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Abstract—New waves of consumer-centric applications, such as
voice search and voice interaction with mobile devices and home
entertainment systems, increasingly require automatic speech
recognition (ASR) to be robust to the full range of real-world
noise and other acoustic distorting conditions. Despite its practical
importance, however, the inherent links between and distinctions
among the myriad of methods for noise-robust ASR have yet
to be carefully studied in order to advance the field further. To
this end, it is critical to establish a solid, consistent, and common
mathematical foundation for noise-robust ASR, which is lacking
at present. This article is intended to fill this gap and to provide
a thorough overview of modern noise-robust techniques for ASR
developed over the past 30 years. We emphasize methods that are
proven to be successful and that are likely to sustain or expand
their future applicability. We distill key insights from our com-
prehensive overview in this field and take a fresh look at a few
old problems, which nevertheless are still highly relevant today.
Specifically, we have analyzed and categorized a wide range of
noise-robust techniques using five different criteria: 1) feature-do-
main vs. model-domain processing, 2) the use of prior knowledge
about the acoustic environment distortion, 3) the use of explicit
environment-distortion models, 4) deterministic vs. uncertainty
processing, and 5) the use of acoustic models trained jointly with
the same feature enhancement or model adaptation process used
in the testing stage. With this taxonomy-oriented review, we equip
the reader with the insight to choose among techniques and with
the awareness of the performance-complexity tradeoffs. The
pros and cons of using different noise-robust ASR techniques in
practical application scenarios are provided as a guide to inter-
ested practitioners. The current challenges and future research
directions in this field is also carefully analyzed.

Index Terms—Speech recognition, noise, robustness, distortion
modeling, compensation, uncertainty processing, joint model
training .

I. INTRODUCTION

A UTOMATIC speech recognition (ASR) is the process
and the related technology for converting the speech

signal into its corresponding sequence of words or other
linguistic entities by means of algorithms implemented in a
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device, a computer, or computer clusters [1], [2]. Historically,
ASR applications have included voice dialing, call routing,
interactive voice response, data entry and dictation, voice
command and control, structured document creation (e.g.,
medical and legal transcriptions), appliance control by voice,
computer-aided language learning, content-based spoken audio
search, and robotics. More recently, with the exponential
growth of big data and computing power, ASR technology has
advanced to the stage where more challenging applications are
becoming a reality. Examples are voice search and interactions
with mobile devices (e.g., Siri on iPhone, Bing voice search
on winPhone, and Google Now on Android), voice control
in home entertainment systems (e.g., Kinect on xBox), and
various speech-centric information processing applications
capitalizing on downstream processing of ASR outputs [3]. For
such large-scale, real-world applications, noise robustness is
becoming an increasingly important core technology since ASR
needs to work in much more difficult acoustic environments
than in the past [4].
A large number of noise-robust ASR methods, in the order

of hundreds, have been proposed and published over the past
30 years or so, and many of them have created significant
impact on either research or commercial use. Such accumu-
lated knowledge deserves thorough examination not only to
define the state of the art in this field from a fresh and unifying
perspective but also to point to fruitful future directions in the
field. Nevertheless, a well-organized framework for relating
and analyzing these methods is conspicuously missing. The
existing survey papers [5]–[13] in noise-robust ASR either do
not cover all recent advances in the field or focus only on a
specific sub-area. Although there are also few recent books
[14], [15], they are collections of topics with each chapter
written by different authors and it is hard to provide a unified
view across all topics. Given the importance of noise-robust
ASR, the time is ripe to analyze and unify the solutions. In
this paper, we elaborate on the basic concepts in noise-robust
ASR and develop categorization criteria and unifying themes.
Specifically, we hierarchically classify the major and signifi-
cant noise-robust ASR methods using a consistent and unifying
mathematical language. We establish their interrelations and
differentiate among important techniques, and discuss current
technical challenges and future research directions. This paper
also identifies relatively promising, short-term new research
areas based on a careful analysis of successful methods, which
can serve as a reference for future algorithm development in
the field. Furthermore, in the literature spanning over 30 years
on noise-robust ASR, there is inconsistent use of basic concepts
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TABLE I
DEFINITIONS OF A SUBSET OF COMMONLY USED SYMBOLS

