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An Introduction 
to Wavelets 

Wavelets were developed 
independently by 

mathematicians, quantum 
physicists, electrical 

engineers, and geologists, 
but collaborations among 

these fields during the 
last decade have led to 

new and varied 
applications. What are 

wavelets, and why might 
they be useful to you? 

.: 

Amara Graps 

analyze according to scale. Indeed, some researchers feel that using 
wavelets means adopting a whole new mind-set or perspective in process- 
ing data. 

Wavelets are functions that satisfy certain mathematical requirements 
and are used in representing data or other functions. This idea is not new. 
Approximation using superposition of functions has existed since the 
early 18OOs, when Joseph Fourier discovered that he could superpose 
sines and cosines to represent other functions. However, in wavelet analy- 
sis, the scale that we use to look a t  data plays a special role. Wavelet algo- 
rithms process data at different scales or resolutions. If we look at a signal 
(or a function) through a large “window,” we would notice gross features. 
Similarly, if we look a t  a signal through a small “window,” we would no- 
tice small features. The  result in wavelet analysis is to see both the forest 
and the trees, so to speak. 

This makes wavelets interesting and useful. For many decades scientists 
have wanted more appropriate functions than the sines and cosines, 
which are the basis of Fourier analysis, to approximate choppy signals.’ 
By their definition, these functions are nonlocal (and stretch out to infin- 
ity). They therefore do a very poor job in approximating sharp spikes. But 
with wavelet analysis, we can use approximating functions that are con- 
tained neatly in finite domains. Wavelets are wtll-suited for approximat- 
ing data with sharp discontinuities. 

The  wavelet analysis procedure is to adopt a wavelet prototype function, 
called an analyzing wavelet or mother wavelet. Temporal analysis is per- 
formed with a contracted, high-frequency version of the prototype wavelet, 
while frequency analysis is performed with a dilated, low-frequency version 
of the same wavelet. Because the original signal or function can be repre- 
sented in terms of a wavelet expansion (using coefficients in a linear combi- 

An earlier version of this article will appear in the O@id Sczewtzfic d? Enginerring Applications of the 
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nation of the wavelet functions), data operations 
can be performed using just the corresponding 
wavelet coefficients. And if you further choose 
the wavelets best adapted to your data, or trun- 
cate the coefficients below a threshold, your data 
are sparsely represented. This  sparse coding 
makes wavelets an excellent tool in the field of 
data compression. 

Other applied fields that are using wavelets in- 
clude astronomy, acoustics, nuclear engmeering, 
sub-band coding, signal and image processing, 
neurophysiology, music, magnetic resonance 
imaging, speech discrimination, optics, fractals, 
turbulence, earthquake prediction, radar, human 
vision, and pure mathematics applications such 
as solving partial differential equations. 

Historical perspective 
In the history of mathematics, wavelet analysis 
has many different origins.* Much of the work 
was performed in the 1930s and, at the time, the 
separate efforts did not appear to be parts of a 
coherent theory. 

Pre-1930 
Before 1930, the main branch of mathematics 

leading to wavelets began with Joseph Fourier 
(1 807) and his theories of frequency analysis, now 
often referred to as Fourier synthesis. He  asserted 
that any 2n-periodic functionfix) is the sum 

m 

a o + C ( a k c o s k x + b k s i n k x )  
k = l  

of its Fourier series, where the coefficients ao, 
ak, and b k  are calculated by 

Fourier’s assertion played an essential role in 
the evolution of the ideas mathematicians had 
about functions. H e  opened up the door to a 
new functional universe. 

After 1807, by exploring the meaning of func- 
tions, Fourier series convergence, and orthogo- 
nal systems, mathematicians gradually were led 
from their previous .notion of fieqziency analysis 

to the notion of scale analysis. That  is, analyz- 
ing A x )  by creating mathematical structures 
that vary in scale. How? Construct a function, 
shift it by some amount, and change its scale. 
Apply that structure in approximating a signal. 
Now repeat the procedure. Take that basic 
structure, shift it, and scale i t  again. Apply it to 
the same signal to get a new approximation. 
And so on. It turns out that this sort of scale 
analysis is less sensitive to noise because i t  
measures the average fluctuations of the signal 
a t  different scales. 

The  first mention of wavelets appeared in an 
appendix to the thesis of A. Haar (1909). One 
property of the Haar wavelet is that it has com- 
pact mpport, which means that it vanishes out- 
side of a finite interval. Unfortunately, Haar 
wavelets are not continuously differentiable, 
which somewhat limits their applications. 

The 1930s 
In the 1930s’ several groups working indepen- 

dently researched the representation of functions 
using scale-varying basis finctions. Understanding 
the concepts of basis functions and scale-varying 
basis functions is key to understanding wavelets; 
the sidebar on the next page provides a short de- 
tour lesson for those interested. 

