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Abstract—In this paper, we present a combination of existing
and new tools that together make it possible to apply formal
verification methods to programs in the form of x86 64 machine
code. Our approach first uses a decompilation tool (remill)
to extract low-level intermediate representation (LLVM) from
the machine code. This step consists of instruction translation
(i.e. recovery of operation semantics), control flow extraction and
address identification.

The main contribution of this paper is the second step, which
builds on data flow analysis and refinement of indirect (i.e. data-
dependent) control flow. This step makes the processed bitcode
much more amenable to formal analysis.

To demonstrate the viability of our approach, we have com-
piled a set of benchmark programs into native executables and
analysed them using two LLVM-based tools: DIVINE, a software
model checker and KLEE, a symbolic execution engine. We have
compared the outcomes to direct analysis of the same programs.

I. INTRODUCTION

Formal verification of software has made substantial

progress towards real-world applicability. Nonetheless, formal

methods still occupy a very small niche within mainstream

engineering processes. While scalability and accessibility to

the wider engineering public continue to be a major concern,

growing adoption uncovers new challenges and opportunities.

One of the areas that often comes up as a friction point

is integration with existing, often testing-heavy development

workflows.

Widely deployed development tools roughly fall into two

broad categories. The first of those is based on static analysis

and gives quick and rough assessment of program behaviour.

Those tools are usually integrated into IDEs or into the com-

pilation process to give early feedback to the developer. The

other category is often focused on post-mortem analysis and

contains tools that work with compiled programs: interactive

debuggers like gdb, dynamic instrumentation like valgrind
or performance analysis tools like perf.

The latter are usually deployed in two types of situations:

either during development when diagnosing problems that
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were uncovered during testing, where the user is armed with

full source code and often with a particular failing testcase.

On the other hand, some of the same tools are also deployed

when analysing crashes that happened in production or when

analysing the behaviour (or misbehaviour) of third-party bina-

ries. In those cases, availability of source code, reproducibility

of the bad behaviour and even the ability to safely execute the

code in question are far from guaranteed.

A. Motivation

Formal methods offer powerful tools for gaining insight

into program behaviour. In particular, symbolic execution is

a lightweight method that can quickly search through the

state space of a program to uncover bugs or other anomalies.

This ability is extremely valuable when dealing with either

unknown programs or with unknown circumstances under

which a known program misbehaves. Clearly, it is desirable to

apply those methods (including, but not limited to traditional

symbolic execution) to programs which are not readily avail-

able in source form, or where the source code is not easily

processed by existing analysis tools.

One possible route to symbolic execution of machine code

is through program decompilation: an approach where the

machine code is translated back into a higher-level description

(often an intermediate representation with more structure than

is exposed in raw machine code). Since an array of analysis

tools based on the LLVM [11] intermediate representation

already exists, a suitable decompiler could make it possible

to use those tools in situations where source code is not

available. This paper presents our attempt at extending LLVM-

based decompilation tools to provide enough structure to

make symbolic execution feasible, and to adapt LLVM-based

analysis tools to work with the output of such an augmented

decompiler.

B. Goals

The main goal of our effort was to build a complete tool

chain which takes a compiled program (i.e. machine code) as

its input and performs symbolic search of its state space. The

tool should be able to search for various events in the program,
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e.g. call to a particular function, and for memory errors (out-

of-bounds memory access, double free, use-after-free and

similar) and other common safety problems.

C. Contribution

There are three main areas in which we believe this paper

contributes to the state of the art:

1. it explores the problem space of applying formal tech-

niques to compiled programs in a modular, composi-

tional manner,

2. describes specific techniques for recovery of additional

program structure in the decompiled intermediate repre-

sentation, and finally

3. provides a prototype tool chain1 which demonstrates the

viability and modularity of the approach, and which

provides a choice of two dissimilar symbolic execution

backends (KLEE and DIVINE).

II. RELATED WORK

Since we are, in general terms, interested in the analysis

of the behaviour of compiled programs, the most immediately

useful tools are the standard debugging aids, which all work

with executables. Out of these, the most relevant (and also

the most powerful) are non-interactive runtime analyzers, such

as the tool for memory error detection memcheck from the

valgrind suite [15], which uses dynamic code translation

and instrumentation to achieve its goals.