AND NOTIONS IN THIS ARTICLE

and terminology as adopted by different researchers in the field.
This kind of inconsistency sometimes brings confusion to the
field, especially for new researchers and students. It is therefore
important to examine discrepancies in the current literature and
re-define consistent terminology, another goal of this overview
paper.
This paper is organized as follows. In Section II, we dis-

cuss the fundamentals of noise-robust ASR. The impact of noise
and channel distortions on clean speech is examined. Then, we
build a general framework for noise-robust ASR and define
five ways of categorizing noise-robust ASR techniques. (This
expands the previous taxonomy-oriented review from the use
of two criteria to five [10].) Section III is devoted to the first
category—feature-domain vs. model-domain techniques. The
second category, detailed in Section IV, comprises methods that
exploit prior knowledge about the signal distortion. Methods
that incorporate an explicit distortion model to predict the dis-
torted speech from a clean one define the third category, cov-
ered in Section V. The use of uncertainty constitutes the fourth
way to categorize a wide range of noise-robust ASR algorithms,
and is covered in Section VI. Uncertainty in either the model
space or feature space may be incorporated within the Bayesian
framework to promote noise-robust ASR. The final, fifth way
to categorize and analyze noise-robust ASR techniques utilizes
joint model training, described in Section VII. With joint model
training, environmental variability in the training data is re-
moved in order to generate canonical models. We conclude this
overview paper in Section VIII, with discussions on future di-
rections for noise-robust ASR.

II. THE BACKGROUND AND SCOPE

In this section, we establish some fundamental concepts
that are most relevant to the discussions in the remainder of
this paper. Since mathematical language is an essential tool
in our exposition, we first introduce our notation in Table I.
Throughout this paper, vectors are in bold type and matrices
are capitalized.

Fig. 1. A model of acoustic environment distortion in the discrete-time domain
relating clean speech samples to distorted speech samples .

A. Modeling Distortions of Speech in Acoustic Environments

Mel-frequency cepstral coefficients (MFCCs) [16] are the
most widely used acoustic features. The short-time discrete
Fourier transform (STDFT) is applied to the speech signal, and
the power or magnitude spectrum is generated. A set of Mel
scale filters is applied to obtain Mel-filter-bank output. Then the
log operator is used to get the log-filter-bank output. Finally, the
discrete cosine transform (DCT) is used to generate MFCCs.
In the following, we use MFCCs as the acoustic feature to
elaborate on the relation between clean and distorted speech.
Figure 1 shows a time domain model for speech degraded by

both additive noise and convolutive channel distortions [5]. The
observed distorted speech signal , where denotes the dis-
crete time index, is generated from the clean speech signal
with additive noise and convolutive channel distortions

according to

(1)

where ‘ ‘ denotes the convolution operator.
After applying the STDFT, the following equivalent relation

can be established in the spectral domain:

(2)

Here, is the frequency bin index. Note that we left out the
frame index for ease of notation. To arrive at Eq. (2) we as-
sumed that the impulse response is much shorter than the
DFT analysis window. Then we can make use of the multiplica-
tive transfer function approximation by which a convolution in
the time domain corresponds to a multiplication in the STDFT
domain [17]. This approximation does not hold in the presence
of reverberated speech, because the acoustic impulse response
characterizing the reverberation is typically much longer than
the STDFT window size. Thus Eq. (2) is not adequate to de-
scribe reverberated speech in the STDFT domain.
The power spectrum of the distorted speech can then be ob-

tained as:

(3)

where denotes the (random) angle between the two complex
variables and . If is set as 0, Eq. (3) will
become:

(4)

Removing this “phase” term is a common practice in the
formulation of speech distortion in the power spectral domain;
e.g. in the spectral subtraction technique. So is approximating
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the phase term in the log-spectral domain; e.g. [18]. While
achieving simplicity in developing speech enhancement algo-
rithms, removing this term is a partial cause of the degradation
of enhancement performance at low SNRs (around 0 dB) [19].
By applying a set of Mel-scale filters ( in total) to the power

spectrum in Eq. (3), we have the -th Mel-filter-bank energies
for distorted speech, clean speech, noise and channel:

(5)

(6)

(7)

(8)

where the -th filter is characterized by the transfer function
with .

The phase factor of the -th Mel-filter-bank is [19]

(9)

Then, the following relation is obtained in the Mel-filter-bank
domain for the -th Mel-filter-bank output

(10)

By taking the log operation in both sides of Eq. (10), we have
the following in the log-Mel-filter-bank domain, using vector
notation

(11)

The operation for two vectors denotes element-wise
product, and taking the logarithm and exponentiation of a
vector above are also element-wise operations.
By applying the DCT transform to Eq. (11), we can get the

distortion formulation in the cepstral domain as

(12)

where denotes the DCT matrix.
In [19], it was shown that the phase factor for each Mel-

filter can be approximated by a weighted sum of a number
of independent zero-mean random variables distributed over

, where the total number of terms equals the number
of DFT bins. When the number of terms becomes large, the
central limit theorem postulates that will be approximately
Gaussian. A more precise statistical description has been devel-
oped in [20], where it is shown that all moments of of odd
order are zero.