By using a scale-varying basis function called 
the Haar basis function (more on this later) Paul 
Levy, a 1930s physicist, investigated Brownian 
motion, a type of random signal.* He  found the 
Haar basis function superior to Fourier basis 
functions for studyng small complicated details 
in the Brownian motion. 

Another 1930s research effort by Littlewood, 
Paley, and Stein involved computing the energy 
of a functionfix): 

The  computation produced different results if 
the  energy was concentrated around a few 
points or distributed over a larger interval. This 
result disturbed the scientists because i t  indi- 
cated that energy might not be conserved. The  
researchers discovered a function that can vary 
in scale and can conserve energy when comput- 
ing the functional energy. Their work provided 
David Marr with an effective algorithm for nu- 
merical image processing using wavelets in the 
early 1980s. 

1960-1 980 
Between 1960 and 1980, the mathematicians 
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(;uitlo \\'eiss and Ronald R. Coifinan studied 
the simplest elements of a function space, called 
crtowrs, with the goal of finding the a t o m  for a 
coininon function and finding the assembly 
rules that allow the reconstruction of all the ele- 
ments of the function space using these atoms. 
In 1980, Grossman and Morlet, a physicist and 
an engineer, broadly defined wavelets in the 
contest  of quantum physics. These two  re- 
searchers provided a way of thinking about 
wavelets based on physical intuition. 

Post-1980 
In 1985, Stephane Alallat p v e  wavelets an ad- 

ditional jump-start through his work in digital 
signal processing. H e  discovered some relation- 
ships between quadrature inirror filters, pyrami- 
dal algorithms, and orthonormal wavelet bases 
(more on these later). Inspired in part by these 
results, Y. Aleyer constructed the first nontrivial 
wavelets. Unlike Haar wavelets, Meyer wavelets 
are continuously differentiable; however, they 
do not have compact support. A couple of years 
later, Ingrid Daubechies used Mallat's work to 
construct a set of wavelet orthonormal basis 
functions that are perhaps the most elegant, and 
have become the cornerstone of  wavelet appli- 
cations today. 

Fourier analysis 
Fourier's representation of functions as a super- 
position of sines and cosines has become ubi- 

. Detour: What Are Basis Functions? 

It is simpler to explain a basis function if we move out of 
the realm of analog (functions) and into the realm of digital 
(vectors).' 

Every two-dimensional vector (x, y) is a combination of the vec- 
tor (1,O) and (0,l). These two vectors are the basis vectors for (x, 
y). Why? Notice that x multiplied by (1, 0) is the vector (x, 0), and 
y multiplied tq (0,l) is the vector (0, y). The sum is (x, y). 

The best basis vectors have the valuable extra property that 
the vectors are perpendicular, or orthogonal to each other. For 
the basis vector (1,O) and (0, l ) ,  this criterion is satisfied. 

Now let's go back to the analog world, and see how to re- 
late these concepts to basis functions. Instead of the vector (x ,  
y) we have a function f(x). Imagine that f ( x )  is  a musical tone, 
say the note A in a particular octave. We can construct A by 
adding sines and cosines using combinations of amplitudes 
and frequencies. The sines and cosines are the basis functions 
in this example, and the elements of Fourier synthesis. For the 
sines and cosines chosen, we can set the additional require- 

quitous for both the analytic and numerical so- 
lution of differential equations and for the 
analysis and treatment of communication sig- 
nals. Fourier analysis and wavelet analysis have 
some v e q  strong links. 

Fourier transforms 
The Fourier transform's utility lies in its abil- 

ity to analyze a signal in the time donlain for its 
frequency content. T h e  transform works by first 
translating a function in the time doinain into a 
function in the frequency domain. T h e  signal 
can then be analyzed for its frequency content 
because the Fourier coefficients of the trans- 
formed function represent the contribution of 
each sine and cosine function a t  each frequency. 
An inverse Fourier transform does just what 
you'd expect, transform datn from the frequency 
domain into the time domain. 

Discrete Fourier transforms 
T h e  discrete Fourier transform (DFT) esti- 

mates the Fourier transform of a function from 
a finite number of its sampled points. T h e  sam- 
pled points are supposed to be vpical of what 
the signal looks like at all other tirnes. 

The  D F T  has sjmmetr) properties almost ex- 
actly the same as the continuous Fourier trans- 
form. In addition, the formula for the inverse 
discrete Fourier transform is easily calculated us- 
ing the one for the discrete Fourier transform 
because the W O  formulas arc almost identical. 

ment that they be orthogonal. How? By choosing the appro- 
priate combination of sine and cosine function terms whose 
inner product adds up to zero. The particular set of functions 
that are orthogonal and that construct f ( x )  are our orthogonal 
basis functions for this problem. 

What are scale-varying basis functions? 