A. Disassembly and Decompilation

A typical examples of such a tool is IDA Pro [8], which

is perhaps the most widely used binary analysis toolset in

the reverse-engineering community. However, a number of

alternatives to IDA exist, for instance radare2 [1]. While the

tools in this category cannot themselves be used for automated

program verification, they often appear as the first stage in

multi-tool analysis and verification pipelines.

The tool chain presented in this paper builds on three

disassembly and decompilation components. The principal

tool, which drives the entire disassembly process all the

way to LLVM IR generation is mcsema [17]. To parse the

executable, disassemble the machine code and identify subrou-

tines, mcsema uses the disassembler from the dyninst [14]

tool set (though it can be configured to also use other tools,

e.g. IDA Pro, to perform those tasks). Additionally, the con-

version of individual instructions into LLVM is performed by

remill [18] – this process is described in more detail in

Section III-C.

B. Decompilation-based Verifiers

The design space of verification of binaries through the

use of decompilation technology (as opposed to their di-

rect analysis) has been explored in the literature. The most

common approaches were based around custom intermediate

representations and tailor-made disassembly or decompilation

tools to go with them. Understandably, those frameworks are

1Source code available at https://divine.fi.muni.cz/2020/decompile/.

not mutually compatible, and analysis backends built on one

cannot be, in general, easily re-targeted to a different platform.

The Binary Analysis Platform project, described in [4],

is a versatile framework for analysing machine code, with

focus on security analysis, program verification and reverse

engineering.

Besides more traditional verification tools that build on

a standard ahead-of-time decompiler, an approach based on

static analysis and abstract interpretation has been proposed

in [9]. In this approach, the analysis runs in lockstep with

disassembly and feeds obtained information back into the

disassembler to improve its precision.

In [20], the authors focus on adversarial analysis of executa-

bles, and combine a number of techniques to recover structure

(control flow graphs), apply static analyses to the program

(e.g. dependency analysis or program slicing) and dynamic

analysis to discover vulnerabilities or other behaviours of

interest, mainly using symbolic and concolic execution.

An earlier attempt to use remill with KLEE, was pre-

sented in [21] under the name KLEE-NATIVE, but the project

is unfortunately no longer maintained and the provided source

code fails to build with the current upstream version of

remill. Unlike in our present approach, KLEE-NATIVE did

not decompile the program ahead of time: instead, KLEE was

modified to directly work with executables, using remill
to dynamically (just-in-time) translate each instruction into a

sequence of LLVM operations, which were then interpreted

using the standard symbolic engine inherited from KLEE.

C. Symbolic Execution

Program verification techniques based on symbolic exe-

cution [10], symbolic program code analysis [16] and on

symbolic approaches to model checking [13] have been the

subject of extensive research.

A common compromise between standard testing and sym-

bolic execution employs both representations at once, a prac-

tice known as concolic testing [19, 7]. The concrete value is

used to guide the selection of the control flow on branches

without the need to consult an SMT solver, which saves

computation time and also immediately provides concrete test

inputs to reproduce uncovered bugs.

A different take on symbolic execution, called veritesting,

has been described in [2]. In this paper, the authors propose,

essentially, a combination of bounded model checking (under

the name static symbolic execution) and traditional (dynamic)

symbolic execution.

The DIVINE model checker [3], which we use as one of

the backends in the present paper, makes use of program

transformation to implement symbolic execution, described in

more detail in [12].

Of course, an important tool in the ecosystem is KLEE, a

symbolic execution engine [5] that performs symbolic execu-

tion on top of LLVM IR [11]. Besides standalone usage as a

symbolic executor, KLEE has become also a back-end tool

for other types of analyses and for verification. In our present

work, we use KLEE as one of the two evaluation backends.
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III. DECOMPILATION

In this section, we will first describe existing decompilation

strategies which target the LLVM IR and their deficiencies in

the context of program verification in general and symbolic

execution in particular. We will go on to discuss possible

improvements and remedies to the highlighted problems, and

the particular solutions that we have designed, implemented

and evaluated.