If we ignore the phase factor, Eq. (11) and Eq. (12) can be
simplified to

(13)

(14)

which are the log-Mel-filter-bank and cepstral representations,
respectively, corresponding to Eq. (4) in the power spectral do-
main. Eq. 13 and Eq. 14 are widely used in noise-robust ASR
technology as the basic formulation that characterizes the rela-
tionship between clean and distorted speech in the logarithmic
domain. The effect of the phase factor is small if noise estimates
are poor. However, with an increase in the quality of the noise
estimates, the effect of the phase factor is shown experimentally
to be stronger [19].
In ASR, Gaussian mixture models (GMMs) are widely used

to characterize the distribution of speech in the log-Mel-filter-
bank or cepstral domain. It is important to understand the im-
pact of noise, which is additive in the spectral domain, on the
distribution of noisy speech in the log-Mel-filter-bank and cep-
stral domains. Using Eq. 13 while setting for simplicity,
we can simulate noisy speech in the log-filter-bank domain. In
Figure 2, we show the impact of noise on the clean speech signal
in the log-filter-bank domain with increasing noise mean values,
i.e., decreasing SNRs. The clean speech shown with solid lines
is Gaussian distributed, with a mean value of 25 and a standard
deviation of 10. The noise is also Gaussian distributed, with
different mean values and a standard deviation of 2. The noisy
speech shown with dashed lines deviates from the Gaussian dis-
tribution to a varying degree. We can use a Gaussian distribu-
tion, shown with dotted lines, to make an approximation. The
approximation error is large in the low SNR cases. When the
noise mean is raised to 20 and 25, as in Figure 2(c) and 2(d), the
distribution of noisy speech is skewed far away from a Gaussian
distribution.
A natural way to deal with noise in the acoustic environ-

ment is to use multi-style training [21], which trains the acoustic
model with all available noisy speech data. The hope is that one
of the noise types in the training set will appear in the deploy-
ment scenario. However, there are two major problems with
multi-style training. The first is that during training it is hard
to enumerate all noise types and SNRs encountered in test en-
vironments. The second is that the model trained with multi-
style training has a very broad distribution because it needs to
model all the environments. Given the unsatisfactory behavior
of multi-style training, it is necessary to work on technologies
that directly deal with the noise and channel impacts. In the
next section, we lay down a general mathematical framework
for noise-robust speech recognition.

B. A General Framework for Noise-Robust Speech
Recognition

The goal of ASR is to obtain the optimal word sequence ,
given the spoken speech signal , which can be formulated as
the well-known maximum a posteriori (MAP) problem:

(15)
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Fig. 2. The impact of noise, with varying mean values from 5 in (a) to 25 in (d), in the log-filter-bank domain. The clean speech has a mean value of 25 and a
standard deviation of 10. The noise has a standard deviation of 2.

where and are the acoustic model (AM) and languagemodel
(LM) parameters. Using Bayes’ rule

(16)

Eq. (15) can be re-written as:

(17)

where is the AM likelihood and is the LM
probability. When the time sequence is expanded and the ob-
servations are assumed to be generated by hidden Markov
models (HMMs) with hidden states , we have

(18)

where belongs to the set of all possible state sequences for the
transcription .
When the noisy speech is presented, the decision rule be-

comes

(19)

Introducing clean speech as a hidden variable, we have

(20)

In Eq. (20) we exploited the fact that the distorted speech
signal doesn’t deliver additional information if the clean
speech signal is given. With Eq. (16), can be
re-written as

(21)

Note that

(22)

and then Eq. (21) becomes

(23)
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Under some mild assumptions this can be simplified to [11],
[22]

(24)

One key component in Eq. (24) is , the clean speech’s
posterior given noisy speech . In principle, it is computed via

(25)

i.e., employing an a priori model of clean speech and an
observation model , which relates the clean to the noisy
speech features. Noise robustness techniques may be catego-
rized by the kind of observation models used, also according to
whether an explicit or an implicit distortion model is used, and
according to whether or not prior knowledge about distortion
is employed to learn the relationship between and , as we
will further develop in later sections of the article.
For simplicity, many noise-robust ASR techniques use a point

estimate. That is, the back-end recognizer considers the cleaned
or denoised signal as an estimate without uncertainty:

(26)

where is a Kronecker delta function. Then, Eq. (24) is re-
duced to

(27)
Because the denominator, , is independent of the

underlying word sequence, the decision is further reduced to

(28)
Eq. (28) is the formulation most commonly used. Comparing

with Eq. (18), the only difference is that. . is used to re-
place . In feature processing methods, only the distorted fea-
ture is enhanced with , without changing the acoustic
model parameter, .
In contrast, there is another major category of model-domain

processing methods, which adapt model parameters to fit the
distorted speech signal

(29)

and in this case the posterior used in the MAP decision rule is
computed using

(30)

C. Five Ways of Categorizing and Analyzing Noise-Robust
ASR Techniques: An Overview

The main theme of this article is to provide insights from
multiple perspectives in organizing a multitude of noise-robust