A basis function varies in scale by chopping up the same 
function or data space using different scale sizes. For example, 
imagine we have a signal over the domain from 0 to 1. We can 
divide the signal with two step functions that range from 0 to 
1 /2  and 1 /2 to 1. Then we can divide the original signal again 
using four step functions from 0 to 114, 114 to 1 12, 1 /2 to 3/4, 
and 3/4 to 1.  And so on. Each set of representations codes the 
original signal with a particular resolution or scale. 

Reference 
1.  C. Strang, "Wavelets," American Scientist, Vol. 82, 1992, pp. 250-255. 
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Windowed Fourier transforms 
IfJt) is a nonperiodic siLgnal, the summation of 

the periodic functions (sine and cosine) does not 
accurately represent the signal. You could artifi- 
cially extend the signal to make it periodic but it 
would require additional continuity at the end- 
points. The windowed Fourier transform (um 
is one solution to the problem of better repre- 
senting the notiperiodic signal. The U‘FT can be 
used to give information about signals simultane- 
ously in the time and frequency domains. 

\Z’ith the  U’FT, the input  s ignalf( t )  is 
chopped up into sections, and each section is 
analyzed for its frequency content separately. If 
the signal has sharp transitions, we window the 
input data so that the sections converge to zero 
at  the endpoints3 This windowing is accom- 
plished via a weight function that places less 
emphasis near the interval’s endpoints than in 
the middle. The effect of the window is to local- 
ize the signal in time. 

* 

Fast Fourier transforms 
To approximate a function by samples, and to 

approximate the Fourier integral by the discrete 
Fourier transform, requires applying a matrix 
whose order is the number of sample points 11. 

Since multiplying an 71 x 11 matrix by a vector costs 
on the order of n1 arithmetic operations, the prob- 
lem gets quickly worse as the number of sample 
points increases. However, if the samples are uni- 
formly spaced, then the Fourier matrix can be fac- 
tored into a product of just a few sparse matrices, 
and the resulting factors can be applied to a vector 
in a total of order 11 log 11 arithmetic operations. . This is the so-called fast Fourier transform.’ 

Wavelet transforms versus Fourier 
transforms 
The  fast Fourier transform (F IT)  and the dis- 
crete wavelet transform (DWT) are both linear 
operations that generate a data structure con- 
taining log2 iz segments of various lengths, usu- 
ally filling and transforming it  into a different 
data vector of hgth 2”. 

T h e  mathematical properties of the matrices 
involved in the transforms are similar as well. 
The inverse transform mamx for both the FFT 
and the DWT is the transpose of the original. As 
a result, both transforms can be viewed as a rota- 
tion in function space to a different domain. For 
the FFT, this new domain contains basis func- 
tions that are sines and cosines. For the wavelet 
transform, this new domain contains more com- 
plicated basis functions called wavelets, mother 
wavelets, or analyzing wavelets. 

Both transforms have another similarity. T h e  
a 
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Figure 1. Fourier 
basis functions, 
time-frequency 
tiles, and cover- - age of the 

lime 

time-frequency 
plane. 

basis functions are localized in frequency, mak- 
ing mathematical tools such as power spectra 
(how much power is contained in a frequency 
interval) and scalegrams (to be defined below) 
useful a t  picking out frequencies and calculating 
power distributions. 

Dissimilarities 
T h e  most interesting dissimilarity between 

these two kinds of transforms is that individual 
wavelet functions are lornlized in space. Fourier 
sine and cosine functions are not. This localiza- 
tion feature, along with wavelets’ localization of 
frequency, makes many functions and operators 
using wavelets “sparse” when transformed into 
the wavelet domain. This sparseness, in turn, 
makes wavelets useful for a number of applica- 
tions such as data compression, feature detection 
in images, and noise removal from time series. 

One way to see the time-frequenq resolution 
differences between the two transforms is to 
look a t  the  basis function coverage of the 
time-frequency plane.’ Figure 1 shows ;I \\.in- 
dowed Fourier transform, where the window is 
simply a square wave. The  square wave \ \ i nch .  
truncates the sine or cosine function to  fit ;I 

window of a particular width. Because a single 
window is used for all frequencies in the \I=, 
the resolution of the analysis is the satiie at all  
locations in the time-frequency plane. 

An advantage of wavelet transforms is that the 
windows vary. In order to isolate signal discon- 
tinuities, one would like to have some v e v  short 
basis functions. At the same time, in order to 
obtain detailed frequency analysis, one would 
like to have some very long basis functions. .A 
way to achieve this is to .have short high-fre- 
quency basis functions and long low-frequenc?. 
ones. This happy medium is exactly what you 
get with wavelet transforms. Figure 2 shows the 
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coverage in the time-frequency plane with one 
wavelet function, the Daubechies wavelet. 

O n e  th ing  to remember  is t h a t  wavelet 
transforms do  not have a single set of basis 
functions like the Fourier transform, which ud- 
lizes just the sine and cosine functions. Instead, 
wavelet transforms have an infihite set of possi- 
ble basis functions. Thus wavelet analysis pro- 
vides immediate access to information that can 
be obscured by other time-frequency methods 
such as Fourier analysis. 