A. Preliminaries

The goal of a decompiler is to recover a machine-

independent description of the program, preferably in a form

that can be further processed by automated tools. This process

involves a number of steps and sub-components:

1. extraction of the program from an executable file, into

a representation that the remaining steps can work with:

we consider this process to be of marginal interest and

will not further discuss it in the present paper,

2. identification of instruction boundaries (relevant for

variable-length, polymorphic encodings, including

x86_64): this step has been well studied and does not

directly interact with verification efforts,

3. instruction decoding and the recovery of instruction

semantics: this is the first step that we will consider

in a bit more detail, in Section III-C,

4. address recognition: in machine code, numeric data

and memory addresses are represented and processed

uniformly; however, for further analysis, it is crucial

that the constant data (appearing either as instruction

operands or in the data section of the program) that

represents memory addresses is tagged as such,

5. control flow extraction: the control flow in a machine

program is, like other aspects of the program, entirely

unstructured and is simply described by jump instruc-

tions with a numeric argument (which represents the

address of the next instruction to execute); this step

reconstructs a control flow graph which consists of basic
blocks (nodes) and jump instructions (edges),

6. subroutine recovery, which identifies call sites, call
targets, function arguments, and return values,

7. synthesis of higher-level program description, which ties

the information from all the preceding steps together and

emits the entire program in a suitable format.

The result of step 7 is the roughest admissible decompilation

product, in the sense that if performed correctly, the result

can be converted back into a working program by leveraging

existing compilation tools. However, it is not the most suitable

form for further analysis. We add the following steps to

improve analysis outcomes:

8. recovery of intra-procedural data flow, i.e. reconstruction

of a partial SSA form, detailed in Section III-D,

9. analysis of inter-procedural data flow conducted through

machine registers (i.e. an enhanced and more principled

version of function argument and return value identifi-

cation), described in Section III-E,

10. resolution of indirect procedure calls into chains of

conditional jumps, which are much easier to reason

about, described in Section III-F.

The prototype tool chain that we have built and evaluated

uses LLVM IR as its common language, the tool remill for

steps 2 and 3, the tool mcsema takes care of step 1 and of

steps 4 through 7, and finally steps 8 through 10 represent our

own contribution.

B. LLVM IR

The purpose of LLVM intermediate representation is to de-

scribe programs in an architecture-neutral way that is nonethe-

less relatively close to how hardware executes the program.

The main differences between machine code and LLVM are

roughly the following:

• LLVM uses symbolic addresses, i.e. elements of the

program (both data and code) are labelled, instead of

living at fixed numeric addresses,

• functions are represented by their control-flow graphs

made of basic blocks,

• the data flow within functions is made explicit using

partial SSA (single static assignment) form on virtual

registers (i.e. SSA values cannot have their addresses

taken)

• arguments and return values are passed explicitly into and

out of functions.

The LLVM IR is a compromise between higher-level lan-

guages (such as C or its simplified dialects like CIL) which

are more expressive, but harder to implement, and machine

languages which lack information that is vital for program

analysis. A distinct advantage of the LLVM IR is that it can be

readily described in terms of small-step operational semantics

using a comparatively simple machine. This is an important

benefit in our work, since the same holds for CPUs.

C. Remill

The input of remill is a sequence of machine instruc-

tions (with boundaries already identified) and the output is

a machine-independent encoding of the semantics of this

instruction sequence. The output is built around two basic

concepts:

1. a model of the machine state, which describes the

registers available to the machine, along with abstract

memory (which is simply assumed to be an array of

bytes with LLVM-compatible semantics),

2. a set of semantic functions, one for each machine

instruction,2 which operate on the state: they take one

state as an input and produce a new state, capturing the

effect of the corresponding machine instruction.

In essence, these two components describe the small-step

operational semantics of the CPU in question, in an executable

form: the machine state is modelled using an LLVM data type

(known as regstate), while each of the semantic functions

2A combination of opcode and operands, excluding the values (but not
types) of immediate operands.

267

Authorized licensed use limited to: Rutgers University. Downloaded on May 15,2021 at 11:55:50 UTC from IEEE Xplore.  Restrictions apply. 



is defined as a sequence of LLVM operations on this data

structure.