ASR techniques. Based on the general framework in this sec-
tion, we provide a comprehensive overview, in a mathemati-
cally rigorous and unified manner, of noise-robust ASR using
five different ways of categorizing, analyzing, and character-
izing major existing techniques. The categorization is based on
the following key attributes of the algorithms in our review:
1) Feature-Domain vs. Model-Domain Compensation: The

acoustic mismatch between training and testing conditions can
be viewed from either the feature domain or the model do-
main, and noise or distortion can be compensated for in ei-
ther space. Some methods are formulated in both the feature
and model domains, and can thus be categorized as “hybrid”.
Feature-space approaches usually do not change the parame-
ters of acoustic models. Most feature-space methods use Eq.
(28) to compute the posterior after “plugging in”
the enhanced signal . On the other hand, model-domain
methods modify the acoustic model parameters with Eq. (29) to
incorporate the effects of the distortion, as in Eq. (30). In con-
trast with feature-space methods, the model-domain methods
are closely linked with the objective function of acoustic mod-
eling. While typically achieving higher accuracy than feature-
domain methods, they usually incur significantly larger compu-
tational costs. We will discuss both the feature- and model-do-
main methods in detail in Sections III-A and III-B. Specifically,
noise-resistant features, feature moment normalization, and fea-
ture compensation methods are presented in III-A1, III-A2, and
III-A3, respectively.
2) Compensation Using Prior Knowledge about Acoustic

Distortion: This axis for categorizing and analyzing noise-ro-
bust ASR techniques examines whether the method exploits
prior knowledge about the distortion. Details follow in
Section IV. Some of these methods, discussed in Section IV-A,
learn the mapping between clean and noisy speech features
when they are available as a pair of “stereo” data. During de-
coding, with the pre-learned mapping, the clean speech feature

can be estimated and plugged into Eq. (28) to decode
the word sequence. Another method presented in Section IV-B
builds multiple models or dictionaries of speech and noise from
multi-environment data. Some examples discussed in IV-B1
collect and learn a set of models first, each corresponding to one
specified environment in training. These pre-trained models are
then combined online to form a new model that fits the test
environment best. The methods described in section IV-B2 are
usually based on source separation—they build clean speech
and noise exemplars from training data, and then reconstruct
the speech signal only from the exemplars of clean
speech. With variable-parameter HMM methods, examined
in IV-B3, the acoustic model parameters or transforms are
polynomial functions of an environment variable.
3) Compensation with Explicit vs. Implicit Distortion Mod-

eling: To adapt the model parameters in Eq. (29), general
technologies make use of a set of linear transformations to
compensate for the mismatch between training and testing
conditions. This involves many parameters and thus typically
requires a large amount of data for estimation. This difficulty
can be overcome when exploiting an explicit distortion model
which takes into account the way in which distorted speech
features are produced. That is, the distorted speech features are
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represented using a nonlinear function of clean speech features,
additive noise, and convolutive distortion. This type of physical
model enables structured transformations to be used, which
are generally nonlinear and involve only a parsimonious set
of free parameters to be estimated. We refer to a noise-robust
method as an explicit distortion modeling one when a phys-
ical model for the generation of distorted speech features is
employed. If no physical model is explicitly used, the method
will be referred to as an implicit distortion modeling method.
Since physical constraints are modeled, the explicit distortion
modeling methods exhibit high performance and require a rel-
atively small number of distortion parameters to be estimated.
Explicit distortion models can also be applied to feature pro-
cessing. With the guide of explicit modeling, the enhancement
of speech often becomes more effective. Noise-robust ASR
techniques with explicit distortion modeling will be explored in
Section V. In particular, parallel model combination is briefly
described in Section V-A, and vector Taylor series (VTS) is
presented in Section V-B, along with the details of VTS model
adaption, distortion estimation, VTS feature enhancement, and
recent improvements. Finally, sampling-based methods, such
as data-driven PMC and the unscented transform, are examined
in Section V-C.
4) Compensation with Deterministic vs. Uncertainty Pro-

cessing: Most noise-robust ASR methods use a deterministic
strategy; i.e., the compensated feature is a point estimate from
the corrupted speech feature with Eq. (26), or the compensated
model is a point estimate as adapted from the clean speech
model with Eq. (29). We refer to methods in this category
as deterministic processing methods. However, strong noise
and unreliably decoded transcriptions necessarily create in-
herent uncertainty in either the feature or the model space,
which should be accounted for in MAP decoding. When a
noise-robust method takes that uncertainty into consideration,
we call it an uncertainty processing method. In the feature
space, the presence of noise brings uncertainty to the enhanced
speech signal, which is modeled as a distribution instead of a
deterministic value. In the general case, in Eq. (24)
is not a Kronecker delta function and there is uncertainty in
the estimate of given . Uncertainty can also be introduced
in the model space when assuming the true model parameters
are in a neighborhood of the trained model parameters , or
compensated model parameters . We will study uncertainty
methods in feature and model spaces in Sections VI-B and
VI-A, respectively. Then joint uncertainty decoding is de-
scribed in Section VI-C and missing feature approaches are
discussed in Section VI-D.
5) Disjoint vs. Joint Model Training: Finally, we can cat-