Figure 2. 
Daubechies 
wavelet basis 
functions, 
time-frequency 
tiles, and coverage 
of the time-fre- 
quency plane. 
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Figure 3. The fractal self-similiarity of the Daubechies mother wavelet. 
This figure was generated using the Wavelab command >wave=Make- 
Wavelet(2, -4, ’Daubechies’, 4, ’Mother‘, 2048). The inset figure was 
created by zooming into the region x = 1,200 to 1,500. 

What do some wavelets look like? 
Wavelet transforms comprise an infinite set. 
T h e  different wavelet families make different 
trade-offs between how compactly the basis 
functions are localized in space and how smooth 
they are. 

Some of the wavelet bases have fractal struc- 
ture. The Daubechies wavelet family is one ex- 
ample (see Figure 3). 

Within each family of wavelets (such as the 
Daubechies family) are wavelet subclasses dis- 
tinguished by the number of coefficients and by 
the level of iteration. Wavelets are classified 
within a family most often by the irzimber of van- 
ishing moments. This is an extra set of mathe- 
matical relationships for the coefficients that 
tnust be satisfied, and is directly related to the 
number of coefficients.’ For example, within 
the Coiflet wavelet family are Coiflets with two 
vanishing moments, and Coiflets with three 
vanishing moments. Figure 4 illustrates several 
different wavelet families. 

Wavelet analysis 
Now we begin our tour of wavelet theory, when 
we analyze our signal in time for its frequency 
content. Unlike Fourier analysis, in which we 
analyze signals using sines and cosines, now we 
use wavelet functions. 

The discrete Wavelet transform 
Dilations and translations of the mother func- 

tion, or analyzing wavelet F(x), define an or- 
thogonal basis, our wavelet basis function: 

T h e  variables s and I are integers that scale and 
dilate the mother function (0 to generate a fam- 
ily of discrete wavelets, such as a Daubechies 
wavelet family. T h e  scale index s indicates the 
wavelet’s width, and the location index I gives 
its position. Notice that the mother functions 
are rescaled, or  “dilated” by powers of two, and 
translated by integers. il’hat makes wavelet 
bases especially interesting is the self-similarity 
caused by the scales and dilations. Once we 
know about the mother functions, we know 
everything about the basis. 

To span our data domain a t  different resolu- 
tions, the analyzing wavelet @ is used in a scal- 
ing equation: 
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Figure 4. Several different families of wavelets. The nrfmber next to the wavelet name represents the 
number of vanishing moments (a strhrgent mathematkal definition related to the number of wavelet co- 
efficients) for the subclass of wavelet. These figures were generated using Wavelab. 

where W(x) is the scaling function for the 
mother function a, and ch are the wavelet coefi- 
cients. The  wavelet coefficients must satisfy lin- 
ear and quadratic constraints of the form t 

where 6 is the delta function and I is the loca- 
tion index. 

One of the most useful features of wavelets is 
the ease with which a scientist can choose the 
defining coefficients for a given wavelet system 
to  be adapted for  a given problem. In  
Daubechies’ original paper,6 she developed spe- 
cific families of wavelet systems that were very 
good for representing polynomial behavior. 
The  Haar wavelet is even simpler, and is often 
used for educational purposes. 

It is helpful to think of the coefficients {cO, . . ., 
c,,) as a filter. T h e  filter or coefficients are 
placed in a transformation matrix, which is ap- 
plied to a raw data vector. The  coefficients are 
ordered using two dominant patterns, one that 
works as a smoothing filter (like a moving aver- 
age), and ,one pattern that works to bring out 
the data’s “detail” information. These two or- 
derings of the coefficients are called a padra- 

\ 

8 
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tiil-e mimol- f d t e r  pail- in signal-processing par- 
lance. A more detailed description of the trans- 
formation matrix can be found elsewhere.+ 

T o  complete our discussion of the DWT, let’s 
look at how the wavelet coefficient matrix is ap- 
plied to the data vector. The matrix is applied in 
a hierarchical algorithm, sometimes called a 
pyramidal dgorithm. The wavelet coefficients are 
arranged so that odd rows contain an ordering 
of wavelet coefficients that act as the smoothing 
filter, and the even rows contain an ordering of 
wavelet coefficients with different signs that act 
to bring out the data’s detail. The matrix is first 
applied to the original, full-length vector. Then 
the vector is smoothed and halved, and the ma- 
trix is applied again. Then the smoothed, halved 
vector is smoothed, and halved again, and the 
matrix applied once more. This process contin- 
ues until a trivial number of “smooth-smooth- 
smoo th...” data remain. That is, each matrix ap- 
plication brings out a higher resolution of the 
data while at the same time smoothing the re- 
maining data. The  output of the DUT consists 
of the remaining “smooth (etc.)” components, 
and all of the accumulated “detail” components. 