D. SSA Recovery

As outlined in Section III-C, the decompiled program op-

erates on a value of type regstate, by applying successive

transforms which correspond to the original machine instruc-

tions of the compiled program. The simplest implementation,

then, simply stores this regstate in a global (or thread-

local) variable and each semantic function simply reads and

writes data directly through this global variable. While simple,

this has severe disadvantages in terms of the data flow patterns

in the decompiled program, where essentially all data flow

goes through a single global variable.

This type of program behaviour is completely opaque to

most types of static analysis (which relies heavily on tracing

the data flow in the program). For purely dynamic analyses

(like those implemented in KLEE), this is not an important

obstacle, but any tool which relies on static techniques, even

if it is only as an optimization, will be severely affected.

However, since we know the structure of the regstate, it

is possible to significantly improve the transparency of the data

flow by unpacking the content of regstate into individual

scalars. The first step is an intra-procedural transform that

recovers register-level data flow within a single function; the

second step then extends this scalar decomposition to function

calls (discussed in more detail in Section III-E).

Since the code that manipulates regstate all comes from

the definitions of semantic functions, we know that the access

is always well-behaved: there are no writes that would affect

two registers at once, nor are there reads that would span a

boundary between two registers. Therefore, the regstate
can be first broken down into scalars, each register getting its

own variable. Since these variables are guaranteed to never

escape into different threads, all use of such variables can be

freely converted into SSA form using a standard algorithm.

At this point, however, the regstate structure needs to

be reconstructed before each function call and before each

return, so the current version can be passed along. This has two

negative effects (which will be addressed in the next section):

1. the data flow within the function across call sites is still

entirely opaque: the outgoing version of regstate
constructed as an argument to be passed down into

the callee becomes a sink, and the updated regstate
which the function returns becomes a source, interrupt-

ing the data flow graph at each call site,

2. the data flow in and out of functions also remains

completely opaque: at this stage, it is nearly impossible

to tell which registers carry data into and out of functions

(i.e. function arguments), which are passed through

unchanged and which values are simply dead.

Besides regstate, which is essentially an artificial con-

struct that arises from the decompilation process, there is

another effect obscuring the flow of data: stack manipulation.

Again, in a straightforward decompilation, the stack becomes

a single global variable. Therefore, when values are moved

between the stack and registers, the same effect happens as was

the case with regstate earlier: the values become impossi-

ble to trace. Unfortunately, the rigid structure of regstate
made it fairly simple to break it up into a large number of

independent scalars. The situation with stack is much less

optimistic.

Analysis of stack access and subsequent data flow recon-

struction is much harder for several reasons:

1. the operations which access stack come from the original

program, not from semantic functions, and hence almost

nothing can be safely assumed about their structure,

2. each function can, in principle, freely access all stack

frames (i.e. it is not limited to its own stack frame),

3. stack addresses can escape into global variables and

into other threads of execution, further restricting valid

transformations,

4. program bugs (e.g. buffer overflows) cannot be reliably

distinguished from intentional behaviour (in-bounds ac-

cess to a stack-allocated array).

Our current approach does not further analyze data flow

through the stack, though this is one of the outstanding issues

that could improve results with backend tools that rely on static

analysis.

E. Inter-procedural Data Flow Analysis

To address the problems arising from passing a monolithic

regstate value from function to function, we have imple-

mented a transformation which, at the level of LLVM, unpacks

regstate in function calls into a list of scalar arguments. Of

course, alone, this change does not add anything of value, but

it allows the argument lists to be pruned. With return values,

there is the additional challenge that LLVM does not allow

multiple return values from functions, so the return sequence

needs to be handled separately from the call sequence. Return

values are represented using aggregate types, similar to the

original regstate structure, but with unused fields left out.

The function prototype before and after the transform is shown

in Figure 1.

Fig. 1. Function prototypes at various stages of decompilation.