egorize most existing noise-robust techniques in the literature
into two broad classes depending on whether or not the acoustic
model, , is trained jointly with the same process of feature en-
hancement or model adaptation used in the test stage. Among
the joint model trainingmethods, themost prominent set of tech-
niques are based on a paradigm called noise adaptive training
(NAT) which applies consistent processing during the training
and testing phases while eliminating any residual mismatch in
an otherwise disjoint training paradigm. Further developments
of NAT include joint training of a canonical acoustic model and

a set of transforms under maximum likelihood estimation or a
discriminative training criterion. In Section VII, these methods
will be examined in detail.
Note that the chosen categories discussed above are by no

means orthogonal. While it may be ambiguous under which cat-
egory a particular noise-robustness approach would fit the best,
we have used our best judgement with a balanced view.

D. Standard Evaluation Database

In the early years of developing noise-robust ASR technolo-
gies, it was very hard to conclude which technology was better
since different groups used different databases for evaluation.
The introduction of a standard evaluation database and training
recipes finally allowed noise-robustness methods developed
by different groups to be compared fairly using the same task,
thereby fast-tracking development of these methods. Among
the standard evaluation databases, the most famous tasks are
the Aurora series developed by the European Telecommuni-
cations Standards Institute (ETSI), although there are some
other tasks such as Noisex-92 [23], SPINE (SPeech In Noisy
Environments) [24], and the recently developed CHiME (Com-
putational Hearing in Multisource Environments) task [25].
The first Aurora database is Aurora 2 [26], a task of recog-

nizing digit strings in noise and channel distorted environments.
The evaluation data is artificially corrupted. The Aurora 3 task
consists of noisy speech data recorded inside cars as part of the
SpeechDatCar project [27]. Although still a digit recognition
task, the utterances in Aurora 3 are collected in real noisy en-
vironments. The Aurora 4 task [28] is a standard large vocabu-
lary continuous speech recognition (LVCSR) task which is con-
structed by artificially corrupting the clean data from the Wall
Street Journal (WSJ) corpus [29]. Aurora 5 [30] was mainly de-
veloped to investigate the influence of hands-free speech input
on the performance of digit recognition in noisy room envi-
ronments and over a cellular telephone network. The evalua-
tion data is artificially simulated. The progression of the Aurora
tasks after Aurora 2 show a clear trend: from real noisy environ-
ments (Aurora 3), to a LVCSR task (Aurora 4), to working in the
popular cellular scenario (Aurora 5). This is consistent with the
need to develop noise-robust ASR technologies for real-world
deployment.

E. The Scope of This Overview

Noise robustness in ASR is a vast topic, spanning research
literature over 30 years. In developing this overview, we neces-
sarily have to limit its scope. In particular,
• we only consider single-channel input, thus leaving out
the topics of acoustic beamforming, multi-channel speech
enhancement and source separation;

• we assume that the noise can be consideredmore stationary
than speech, thus disregarding for the most part the recog-
nition of speech in the presence of music or other com-
peting speakers;

• we assume that the channel impulse response is much
shorter than the frame size; i.e., we do not consider the
case of reverberation, but rather convolutional channel
distortions caused by, e.g., different microphone charac-
teristics.
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Readers interested in the topic of multi-channel speech pro-
cessing are referred to recent books in this field, which pro-
vide overview articles on acoustic beamforming, multi-channel
speech enhancement, source separation and speech dereverber-
ation [15], [31]–[33]. Recognition of reverberant speech is cov-
ered by the book of Woelfel and McDonough [34] and tutorial
articles of more recent developments are [35], [36]. Further, [37]
provides an overview of speech separation in the presence of
non-stationary distortions. A source of many good tutorial ar-
ticles on recent developments in automatic speech recognition
is [38]. Some specific techniques pertaining to the above topics
not covered in this article can be found in [39] for multi-sen-
sory speech detection, in [40], [41] for nonstationary noise esti-
mation and ASR robustness against nonstationary noise, in [42]
for a new multichannel framework for speech source separation
and noise reduction, in [43], [44] for robustness against rever-
beration, and in [45] for speech-music separation.
What remains is still a huge field of research.We hope that de-

spite the limited scope the reader will find this overview useful.