The fast wavelet transform 
The  DWT matrix is not sparse in general, so 

we face the same complexity issues that we pre- 
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viously faced for the discrete Fourier transform.‘ 
We  solve it as we did for the FFT, by factoring 

Gauss-Markov calculations, and the theoretical 
dimension of a sequence. 

the DWT into a product of a few sparse matri- 
ces using self-similarity properties. The result is 
an algorithm that requires only order n opera- 
tions to transform to an n-sample vector. This is 
the “fast” D W T  of Mallat and Daubechies. 

Wave’et aPP’ications 
T h e  following applications show just a small 
sample of what researchers can d o  with 
wavelets. 

Wavelet packets 
The  wavelet transform is actually a subset of a 

far more versatile transform, the wavelet packet 
transform.8 

Wavelet packets are particular linear combi- 
nations of wavelets.’ They form bases which re- 
tain many of the orthogonality, smoothness, 
and localization properties of their  parent 
wavelets. The  coefficients in the linear combi- 
nations are computed by a recursive algorithm 
making each newly computed sequence of 
wavelet packet coefficients the root of its own 
analysis tree. 

Adapted waveforms 
Because we have a choice among an infinite 

set of basis functions, we may wish to find the 
best basis function for a given representation of 
a signal.’ A basis of adapted vauefoirn is the best 
basis function for a gwen signal representation. 
The  chosen basis carries substantial information 
about the signal, and if the basis description is 
efficient (that is, very few terms in the expan- 
sion are needed to represent the signal), then 
that signal information has been compressed. 

According to Wickerhauser,’ some desirable 
properties for adapted wavelet bases are 

(1) speedy computation of inner products with 

( 2 )  speedy superposition of the basis functions; 
( 3 )  good spatial localization, so researchers can 

identify the position of-a signal that is con- 
tributing a large component; 

(4) good frequency localization, so researchers 
can identify signal oscillations; and 

(5) independence, so that not too many basis el- 
ements match the same portion of the signal. 

the other basis functions; 

For adapted waveform analysis, researchers 
seek a basis in which the coefficients, when re- 
arranged in decreasing order ,  decrease as 
rapidly as possible. T o  measure rates of de- 
crease they use tools from classical harmonic 
analysis, including calculation of ii2formation cost 
finctions. This is defined as the expense of stor- 
ing the chosen representation. Examples of such 
functions include the number above a threshold, 
concentration, entropy, logarithm of energy, 

Computer and human vision 
In the early 1980s, David LVarr began work a t  

MIT’s Amficial Intelligence Laboratory on artifi- 
cial vision for robots. He is an expert on the human 
visual system, and his goal was to learn why the 
first attempts to construct a robot capable of un- 
derstanding its surroundings were unsuccessful.’ 

Marr believed that it was important to estab- 
lish scientific foundations for vision, and that 
while doing so, one must limit the scope of in- 
vestigation by excluding everything that de- 
pends on training, culture, and so on, and focus 
on the mechanical or involuntary aspects of vi- 
sion. This low-level vision is the part that en- 
ables us to recreate the three-dimensional orga- 
nization of the physical world around us from 
the excitations that stimulate the retina. Marr 
asked these questions: 

+ How is it possible to define the contours of 
objects from variations in their light inten- 
sity? 

+ How is it possible to sense depth? 
+ How is movement sensed? 

H e  then developed worlung algorithmic solu- 
tions to answer each of these questions. 

Marr’s theory was that image processing in 
the human visual system has a complicated hier- 
archical structure that involves several layers of 
processing. At each processing level, the retinal 
system provides a visual representation that 
scales progressively in a geometrical manner. 
His arguments hinged on the detection of in- 
tensity changes. H e  theorized that intensity 
changes occur at different scales in an image, so 
that their optimal detection requires the use of 
operators of different sizes. H e  also theorized 
that sudden intensity changes produce a peak or 
trough in the first derivative of the image. 
These two hypotheses require that a vision filter 
have two characteristics: it should be a differen- 
tial operator, and it should be capable of being 
tuned to act a t  any desired scale. Marr’s opera- 
tor is referred to today as a Marr wavelet. 

FBI fingerprint compression 
Between 1924 and today, the US Federal Bu- 

reau of Investigation has collected about 30 mil- 
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lion sets of fingerprints.; T h e  archive consists 
mainly of inked impressions on paper cards. 
Facsimile scans of the impressions are distrib- 
uted among law enforcement agencies, but the 
digitization quality is often low. Because a num- 
ber of jurisdictions are experimenting with digi- 
tal storage of the prints, incompatibilities be- 
tween data formats have recently become a 
problem. This problem led to a demand in the 
criminal-justice community for a digitization 
and compression standard. 

