as s ed i n ecx r e g i s t e r
mov ecx , e s i
; F i n a l l y , v i r t u a l f u n c t i o n i s c a l l e d
c a l l edx

Figure 5. Example of a virtual function call produced by MSVC.

computed. Maximum of computed sums for each class is

taken as the underapproximation of class’s size.

The decompiler implements modified version of the type

reconstruction algorithm [19], which avoids merging infor-

mation about fields lying outside the approximated object

size, thus preventing type clashes.

G. Virtual function calls

For the reconstruction of virtual functions to be complete,

calls to virtual functions must also be reconstructed. Some

compiler optimizations may result in virtual calls being

devirtualized and replaced by ordinary functions calls, or

even inlined [20], [21], [22]. When not devirtualized or

inlined, a virtual function call is compiled into a sequence of

assembly instructions that extracts a function pointer from

the vtable and performs an indirect call. An example of such

a sequence produced by MSVC is presented in Fig. 5.

Virtual function calls are reconstructed after the types of

the variables are recovered. Once the type of the object

pointer that is used for a virtual function call is known,

a simple pattern matching approach is used to detect vir-

tual function calls. Each detected virtual function call may

provide additional information about parameter types of the

corresponding virtual function. This is why once a virtual

function call is detected, the type analysis is rerun for all of

the affected virtual functions.

H. Exception handling

Exception handling is a C++ concept designed to handle

the occurrence of exceptions, special conditions that change

the normal flow of program execution. Exception handling

is normally used for reporting and handling errors that occur

during program execution in a uniform way.

The C++ standard defines the semantics of exception

raising and handling, but leaves its implementation up to

compiler vendors. We have considered two implementation

schemes. In the first scheme, used by MSVC, the compiler

generates code that continuously updates exception handling

structures to reflect the current program state. A new element

is added to the stack frame layout that contains the informa-

tion on exception handlers that are available for the function

350



associated with that frame. If an exception is thrown, this

element is used by the runtime support library to locate and

execute the appropriate exception handler [23].

The second scheme, used by GCC, employs a table-driven

approach and introduces no runtime overhead if exceptions

are not used. It involves the creation of statically allocated

tables that relate ranges of the program counter to the

program state. When an exception is thrown, the runtime

system looks up the current value of the program counter in

these tables and determines which handlers are to be checked

[10].

Exception handling, while a high-level concept, involves

low-level manipulations that do not translate well into

C. For example, non-trivial control flow of the exception

handling cannot be implemented in C without assembly.

Many algorithms for control flow analysis [24] do not take

exception handling into account. As a result, catch blocks

are isolated into separate functions. This is why proper

reconstruction of exception handling requires intervention

on several decompilation stages and cannot be implemented

as a post-processing step that would fix the decompiled C

code.

In SmartDec, exception handling structures are located

and parsed after construction of the control flow graph, and

additional edges of a special kind are inserted into it. These

edges connect catch blocks with the functions they belong

to, thus preventing them from being isolated into separate

functions. On the high-level program generation step this

edge kind information is used to guide the reconstruction of

actual catch blocks.

Exception propagation involves the execution of de-

structors. As destructors for non-polymorphic classes are

frequently inlined, SmartDec is currently unable to fully

recognize and recover them. This is why destructor code

is currently output as comments and must be integrated into

the program manually.

Due to the differences in exception handling implemen-

tations between compilers, there is no universal way of

reconstructing try blocks and throw statements. We describe

how these constructs can be reconstructed for programs

compiled with GCC.

1) Exception handling in GCC: GCC for x86 and x64

architectures by default uses Dwarf2 table-based unwinding

mechanism. In Dwarf2 each function is associated with a set

of call sites. Call sites are code sections that can potentially

throw an exception, e.g. function calls or throw statements.

Each call site is associated with a landing pad. A landing pad

is a code block that calls destructors and transfers execution

to the corresponding catch block. Example of a landing

pad is presented on Fig. 6. Information about call sites and

landing pads is statically allocated and is present in the low-

level code. Details on the format of this information and on

how exception handling is performed using it is given in

[10] and [25].