Unlike for standard intra-procedural SSA conversion, there

is no established algorithm for applying the equivalent trans-

formation across function calls. We have therefore devised a

simple algorithm based on iteratively pruning the argument

sets. Each iteration proceeds in four steps, and the steps are

repeated until either a fixpoint is reached, or a predetermined

iteration limit exhausted:

1. execute the following transformations on the entire pro-

gram (using their implementations provided by LLVM):

1. scalar replacement of aggregates and loop-invariant

code motion, which slightly improve the results
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obtained from the following passes, but are not

essential to the algorithm,

2. SSA construction, which identifies function-local

uses of memory (loads and stores) and replaces

them with SSA,

3. control flow simplification: removes unreachable

basic blocks and merges sequences of basic blocks

where applicable,

4. dead store elimination: remove store instructions

if no future load can read the stored value,

5. dead code elimination: iteratively remove instruc-

tions with unused (dead) results,

6. dead argument elimination: an inter-procedural

transformation which eliminates unused function

arguments (but see also below),

7. instruction combine pass, which simplifies some

common instruction sequences into a single in-

struction with the same effect;

2. examine each function and remove any arguments which

only have a single use – the one in the return value of

the function (i.e. when the register did not change in the

function and is simply passed back to the caller),

3. for each function, if a field is unused in all returns from

that function, it is eliminated from the return type,

4. for each function f, examine call sites which refer to

f3 and compute the intersection of fields of the return

value which are unused by the caller; the values from the

resulting set are then eliminated from the return type.

In optimal conditions, the above algorithm will narrow down

the data flow to only contain registers which carry actual

function arguments, and live callee-save registers which are

used (and hence spilled) by the callee. However, passing values

stored in callee-save registers into a function is redundant

in correct programs: the subroutine simply makes a copy of

the register on stack, and restores the value before returning.

Unfortunately, even in straightforward functions, it is hard to

prove that this is the case: the portion of the stack which

stores the register can be overwritten and if that is the case,

short-circuiting the store + load combination will alter the

behaviour of the program. In many analysis scenarios, this is

undesirable.

F. Indirect Call Resolution

One of the major obstacles to understanding program be-

haviour (whether by humans or algorithmically) is dynamic

control flow: the simplest case are conditional jumps, which

are quite well understood and comparatively easy to reason

about. Function-local control flow without indirect jumps is

typically encoded in control flow graphs, which are a simple,

static objects which give a very good picture of the behaviour

of the given function.

Subroutine calls and indirect jumps both constitute a slightly

different type of additional inconvenience: in case of indirect

3In the current implementation, the results of the indirect call analysis are
not yet available at this stage. Functions which have their address taken are
excluded from the analysis.

jumps, especially in machine-level programs, the set of their

targets is not always clear or even possible to compute reliably

and the ideal of a static control-flow graph breaks down.

Subroutines, on the other hand, pose a similar problem, but not

at the subroutine entry point, since in direct calls, this could

be easily captured with a standard CFG. Instead, the problem

arises when control flow returns from the subroutine to the

call site: the return address is, in this case, dynamic, since

there are possibly many call sites which call into the same

subroutine (that is, after all, the reason subroutines exist). As

long as the calls themselves are direct (and hence the target of

the call instruction is statically known), it is at least possible

to enumerate the call sites to which a function could return,

making inter-procedural data flow analysis feasible, if not easy.

Unfortunately, when indirect calls are involved,4 the situa-

tion becomes much more problematic: the forward edge (the

call itself) is no longer easily resolved (and again, in machine-

level programs, the forward edges cannot be reliably enumer-

ated for the same reasons as with indirect intra-procedural

jumps). This also means that enumerating call sites for a given

subroutine becomes much harder, since every indirect call site

could possibly call any of the functions in the program.5

Since reconstruction of vtables and similar artefacts from

machine code is error-prone and specific to a combination

of platform, operating system and C++ compiler (in case of

C++ vtables – with hand-coded function pointer tables, this

becomes even more of a hit-and-miss affair), it is desirable to

resolve indirect calls in a more general and automated fashion.

To this end, we have devised an approach based on dynamic

methods and gradual refinement, which replaces each indirect

call with a direct call to a synthetic helper function, which

only uses conditional branches and direct calls to replicate the

effects of the original indirect call. The resulting structure is

much more transparent to further inter-procedural control-flow

and data-flow analyses.