In 1993, the FBI’s Criminal Justice Informa- 
tion Services Division developed standards for 
fingerprint digitization and compression in co- 
operation with the National Institute of Stan- 
dards and Technology, Los Alamos National 
Laboratory, commercial vendors, and criminal- 
justice communities.’ 

Let’s put the problem of storing the data of 
digital fingerprints in perspective. Fingerprint 
images are digitized at a resolution of 500 pixels 
per inch with 256 levels of gray-scale informa- 
tion per pixel. A single fingerprint is about 
700,000 pixels and needs about 0.6 Mbytes to 
store. A pair of hands, then, requires about 6 
Mbytes of storage. So digitizing the FBI’s cur- 
rent archive would result in about 200 terabytes 
of data. (Notice also that at today’s prices of 
about $900 per Gbyte for hard-disk storage, the 
cost of storing these uncompressed images 
would be about $200 million.) Obviously, data 
compression is important to bring these num- 
bers down. 

T h e  data  compression s tandard W S Q  
(Wavelgt/Scalar Quantization) implements a 
hand-tuned custom wavelet basis developed af- 
ter extensive testing on a collection of finger- 
prints. T h e  best compression ratio achieved 
with these wavelets is 26:l (see Figure 5). 

, 

Denoising noisy data 
In diverse fields, from planetary science to 

molecular spectroscopy, scientists are faced with 
the problem of recovering a true signal from in- 
complete, indirect, or noisy data. Can wavelets 
help solve this problem? T h e  answer is certainly 
yes, through a technique, called wavelet shyink- 
age and thresholding, that David Donoho of 
Stanford University has worked on for a num- 
ber of years.“’ 

T h e  technique works in the following way. 
When you decompose a data set using wavelets, 
you use filters that act as averaging filters, and 
others that produce details.” Some of the result- 
ing wavelet coefficients correspond to details in 
the data set. If the details are small, they might 
be omitted without substantially affecting the 

Figure 5. An FBI-digitized left thumb fingerprint. The image on the left 
is the original; the one on the right is reconstructed from a 26:l com- 
pression. These images can be retrieved by anonymous FTP at 
ftp.c3.lanl.gov (1 28.165.21.64) in the directory pub/WSQ/print-data. 
(Courtesy Chris Brislawn, Los Alamos National Laboratory) 

main features of the data set. T h e  idea of thresh- 
olding, then, is to set to zero all coefficients that 
are less than a particular threshold. These coef- 
ficients are used in an inverse wavelet transfor- 
mation to reconstruct the data set. Figure 6 
shows a pair of “before” and “after” illustrations 
of a nuclear magnetic resonance signal that has 
been transformed, thresholded, and inverse- 
transformed. T h e  technique is a significant step 

:tMj.il.LLu 0 1 

Figure 6. “Before” and “after” illustrations of a nuclear magnetic reso- 
nance signal. The original signal is at the top, the denoised signal at the 
bottom. (images courtesy David Donoho, Stanford University; NMR 
data courtesy Adrian Maudsley, VA Medical Center, San Francisco) 
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forward in handling noisy data because the de- 
noising is carried out without smoothing out 
the sharp structures. T h e  result is a cleaned-up 
signal that still shows important details. 

Figure 7 displays an  image created by 
Donoho of Ingrid Daubechies (an active re- 
searcher in wavelet analysis and the inventor of 
smooth orthonormal wavelets of compact sup- 
port), and then several close-up images of her 
eye: an orignal, an image with noise added, and 
finally a denoised image. To denoise the image 
Donoho 

(1) transformed the image to the wavelet do- 
main using Coiflets with three vanishing 
moments, 

( 2 )  applied a threshold a t  two standard devia- 
tions, and 

(3) inverse-transformed the image to the signal 
domain. 

Detecting self-similar behavior in a time series 
Wavelet analysis is proving to be a powerful 

tool for characterizing behavior, especially self- 
similar behavior, over a wide range of time 
scales. 

In  1993, Scargle and colleagues at  NASA 
Ames Research Center and elsewhere investi- 
gated the quasiperiodic oscillations (QPOs) and 
very low frequency noise (VLFN) from an as- 
tronomical X-ray accretion source, Sco X-1, as 
possibly being caused by the same physical phe- 
nomenon.12 Sco X-1 is part of a close binary 
star system in which one member is a late main 
sequence star and the other member (Sco X-1) 
is a compact star generating bright X rays. The  
causes for QPOs in X-ray sources have been ac- 
tively investigated in the past, but other aperi- 
odic phenomena such as VLFNs have not been 
similarly linked in the models. Their Sco X-1 
data set was an interesting 5-20 keV Exosat 
satellite time series consisting of a wide range of 
time scales, from 2 ms to almost 10 hours. 