III. FEATURE-DOMAIN AND MODEL-DOMAIN METHODS

Feature-space approaches usually do not change the parame-
ters of the acoustic model (e.g., HMMs). They either rely on au-
ditory features that are inherently robust to noise or modify the
test features to match the training features. Because they are not
related to the back-end, usually the computational cost of these
methods is low. In contrast, model-domain methods modify the
acoustic model parameters to incorporate the effects of noise.
While typically achieving higher accuracy than feature-domain
methods, they usually incur significantly larger computational
cost.

A. Feature-Space Approaches

Feature-space methods can be classified further into three
sub-categories:
• noise-resistant features, where robust signal processing is
employed to reduce the sensitivity of the speech features
to environment conditions that don’t match those used to
train the acoustic model;

• feature normalization, where the statistical moments of
speech features are normalized; and

• feature compensation, where the effects of noise embedded
in the observed speech features are removed.

1) Noise-Resistant Features: Noise-resistant feature methods
focus on the effect of noise rather than on the removal of noise.
One of the advantages of these techniques is that they make only
weak or no assumptions about the noise. In general, no explicit
estimation of the noise statistics is required. On the other hand,
this can be a shortcoming since it is impossible to make full use
of the characteristics specific to a particular noise type.

a) Auditory-Based Feature: Perceptually based linear pre-
diction (PLP) [46], [47] filters the speech signal with a Bark-
scale filter-bank. The output is converted into an equal-loudness
representation. The resulting auditory spectrum is then modeled
by an all-pole model. A cepstral analysis can also be performed.
Many types of additive noise as well as most channel dis-

tortions vary slowly compared to the variations in speech sig-
nals. Filters that remove variations in the signal that are unchar-

acteristic of speech (including components with both slow and
fast modulation frequencies) improve the recognition accuracy
significantly [48]. Relative spectral processing (RASTA) [49],
[50] consists of suppressing constant additive offsets in each
log spectral component of the short-term auditory-like spec-
trum. This analysis method can be applied to PLP parameters,
resulting in RASTA-PLP [49], [50]. Each frequency band is fil-
tered by a noncausal infinite impulse response (IIR) filter that
combines both high- and low-pass filtering. Assuming a frame
rate of 100 Hz, the transfer function

(31)

yields a spectral zero at zero modulation frequency and a pass-
band approximately from 1 to 12 Hz. While the design of the
IIR-format RASTA filter in Eq. (31) is based on auditory knowl-
edge, the RASTA filter can also be designed as a linear finite
impulse response (FIR) filter in a data-driven way using tech-
nology such as linear discriminant analysis (LDA) [51].
There are plenty of other auditory-based feature extraction

methods, such as zero crossing peak amplitude (ZCPA) [52],
average localized synchrony detection (ALSD) [53], percep-
tual minimum variance distortionless response (PMVDR)
[54], power-normalized cepstral coefficients (PNCC) [55],
invariant-integration features (IIF) [56], amplitude modulation
spectrogram [57], Gammatone frequency cepstral coefficients
[58], sparse auditory reproducing kernel (SPARK) [59], and
Gabor filter bank features [60], to name a few. [61] provides a
relatively complete review on auditory-based features. All these
methods are designed by utilizing some auditory knowledge.
However, there is no universally-accepted theory about which
kind of auditory information is most important to robust speech
recognition. Therefore, it is hard to argue which one in theory
is better than another.
Since there is no universally-accepted auditory theory for ro-

bust speech recognition, it is sometimes very hard to set the
right parameter values in auditory methods. Some parameters
can be learned from data [62], but this may not always be the
case. Although the auditory-based features can usually achieve
better performance thanMFCC, they have a muchmore compli-
cated generation process which sometimes prevents them from
being widely used together with some noise-robustness tech-
nologies. For example, in Section II-A, the relation between
clean and noisy speech for MFCC features can be derived as
Eq. (12). However, it is very hard to derive such a relation for
auditory-based features. As a result, MFCC is widely used as the
acoustic feature for methods with explicit distortion modeling.

b) Neural Network Approaches: Artificial neural network
(ANN) based methods have a long history of providing effec-
tive features for ASR. For example, ANN-HMMhybrid systems
[63] replace the GMM acoustic model with an ANN when eval-
uating the likelihood score. The ANNs used before 2009 usually
had the multi-layer perceptron (MLP) structure with one hidden
layer. Hybrid systems have been shown to have comparable per-
formance to GMM-based systems.
The TANDEM system was later proposed in [64] to com-

bine ANN discriminative feature processing with a GMM, and it
demonstrated strong performance on the Aurora 2 noisy contin-
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uous digit recognition task. Instead of using the posterior vector
for decoding as in the hybrid system, the TANDEM system
omits the final nonlinearity in the ANN output layer and applies
a global decorrelation to generate a new set of features used to
train a GMM system. One reason the TANDEM system has very
good performance on noise-robust tasks is that the ANN has the
modeling power in small regions of feature space that lie on
phone boundaries [64]. Another reason is due to the nonlinear
modeling power of the ANN, which can normalize data from
different sources well.
Another way to obtain probabilistic features is TempoRAL