The algorithm proceeds as follows:

1. replace each indirect call with a call to a switch box, that

is, a call-site-specific synthetic function which takes the

indirect address as an argument,

2. synthesize empty switch boxes for each of the call sites

replaced in step 1 – an empty switch box indicates the

desired target address it has been passed, and aborts

execution,

4Indirect calls often arise due to late binding in C++ programs: object
instances which are capable of late binding carry a pointer to a so-called
vtable, which, for each late-bound method, lists the address of the subroutine
which implements the particular method in the given object instance.

5A simple heuristic that can improve situation in this case is that functions
whose address never appears in the program outside of direct call instruc-
tions cannot be invoked using an indirect jump. However, the heuristic is not
completely reliable and should be avoided in rigorous verification scenarios (it
is entirely possible to store, for example, just an offset of the entry point from
another known address, e.g. from another function, and reconstruct the entry
point address at runtime, without the literal address ever appearing in program
text). Nonetheless, in practice and for non-obfuscated programs, the heuristic
works very well. Unfortunately, it does not cover some common patterns, like
C++ virtual functions, or analogous constructs used in C programs.
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3. abstract away all input values and explore the state space

of the program, noting any errors raised by the switch

boxes,

4. amend each switch box which appears in a counter-

example as follows: a) add a conditional branch which

checks the argument for equality with the address indi-

cated in the counter-example, b) if they match, proceed

to directly call this target function, c) otherwise proceed

with the previous version of the switch box;

5. repeat steps 3 and 4 until no further counter-examples

in the switch boxes appear.

The choice of abstract domain in step 3 then controls

the trade-off between precision and cost: coarser abstractions

lead to smaller state spaces and the algorithm proceeds more

quickly. However, they also produce larger switch boxes,

which in turn cause downstream analyses to give coarser re-

sults. The output program after the process no longer contains

any indirect calls.

G. Limitations

Decompilation is, in itself, a complex and somewhat fragile

endeavour, and rigorous analysis of software comes with its

own set of problems and challenges. Combining the two brings

unique difficulties, but at the same time resolves some of

the weak spots of decompilation (for instance, some of the

more common decompilation mistakes become much easier

to uncover through use of formal analysis tools) and extends

the field of applicability of formal methods. In this section,

we will list some of the limitations of our current approach,

along with a lightweight analysis of possible improvements.

1) Formal Semantics: The first problem that appears when

applying formal methods is the semantics of the languages

involved: this primarily affects the definitions of semantic

functions (see Section III-C). On the CPU side, the pro-

gramming manuals usually do not provide formal semantics

– instead, they describe the effect of each instruction in

natural language. The absence of a formal description can lead

to misunderstandings during implementation of the semantic

function: if we are interested in proper verification (as op-

posed to bug finding), an imprecise semantic function can, in

principle, invalidate the entire verification result.

Of course, the decompiler is another complex piece of tech-

nology and as such creates additional space for implementation

errors, which likewise affect the validity of outcomes.

2) Overflows: Some classes of errors in C and C++ pro-

grams are closely tied to the boundaries of variables in

memory, whether local or global. A typical example of such

bugs are buffer overflows. In a compiled program, however,

there is no way to differentiate between writes to the stack that

are ‘correct’ from those that are ‘incorrect’ with respect to the

intended behaviour of the program. In a compiled program,

both global variables and the stack are contiguous chunks of

memory with no boundaries between variables as they were

defined in the source code.

To an extent, this type of errors can still be detected in

decompiled bitcode if debug information was available during

decompilation, since the debug metadata retains information

about individual source-level variables, including their size

and location within the data section of the program (in case

of global variables), or within the stack frame of the given

function (in the case of local variables).

If debug information is not available, the best achievable

outcome is heuristic: the decompiler can optimistically create

boundaries between variables based on stack access patterns,

and violations of such boundaries can then be analyzed and

corrected if they turn out to be spurious.

IV. EVALUATION

To evaluate our approach, we have started with a selection

of small C programs, some of which were correct and others

contained a single error each.6 The source code of each of

the programs was annotated with the location of the error, if

applicable. The programs were compiled with Clang version

7 to obtain executables (machine code).