; D e s t r u c t o r c a l l s s k i p p e d .
; E x c e p t i o n p o i n t e r i s p as s ed i n e a x .
mov [ ebp − 2 4 ] , eax
; I n d e x i n t h e t y p e t a b l e i s p as se d i n e d x .
mov [ ebp − 2 8 ] , edx
cmp [ ebp − 2 8 ] , 2
j e c a t c h b l o c k 2
cmp [ ebp − 2 8 ] , 1
j e c a t c h b l o c k 1
mov eax , [ ebp − 24]
mov [ esp ] , eax
c a l l Unwind Resume

Figure 6. Example of a landing pad.

Figure 7. Structures used by GCC for exception handling.

For each call site a call site record is emitted by the

compiler (see Fig. 7). It contains:

• the call site displacement inside a function;

• the call site length;

• the address of the corresponding landing pad;

• the pointer to the list of action records.

Each action record contains an index of an element in

the table of type info pointers. The list of action records

describes exception types that are handled by the landing

pad.

For quality reconstruction of exception handling, the

following constructs must be recovered:

• catch blocks;

• try blocks;

• throw statements.

Each catch block is referenced from its corresponding

landing pad, starts with a call to cxa begin catch and ends

with a call to cxa end catch. Thus catch blocks can be
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reconstructed by examining the landing pad and the locations

it references.

Different destructors must be called when exception is

thrown from different call sites. That’s why the compiler

generates several landing pads for each try block. However,

the part of the landing pad that performs dispatch to the

catch block (the part on Fig. 6) is shared by all landing

pads for all call sites of a single try block.

Therefore call sites belonging to the same try block

can be identified by analyzing their corresponding landing

pads — if two landing pads share the same dispatch block,

then their corresponding call sites belong to the same try
block. Extents of the try block are then reconstructed by

uniting the extents of all its corresponding call sites.

Exception raising in GCC is performed via a call to the

cxa throw function:

void cxa throw (
void ∗ e x c e p t i o n ,
t y p e i n f o ∗ t y p e I n f o ,
void (∗ d e s t r u c t o r ) ( void ∗ )

) ;

To reconstruct throw statements it is sufficient to locate the

calls to cxa throw and find the values of its parameters.

IV. DECOMPILER ARCHITECTURE

SmartDec decompiler is an experimental tool for analysis

of programs in assembly language and their transformation

into high-level code in C or C++ languages. SmartDec’s

workflow follows the pipeline model. Decompilation com-

prises several phases each using results of one or more

previous ones (see Fig. 8):

1) Parsing of the input assembly listing.

2) Building of the control flow graph. Isolation of func-

tions.

3) Parsing of statically allocated exception handling struc-

tures and fixing of the control flow graph.

4) Transformation of assembly instructions into platform-

independent program representation.

5) Reconstruction of classes and class hierarchies.

6) Analysis of functions:

a) Joint reaching definitions and constant propagation

analysis.

b) Liveness analysis, dead code elimination.

c) Reconstruction of local variables, function arguments

and return values.

d) Reconstruction of data types.

e) Structural analysis.

7) High-level program generation, optimization and out-

put.

The rest of this section covers implementation details of

some of these phases.

Figure 8. Decompilation workflow.

A. Parsing

Decompilation requires assembly listing of the program

being analyzed to be supplied. Generation of this listing is

a task of a separate disassembler tool.

Currently SmartDec can parse the output of GNU ob-
jdump and Microsoft dumpbin tools. SmartDec also inte-

grates with IDA Pro Interactive Disassembler and can import

information from its internal data structures.

At this phase the following objects are created:

• A sequence of instructions represented in a platform-

dependent way.

• An image object that contains information on the sec-

tions of the binary file and provides methods for reading
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its contents.

B. Isolation of functions

SmartDec uses a function reconstruction algorithm that is

based on the analysis of the program control flow graph.

In order to build this graph, instruction sequence is divided

into basic blocks. The following addresses are used as basic

block boundaries:

• jump and call destinations;

• addresses of instructions situated in memory immedi-

ately after jump instructions and empty memory areas.