Pattern (TRAP) processing [65], which captures the appropriate
temporal pattern with a long temporal vector of log-spectral en-
ergies from a single frequency band. One main reason for the
noise-robustness of TRAP is the ability to handle band-specific
processing [66]. Even if one band of speech is polluted by noise,
the phoneme classifier in another band can still work very well.
TRAP processing works on temporal patterns, differing from
the conventional spectral feature vector. Hence, TRAP can be
combined very well withMFCC or PLP features to further boost
performance [67].
Building upon the above-mentioned methods, bottle-neck

(BN) features [68] were developed as a new method to use
ANNs for feature extraction. A five-layer MLP with a narrow
layer in the middle (bottle-neck) is used to extract BN features.
The fundamental difference between TANDEM and BN fea-
tures is that the latter are not derived from the posterior vector.
Instead, they are obtained as linear outputs of the bottle-neck
layer. Principal component analysis (PCA) or heteroscedastic
linear discriminant analysis (HLDA) [69] is used to decorrelate
the BN features which then become inputs to the GMM-HMM
system. Although current research of BN features is not fo-
cused on noise robustness, it has been shown that BN features
outperform TANDEM features on some LVCSR tasks [68],
[70]. Therefore, it is also possible that BN features can perform
well on noise-robust tasks.
More recently, a new acoustic model, referred to as the

context-dependent deep neural network hidden Markov model
(CD-DNN-HMM), has been developed. It has been shown,
by many groups [71]–[75], to outperform the conventional
GMM-HMMs in many ASR tasks. The CD-DNN-HMM is
also a hybrid system. There are three key components in
the CD-DNN-HMM: modeling senones (tied states) directly
even though there might be thousands or even tens of thou-
sands of senones; using deep instead of shallow multi-layer
perceptrons; and using a long context window of frames as
the input. These components are critical for achieving the
huge accuracy improvements reported in [71], [73], [76].
Although the conventional ANN in TANDEM also takes a
long context window as the input, the key to success of the
CD-DNN-HMM is due to the combination of these compo-
nents. With the excellent modeling power of the DNN, in [77]
it is shown that DNN-based acoustic models can easily match
state-of-the-art performance on the Aurora 4 task [28], which
is a standard noise-robustness LVCSR task, without any ex-
plicit noise compensation. The CD-DNN-HMM is expected to
make further progress on noise-robust ASR due to the DNN’s
ability to handle heterogeneous data [77], [78]. Although the

CD-DNN-HMM is a modeling technology, its layer-by-layer
setup provides a feature extraction strategy that automatically
derives powerful noise-resistant features from primitive raw
data for senone classification. In addition to using the standard
feed-forward structure of DNNs, recurrent neural networks
(RNN) that model temporal signal dependence in an explicit
way have also been exploited for noise-robust ASR, either in
modeling the posterior [79] or predicting clean speech from
noisy speech [80].
2) Feature Moment Normalization: Feature moment normal-

ization methods normalize the statistical moments of speech
features. Cepstral mean normalization (CMN) [81] and cepstral
mean and variance normalization (CMVN) [82] normalize the
first and second order statistical moments, respectively, while
histogram equalization (HEQ) [83] normalizes the higher order
statistical moments through the feature histogram.

a) Cepstral Mean Normalization: Cepstral mean nor-
malization (CMN) [81] is the simplest feature moment
normalization technique. Given a sequence of cepstral vectors

, CMN subtracts the mean value from
each cepstral vector to obtain the normalized cepstral vector
. After normalization, the mean of the cepstral sequence is

0. It is easy to show that, in absence of noise, the convolutive
channel distortion in the time domain has an additive effect
in the log-Mel-filter-bank domain and the cepstral domain.
Therefore, CMN is good at removing the channel distortion. It
is also shown in [9] that CMN can help to improve recognition
in noisy environments even if there is no channel distortion.
Instead of using a single mean for the whole utterance, CMN

can be extended to use multi-class normalization. Better per-
formance is obtained with augmented CMN [84], where speech
and silence frames are normalized to their own reference means
rather than a global mean.
For real-time applications, CMN is unacceptable because the

mean value is calculated using the features in the whole ut-
terance. Hence, it needs to be modified for deployment in a
real-time system. CMN can be considered as a high-pass filter
with a cutoff frequency that is arbitrarily close to 0 Hz [1]. Fol-
lowing this interpretation, it is reasonable to use other types of
high-pass filters to approximate CMN. A widely used one is a
first-order recursive filter, in which the cepstral mean is a func-
tion of time according to

(32)