In order to check that errors in the programs are detected

and reported correctly, all programs were compiled with debug

information (compiler switch -g). The decompiler can then

read this debug metadata and attach information about line

numbers to the decompiled LLVM IR. The line numbers then

appear in counter-examples generated by the analysis tools,

and we use these line numbers to check whether the error

annotation in the program matches the counterexample.7

The backend analysis tools that we have used were the

following:

• KLEE with uClibc and the Z3 SMT solver [6],

• DIVINE configured to use STP as its SMT solver.

The benchmark programs were sorted into three categories:

Explicit – test cases with no inputs, targeting mainly safety

properties and calls to external (library) functions, split into 3

sub-categories:

• C1 – small programs that interact only with the simpler

parts of the standard library (48 test cases in total),

• C2 – same, but those programs make use of more

complicated library functions like longjmp and POSIX
functions and for this reason cannot be analyzed using

KLEE (60 test cases),

• threads – a collection of programs that use either C11

threads or POSIX threads, which again excludes analysis

with KLEE (73 test cases).

Symbolic – simple programs with inputs, split into:

• finite – programs that contain only finite execution paths

(i.e. all paths through the program eventually terminate;

251 test cases),

• infinite – programs which loop forever for at least some

inputs (15 test cases).

Svcomp – a subset of programs with inputs, from the SV-

COMP test suite, split into four sub-categories: recursion (81

6Source code available at https://divine.fi.muni.cz/2020/decompile/.
7Debug information is not used for any other purpose during decompilation:

even if it was not present in the compiled program, the decompiled bitcode
would be semantically equivalent, though counter-examples would be harder
to interpret.
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C1 C2 threads

valgrind 40 / 8 / 0 47 / 13 / 0 45 / 20 / 8
DIVINE1 40 / 8 / 0 52 / 8 / 0 62 / 11 / 0
DIVINE2 40 / 8 / 0 48 / 12 / 0 32 / 41 / 0
KLEE1 35 / 13 / 0 - -
KLEE2 35 / 13 / 0 - -

TABLE I
RESULTS OF EXPLICIT BENCHMARKS. EACH CELL CONTAINS THREE

NUMBERS: THE NUMBER OF TESTS WHICH PASSED, THE NUMBER OF

TESTS WHICH FAILED AND THE NUMBER OF TESTS WHICH TIMED OUT.
LINES MARKED 1 WERE EXECUTED WITH INDIRECT CALL RESOLUTION,

WHILE ON LINES MARKED 2 THIS STEP WAS SKIPPED. THE TIMEOUT WAS

SET TO 10 MINUTES PER TESTCASE AND THE STACK SIZE TO 4 KIB.

test cases), arrays (115 test cases), bitvectors (20 test cases),

and loops (88 test cases).

Each of the following sections describes the results in each

of the above 3 categories in more detail.

A. Explicit

The main goal of this set of tests is to compare our approach

with valgrind: among analysis tools which can directly

work with compiled programs, it is the most advanced. How-

ever, since valgrind cannot operate on symbolic data, we

chose tests that do not use symbolic data. In this comparison,

valgrind runs on compiled programs while both DIVINE
and KLEE use decompiled bitcode.

Tests of decompiled programs were executed for each verifi-

cation tool twice, both with and without indirect call resolution

(see Section III-F) enabled. In the first sub-category of tests,

no indirect calls are present, and therefore the absence of the

resolution does not alter the results. Remaining sub-categories

contain some indirect calls (pthreads for example), and

with the indirect call resolution with linked standard library

used by the verifier (since indirect call happens inside the

library function) the results are significantly better. The results

are summarized in Table I.