Edges between basic blocks are added according to the

control flow transfers performed by their last instructions.

Functions are then discovered as connected components of

undirected version of the control flow graph.

C. Intermediate representation

Representation of a function as a control flow graph

with instructions inside basic blocks is not suitable for

future analyses that require knowledge about semantics of

instructions. Therefore, functions are translated into special

intermediate representation called Formulae.

In Formulae representation instruction semantics is ex-

pressed in a sequence of statements. Statement is a command

for a virtual machine that can be used for partial simulation

of input assembly program.

This virtual machine has its own memory model. The

memory of this machine consists of independent address

spaces identified by integer numbers. Each address space

represents a block of linear memory with bit addressing.

Such memory model allows to abstract away the actual loca-

tions of the tracked values. Registers, stack offsets and global

addresses can be assigned their own memory locations from

different address spaces and tracked uniformly.

Statements accept expressions as arguments. These ex-

pressions are represented as expression trees. Nodes of an

expression tree will be further referred to as terms. Currently

supported types of terms include integer constant, memory

location access (at a constant address), dereference (of an

expression), unary and binary arithmetic operators.

The following types of statements are used:

Assignment performs assignment of one expression to an-

other (typically a memory location access or derefer-

ence).

Kill forgets about previous assignments to the given mem-

ory location.

Jump performs unconditional jump to the given address.

Conditional jump performs a jump to the given address

when the given condition is true.

Call performs a function call to the given address.

Return returns from a function call.

D. Dataflow analysis

The goal of dataflow analysis is to construct the most

complete set of reaching definitions for each term. For this

purpose joint reaching definition and constant propagation

analysis [24] is performed. Such approach makes it possible

to use already computed reaching definitions for further

constant propagation and vice versa. The joint analysis is

finished upon reaching a fixed point.

E. Liveness analysis and dead code elimination

The goal of liveness analysis is to find a set of terms that

participate in calculations that are useful. A calculation is

considered useful if its result can potentially affect program

input, output or control flow. For example, calculation of a

flag that is not used anywhere is not useful.
Liveness analysis is performed by propagating the useful

state of each term through the Formulae program representa-

tion. After liveness analysis is complete, all the code that is

not useful can be safely eliminated. In our experience, dead

code elimination for x86 programs reduces the number of

terms in a program almost twofold, thus speeding up other

analysis steps accordingly.

F. Type reconstruction

A set of attributes is associated with a type of each term.

Type reconstruction is done via deduction of these attributes,

which is performed iteratively until a fixed point is reached.

These attributes are then used directly for generation of type

declarations in a high-level language.

The following type attributes are used:

size is the type size in bits;

integer is true if the type is an integer type;

float is true if the type is a float type;

pointer is true if the type is a pointer type;

pointee is a type of this type’s dereference;

signed is true if the type is signed;

unsigned is true if the type is unsigned;

factor is a minimal value by which values of this type are

incremented or decremented. This attribute is used for

reconstruction of arrays.

offsets is a mapping from integer offset to the type of the

field of this type at this offset. This attribute is used for

reconstruction of composite types.

Inference of the attributes that are used for basic type

reconstruction is performed according the rules described

in [18] and [26]. Reconstruction of composite types is

performed as it is described in [19].

G. Structural analysis

In order to reconstruct high-level language control flow

statements, a variant [27] of structural analysis [24] is

applied.

Structural analysis operates on control flow graphs of

special kind. Such graphs have regions as nodes. A region
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Figure 9. Example of a pattern for if-then-else region.

is a basic block or a subgraph with at most one entry node.

The entry node of a region is a node that has incoming edges

from outside the region.

Region types include cyclic regions (generic loop, while,

do-while), conditionals (if-then, if-then-else, compound con-

dition), block regions and regions of unknown type. Initially,

control flow graph of a function contains single region

comprising all basic blocks of this function.

Structural analysis of a region is performed via pattern

matching. An example of a pattern for conditional statement

is presented in Fig. 9. When a certain subgraph matches a

pattern of some region type, a new region of this type is

created. All nodes of the subgraph under consideration are

then moved into this region, and all edges from (to) subgraph

nodes are transformed into edges from (to) the region itself.