Galactic X-ray sources are often caused by 
the accretion of gas from one star to another in 
a binary star system. T h e  accreted object is usu- 
ally a compact, massive star such as a white 
dwarf, neutron star, or black hole. Gas from the 
less massive star flows to the other star via an 
accretion disk around the compact star (that is, 
a disk of matter around the compact star flow- 
ing inward). T h e  variable luminosities are 
caused by irregularities in the gas flow. The  de- 
tails of the gas flow are not well known. 

T h e  researchers noticed that the luminosity 
of Sco X-1 varied in a self-similar manner, that 
is, the statistical character of the luminosities 

examined a t  different time resolutions remained 
the same. Since one of the great strengths of 
wavelets is that they can process information ef- 
fectively at  different scales, Scargle used a 
wavelet tool called a scalegram to investigate 
the time series. 

Scargle defines a scalegram of a time series as 
the average of the squares of the wavelet coeffi- 
cients at a given scale. Plotted as a function of 
scale, it depicts much of the same information 
as does the Fourier power spectrum plotted as a 
function of frequency. Implementing the scale- 
gram involves summing the product of the data 
with a wavelet function, whereas implementing 
the Fourier power spectrum involves summing 
the data with a sine or cosine function. The  for- 
mulation of the scalegram makes it a more con- 
venient tool than the Fourier transform because 
certain relationships between the different time 
scales become easier to see and correct, such as 
seeing and correcting for photon noise. 

T h e  scalegram for the time series clearly 
showed the QPOs and VLFNs, and the investi- 
gators were able to calculate a power law to the 
frequencies. Subsequent simulations suggested 
that Sco X-1's luminosity fluctuations may be 
due to a chaotic accretion flow. 

Musical tones 
Victor Wickerhauser has suggested that  

wavelet packets could be useful in sound syn- 
thesis.13 His idea is that a single wavelet packet 
generator could replace a large number of os- 
cillators. Through experimentation, a musician 
could determine combinations of wave packets 
that produce especially interesting sounds. 

Wickerhauser feels that sound synthesis is a 
natural use of wavelets. Say you want to ap- 
proximate the sound of a musical instrument. A 
sample of the notes produced by the instru- 
ment could be decomposed into wavelet packet 
coefficients. Reproducing the note would then 
require reloading those coefficients into a 
wavelet packet generator and playing back the 
result. Transient characteristics such as attack 
and decay-roughly, the intensity variations of 
how the sound starts and ends-could be con- 
trolled separately (for example, with envelope 
generators), or by using longer wave packets 
and encoding those properties as well into each 
note.  Any of these processes could be con- 
trolled in real time, for example, by a keyboard. 

Notice that the musical instrument could just 
as well be a human voice, and the notes words 
or phonemes. 

A wavelet-packet-based music synthesizer could 
store many complex sounds efficiently because 
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+ wavelet packet coefficients, like wavelet coef- 
ficients, are mostly very small for digital sam- 
ples of smooth signals; and 

+ discarding coefficients below a predetermined 
cutoff introduces only small errors when we 
are compressing the data for smooth signals. 

Ingrid Daubechies 

Similarly, a wavelet-packet-based speech syn- 
thesizer could be used to reconstruct highly 
compressed speech signals. Figure 8 illustrates a 
wavelet musical tone, or toneburst. 

Sources of information on wavelets 
T h e  amount of wavelets-related software is Noisy (closeup) 
growing. Many sources are on the Internet. If 
you are looking for articles and preprints, 
browse through some of the Internet sites listed 
next. You may find papers in subdirectories 
named /reports or /papers. 

Stanford University 
Wavelab is a Matlab wavelets library available 

from Stanford statistics professors David Donoho 
and Iain Johnstone, Stanford graduate students 
Jonathan Buckheit and Shaobing Chen, and Jef- 
frey Scargle at NASA Ames Research Center. 
The software consists of roughly 600 scripts, M- 
files, Mex-files, data sets, self-running demonstra- 
tions, and on-line documentation, and can be re- 
trieved by anonymous FTP at playfair.stanford. 
edu in /pub/wavelab. I am currently writing IDL 
versions of many of these procedures. 

I used Wavelab to produce some of the fig- 
ures in this article. For example, to produce the 
four wavFlets in Figure 4, I typed the following 
commands in Wavelab: 

1 
Closeup 

_ -  De- Noised (close up) 

Figure 7. Denoising an image of Ingrid Daubechies’ left eye. The top- 
left image is  the original. At top right i s  a close-up image of her left eye. 
At bottom left i s  a close-up image with noise added. At bottom right i s  
a close-up image, denoised. The photograph of Daubechies was taken 
at the 1993 AMS winter meetings with a Canon XapShot video still- 
frame camera. (Courtesy David Donoho) 

>wave = MakeWavelet (0, 0, ‘Haar’ ,4, 

>wave = MakeWavelet(2,-4,’Symmlet’,6, 
’Mother‘, 512) ; 

’Mother’, 2048) 

>wave = MakeWavelet (2,-4, ’Daubechies’ ,6, WavBox is another Matlab wavelet toolbox 
’Mother’, 2048); from Stanford. Information on WavBox is avail- 

>wave = MakeWavelet (2, -4, ’Coiflet’, 3, able by anonymous FTP from the directory 
‘Mother’, 2048); /pub/taswell at the site simplicity.stanford.edu. 