Test failures in this category were caused by 3 types of

problems:

• out-of-bounds memory access: as discussed in Sec-

tion III-G, decompiled bitcode cannot reliably model

variable boundaries – if the original program contains

out-of-bounds access to a stack or a global variable,

the decompiled bitcode will perform a seemingly valid

operation, since both the stack and global variables are

represented by large contiguous blocks of memory,

• external functions: since KLEE does not come with

a complete implementation of the standard library, it

fails when the test program uses less common library

functions,

• ABI compatibility8: both DIVINE and KLEE use custom

versions of the standard library, and as a result, if the

8The main source of ABI compatibility problems are differences in the
sizes or layouts of library-defined data types (for example, as a result of extra
padding). Such mismatches can then lead to incorrect memory access (in the
better case), or to quiet but wrong result in the worse case.

finite infinite

DIVINE 241 / 1 / 9 15 / 0 / 0
KLEE 240 / 1 / 10 -

TABLE II
A SUMMARY OF (PASSED / FAILED / TIMED-OUT) TEST CASES IN THE

symbolic TEST CATEGORY. THE TIME LIMIT PER TEST CASE WAS 25
MINUTES AND THE STACK SIZE WAS SET TO 4KIB.

recursion array bitvector loops

DIVINE 78 / 1 / 2 110 / 5 / 0 14 / 6 / 0 74 / 13 / 1
KLEE 81 / 0 / 0 115 / 0 / 0 11 / 9 / 0 74 / 14 / 0

TABLE III
A SUMMARY OF (PASSED / FAILED / TIMED OUT) TEST CASES IN THE

SV-COMP CATEGORY. THE TIME LIMIT IN THIS CATEGORY WAS SET TO

10 MINUTES PER TEST CASE, WHILE THE STACK SIZE WAS SET TO 64KIB.

source code is compiled with the system libc and then

decompiled, differences in the ABI of these two libraries

can cause spurious errors to arise.

Overall, however, the test results are quite encouraging. In

most cases, our proposed approach is on par with valgrind,

which was designed from the start to work with compiled

programs.

B. Symbolic

In this category, many of the programs were tested with dif-

ferent optimisation levels, which typically results in different

compiled programs and hence also different decompilation re-

sults. Each such variant was counted and evaluated separately.

The results are shown in Table II.

All the timeouts that occurred with the DIVINE back-

end were caused by a compiler optimization which replaces

a ‘modulo’ operation with an equivalent multiplication. If

optimisations are disabled, compilers will usually emit an

idiv (on x86_64), which is expensive when executing on

actual hardware. Therefore, optimizers instead emit a longer

instruction sequence which performs better: unfortunately, this

sequence contains a multiplication by an inverse constant,

which the tested SMT-solvers were unable to perform within

a reasonable time limit. In some programs, the problem

disappears when the optimizations are set to a sufficiently

high level, since the compiler then eliminates the ‘modulo’

operation entirely.

KLEE times out in one additional test case, when compared

to DIVINE. Given more time (approximately two hours), it

managed to complete each of the test cases that completed with

DIVINE as the backend. However, given the relative simplicity

of the test cases, we do not consider this to be a success.

The only failure which appears in this set is caused by

an out-of-bounds access to a local variable, which was not

detected due to limitations in the decompilation process.

Overall, the results in this category are almost as good as we

could expect from the verification of the source code. Most of
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the few timeouts are not an error of the decompilation process

but rather a limitation of used SMT solvers.

C. SV-COMP

None of the SV-COMP benchmarks contain indirect calls,

hence all the results in this section were obtained with indirect

call resolution disabled.

While in the previous categories, identifying the causes of

test failures was relatively easy and straightforward, in this

category it is not the case. The failures are a mix of the verifier

not handling the bitcode properly and of incorrect answers, the

origin of which is not easily determined.

The overall results, summarised in Table III, are similar

to the other two benchmark sets and can be considered

satisfactory. Both verifiers achieved a similar success rate,

while the total number of failed test cases is below 15%, with

the exception of the bitvector sub-category, where the results

were quite poor.

V. CONCLUSIONS & FUTURE WORK

We have presented a tool chain for applying formal meth-

ods to programs in executable form, built largely out of

existing components and technology, augmented with a few

novel transformations which significantly improve analysis

outcomes. While the implementation is only a prototype, the

evaluation results are encouraging, and we believe that they

demonstrate the viability of the approach.

There is a number of directions in which the present work

can be extended. Improvements can be clearly made in the

inter-procedural data flow analysis described in Section III-E,

both with regards to handling of indirect calls, along with

improved analysis of caller-saved registers. The other major

area for improvement is detection of variable boundaries,

the lack of which currently accounts for the majority of the

deficiencies uncovered in our evaluation.
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