Duplicate edges are then removed.

Compound conditions can be used in conditional loops

and if statements. This is why they are reduced in the

first place. This helps to correctly identify the type of

the loop when it uses compound condition and disallows

reconstruction of compound conditions as series of enclosed

if statements.

Next, all cyclic regions are reduced. When a cyclic region

is reduced, all edges corresponding to break and continue
statements are removed from it. This simplifies control flow

structure inside the loop and allows to recover conditional

statements with break and continue statements inside. Since

cyclic regions can have complex control flow structure

inside, structural analysis is performed in newly created

cyclic regions recursively.

Then block statements are recovered in order to assemble

each branch of an if statement into a single node. At last,

if-then and if-then-else regions are reduced.

The final fully reduced graph is used directly during

code generation. Control structure in generated program is

conveyed via C control statements and, when necessary,

explicit control transfer operations break, continue and

goto. Computed gotos are represented by goto statements

having expressions as the argument.

s t r u c t B i n a r y F u n c t i o n {
v i r t u a l i n t c a l c u l a t e ( i n t a , i n t b ) = 0 ;

} ;

s t r u c t GCD: p u b l i c B i n a r y F u n c t i o n {
v i r t u a l i n t c a l c u l a t e ( i n t a , i n t b ) ;

} ;

s t r u c t Pow : p u b l i c B i n a r y F u n c t i o n {
v i r t u a l i n t c a l c u l a t e ( i n t a , i n t b ) ;

} ;

i n t GCD : : c a l c u l a t e ( i n t a , i n t b ) {
i f ( b == 0)

re turn a ;
e l s e

re turn GCD : : c a l c u l a t e ( b , a % b ) ;
}

i n t Pow : : c a l c u l a t e ( i n t a , i n t b ) {
i n t r e s u l t = 1 ;
f o r ( i n t i = 0 ; i < b ; i ++)

r e s u l t ∗= a ;
re turn r e s u l t ;

}

Figure 10. C++ source. Irrelevant code omitted.

s t r u c t C0 {
v i r t u a l i n t 3 2 t f 401367 ( i n t 3 2 t a1 , i n t 3 2 t a2 ) = 0 ;

}

s t r u c t C1 : C0 {
v i r t u a l i n t 3 2 t f 401367 ( i n t 3 2 t a1 , i n t 3 2 t a2 ) ;

}

s t r u c t C2 : C0 {
v i r t u a l i n t 3 2 t f 401367 ( i n t 3 2 t a1 , i n t 3 2 t a2 ) ;

}

i n t 3 2 t C1 : : f 401367 ( i n t 3 2 t a1 , i n t 3 2 t a2 ) {
i f ( a2 == 0) {

re turn a1 ;
} e l s e {

re turn C1 : : f 401367 ( a2 , a1 % a2 ) ;
}

}

i n t 3 2 t C2 : : f 401367 ( i n t 3 2 t a1 , i n t 3 2 t a2 ) {
i n t 3 2 t v1 ;
i n t 3 2 t v2 ;
v1 = 1 ;
v2 = 0 ;
whi le ( v2 < a2 ) {

v2 = v2 + 1 ;
v1 = v1 ∗ a1 ;

}
re turn v1 ;

}

Figure 11. Decompiled C++ source corresponding to the code on Fig. 10.
Irrelevant code omitted.

V. IMPLEMENTATION AND EXPERIMENTAL RESULTS

SmartDec was tested on a variety of open-source soft-

ware written in C++ and on several hand-crafted tests.

This section presents the results of testing of C++-related

functionality. The algorithms used for C decompilation do

not undergo significant changes when used for decompi-

lation of C++ programs. Experimental results of the basic

type reconstruction algorithm that is used in SmartDec are
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presented in [26]. Troshina et. al. presented an empirical

study of the composite type reconstruction algorithm that

is used in SmartDec [19]. SmartDec’s structural analysis

algorithm has been analyzed in [27].

As SmartDec is yet unable to produce directly compilable

code, the decompiled code cannot be tested by recompilation

and has to be verified manually. A fragment of one of

the tests from our test suite is presented on Fig. 10. The

corresponding decompiled code is presented on Fig. 11.