Figure 8. Wavelets for music: a graphical representation of a Wickerhauser toneburst. This screenshot of 
the toneburst was taken while it was playing in the Macintosh commercial sound program Kaboom! Fac- 
tory, and then converted into a Macintosh System 7 SFlL formatted file. (Toneburst courtesy Victor Wick- 
erhauser) 
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IRISA 
WaveLib is a C library of wavelet functions 

developed by IRISA, Campus de Beaulieu, 
Rennes, France. It generates wavelets and fil- 
ters, performs wavelet transforms on I D  and 
2 D  signals, calculates en t ropy ,  performs 
thresholding, and so on. In addition, this pack- 
age contains an interface with Matlab which 
displays a decomposition of a signal in the 
time-frequency plane as well as other useful 
graphical wavelet displays. WaveLib is de- 
scribed in  a technical r epor t  available by 
anonymous FTP from /techreports/l 994/PI- 
964.ps.Z at the site ftp.irisa.fr. 

Rice University 
T h e  Computational Mathematics Laboratory 

has made available wavelet software that can be 
retrieved by anonymous FTP at cml.rice.edu 
(128.42.62.23), in /pub/software. 

Yale University 
T h e  Mathematics Department  has made 

available wavelet software which can be re- 
trieved by anonymous FTP at pascal.math. 
yale.edu (1 2 8.36.2 3 .  l), in /pub/wavelets. 

University of Missouri 
Some wavelets educational software can be 

found by anonymous F T P  a t  pandemonium. 
physics.missouri.edu in the directory /pub/ 
wavelets. 

Books with code 
The book by Wickerhauser has C code.’ The  

book by Crandall  has C and Mathematica 
code.’ T h e  tutorial by Vidakovic has Mathe- 
matica code.” T h e  second-edition book by 
Press et al. has a brief section on wavelets with 
Fortran or C code.’ 

Some WWW home pages 
A number of Internet sites have World Wide 

W e b  home pages displaying wavelet-related 
topics. The following is just a sample. 

+ http://www.mathsoft.com/wavelets.html 
(Matlab wavelet resources) 

+ http://www.math.scarolina.edu:/-wavelet/ 
(back issues of the Wavelet Digest) 

+ http://www.best.com/-aagraps/current/ 
wavelet.htm1 (my wavelet page) 

Subscribing to the Wavelet Digest 
By subscribing to the Wavelet Digest you’ll 

hear the latest announcements of available soft- 
ware, find out about errors in wavelet texts, find 
out about wavelet conferences, learn answers to 
questions that you may have thought about, as 
well as ask questions of the experts that read it. 

T o  subscribe, send e-mail to waveletamath. 
scarolina.edu with “subscribe” as the subject. To 
unsubscribe, e-mail with “unsubscribe” followed 
by your e-mail address as subject. T o  change 
your address, unsubscribe and resubscribe. 

Preprints, references, and back issues can be 
obtained from their information servers. You 
can F T P  a t  f tp.math.scarolina.edu (/pub/ 
wavelet) or contact the gopher server gopher. 
math.scarolina.edu. T h e  Web address is listed 
above. 

M ost of basic wavelet theory has been 
done. The  mathematics have been worked out 
in excruciating detail, and wavelet theory is now 
in the refinement stage. This involves generaliz- 
ing and extending wavelets, such as in extending 
wavelet packet techniques. 

T h e  future of wavelets lies in the as-yet un- 
charted territory of applications. Wavelet tech- 
niques have not been thoroughly worked out in 
such applications as practical data analysis, 
where for example discretely sampled time-se- 
ries data might need to be analyzed. Such appli- 
cations offer exciting avenues for exploration. + 

+ http://www.c3 .lanl.gov/-brislawn/main.html 
(Chris Brislawn’s fingerprint WSQ compres- 
sion information) , http~//wwu,~mat.sbg~ac~at/-auh]/wav.ht ml 

Uni- 
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coding (BTC), a specialized area within the data compression 
domain that provides a detailed study and relative assessment 
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chapters beginning with an  introduct ion to the  data  
compression field that shows how B T C  fits into the overall 
picture. T h e  second chapter delves into the developments 
in BTC and chronologically lays out the evolution of this 
technique. Chapter 3 is devoted to experimental experiences 
with B T C  offering additional insights into both conceptual 
and computational aspects of the methodology. 

T h e  second part of the book begins with an overview and 
is divided into five chapters. T h e  chapters provide an 
introduction to  the corresponding studies included as 
reprints in the text, and offer a look into the future of BTC 
along with a discussion of promising avenues of investigation. 
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