Testing of the reconstruction of exception handling con-

structs was performed manually. Description of the tests

is presented in Table I. Columns “Application” and “File”

contain the names of the application and the source file of

this application and columns “Try”, “Catch” and “Throw”

show the number of reconstructed try blocks, catch blocks

and throw statements respectively. Manual verification has

shown that in all these tests all exception handling constructs

present in source file were reconstructed correctly. No spu-

rious constructs were recovered.

For testing of class hierarchy reconstruction correctness,

the following automatic process is used. First, the program is

compiled with optimizations and RTTI enabled, and RTTI-

aware class hierarchy reconstruction algorithm is used to

collect information about polymorphic class hierarchy. This

algorithm always provides correct results [8]. The program

is then recompiled with optimizations but without RTTI,

and class hierarchy reconstruction algorithm that does not

use RTTI is applied. Compiler-generated debug information

is then used to restore the correspondence between class

hierarchies reconstructed on the first and second steps. Two

class hierarchies are then compared.

Test results are presented in Table II. For each of the

analyzed applications all vtables present in the assembly

were found.

“Non-vtables” row refers to the reconstructed vtables that

were not present in the source program. Static arrays of

Application File Try Catch Throw
notepad++ Parameters.cpp 1 1 4
shareaza Security.cpp 5 5 0
shareaza DownloadGroups.cpp 3 3 0
mongodb database.cpp 3 3 3
— 061 multi try.cpp 2 3 2

Table I
TEST RESULTS FOR EXCEPTION RECONSTRUCTION.

Application mysqld shareaza notepad++ doxygen
Vtables found 950 1128 95 415
Non-vtables 0.2% 0% 0% 0%
Vtable mismatches 3.1% 2.8% 4.0% 4.8%
Classes found 918 1101 95 397
Class mismatches 5.5% 5.0% 10.5% 6.3%

Table II
TEST RESULTS FOR CLASS HIERARCHY RECONSTRUCTION.

function pointers that are used in the same way as vtables

fall into this category.

Mismatch rates are calculated taking into account the

following categories of classes.

• Classes that do not override any of the virtual functions

of their bases. Vtables for such classes can be optimized

away by the compiler, thus leading to incorrect class

hierarchy reconstruction. As this doesn’t introduce any

changes in the semantics of the program, such cases

are not treated as mismatches.

• Classes with no data members and no actions per-

formed in constructors and destructors. Hierarchies of

such classes can be rearranged in virtually any way

without changing the semantics of the program. Such

cases are not treated as mismatches.

“Vtable mismatches” row refers to vtables where the

reconstructed parent vtable differs from the real one. For

example, if a vtable was reconstructed as not having a parent,

while it actually has one, then this is a mismatch. Most of

vtable mismatches were registered as a result of the parent

vtable being located in a shared library. The reason for this

is that SmartDec currently does not support joined analysis

of several low-level programs. Other mismatches were due

to vtable pointer field initializations being optimized away

by the compiler.

“Class mismatches” row refers to classes where recon-

structed vtables or parents contradict to the real ones. Most

of class mismatches fall into the following two categories:

• Classes that contain mismatched vtables.

• Classes that contain other polymorphic classes as fields.

Inheritance and aggregation may be indistinguishable,

and this is why such mismatches do not necessarily

lead to misinterpretation of the program semantics.

VI. CONCLUSION AND FURTHER WORK

We have described the challenges of C++ decompilation

and proposed several methods that can be used to overcome

them. These methods allow automatic reconstruction of

polymorphic classes and hierarchies, virtual and non-virtual

member functions, constructors and destructors, calls to

virtual functions, types of class members and their layout,

types of variables that store pointers to polymorphic classes

and exception raising and handling statements.

Proposed methods were implemented in SmartDec, a C++

decompiler that is being developed by the authors at Select

LTD. SmartDec was tested on a variety of open-source

software written in C++ and showed good results.

Directions for future work include generation of C++ code

that can be compiled and tested without prior manual editing.
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