(33)

where is chosen in the way that the filter has a time constant
of at least 5 seconds of speech [1]. Other types of filters can also
be used. For example, the band-pass IIR filter of RASTA shown
in Eq. (31) performs similarly to CMN [85]. Its high-pass por-
tion of the filter is used to compensate for channel convolution
effects as with CMN, while its low-pass portion helps to smooth
some of the fast frame-to-frame spectral changes which should
not exist in speech.

b) Cepstral Mean and Variance Normalization: Cepstral
mean and variance normalization (CMVN) [82] normalizes the
mean and covariance together. After normalization, the sample
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mean and variance of the cepstral sequence are 0 and 1, respec-
tively. CMVN has been shown to outperform CMN in noisy
test conditions. [9] gives a detailed comparison of CMN and
CMVN, and discusses different strategies to apply them. [86]
proposes a method is to combine mean subtraction, variance
normalization, and ARMA filtering (MVA) post-processing to-
gether. An analysis showing why MVA works well is also pre-
sented in [86].
Although mean normalization is directly related to removing

channel distortion, variance normalization cannot be easily
associated with removing any distortion explicitly. Instead,
CMN and CMVN can be considered as ways to reduce the first-
and second-order moment mismatches between the training
and testing conditions. In this way, the distortion brought by ad-
ditive noise and a convolutive channel can be reduced to some
extent. As an extension, third-order [87] or even higher-order
[88] moment normalization can be used to further improve
noise robustness. Multi-class extensions can also be applied to
CMVN to further improve robustness [89].

c) Histogram Equalization: A natural extension to the mo-
ments normalization techniques is to normalize the distribution
between training and testing data. This normalizes all of the mo-
ments in the speech-feature distribution. This approach is called
histogram equalization method (HEQ) [83], [90]–[92]. HEQ
postulates that the transformed speech-feature distributions of
the training and test data are the same. Each feature vector di-
mension is normalized independently. HEQ can be applied ei-
ther in the Mel-filter-bank domain [92], [93] or the cepstral do-
main [91], [94].
The following transformation function is applied to the

test feature :

(34)

where is the cumulative distribution function (CDF) of the
test data, and is the inverse CDF of the training data. Af-
terwards, the transformed test feature will have the distribution
of the training data. In this way, HEQ reduces the systematic
statistical mismatch between test and training data.
While the underlying principle is rather straightforward, the

problem is how to reliably estimate CDFs.When a large amount
of data is available, the CDFs can be accurately approximated
by the cumulative histogram. Such approximations become un-
reliable for short test utterances. Order-statistics based methods
tend to be more accurate and reliable when there is an insuffi-
cient amount of data [91], [94].
There are several implementation methods for HEQ. Table-

based HEQ (THEQ) is a popular method [90] that uses a cu-
mulative histogram to estimate the corresponding CDF value of
the feature vector elements. In THEQ, a look-up table is used as
the implementation in Eq. (34). This requires that all of the
look-up tables in every feature dimension are kept in memory,
causing a large deployment cost that applications with limited
resources may find unaffordable. Also, the testing CDF is not
as reliable as the training CDF because limited data is available
for the estimation. Therefore, several methods are proposed to
work with only limited test data, such as quantile-based HEQ
(QHEQ) [95] and polynomial-fit HEQ (PHEQ) [96]. Instead of
fully matching the training and test CDF, QHEQ calibrates the

test CDF to the training CDF in a quantile-corrective manner.
To achieve this goal, it uses a transformation function which is
estimated by minimizing the mismatch between the quantiles
of the test and training data. In PHEQ, a polynomial function
is used to fit . The polynomial coefficients are learned by
minimizing the squared error between the input feature and the
approximated feature for all the training data.
One HEQ assumption is that the distributions of acoustic

classes (e.g., phones) should be identical or similar for both
training and test data. However, a test utterance is usually too
short for the acoustic class distribution to be similar enough
to the training distribution. To remedy this problem, two-class
[97], [98] or multi-class HEQ [99]–[101] can be used. All of
these methods equalize different acoustic classes separately ac-
cording to their corresponding class-specific distribution.
Conventional HEQ always equalizes the test utterance after

visiting the whole utterance. This is not a problem for offline
processing. However, for commercial systems with real-time
requirements this is not acceptable. Initially proposed to ad-
dress the time-varying noise issue, progressive HEQ [102] is
a good candidate to meet the real-time processing requirement
by equalizing with respect to a short interval around the current
frame. The processing delay can be reduced from the length of
the whole utterance to just half of the reference interval.
3) Feature Compensation: Feature compensation aims to re-

move the effect of noise from the observed speech features. In
this section, we will introduce several methods in this class, but
leave some to be discussed in later sections.

a) Spectral Subtraction: The spectral subtraction [103]
method assumes that noise and clean speech are uncorrelated
and additive in the time domain. Assuming the absence of
channel distortions in Eq. (4), the power spectrum of the noisy
signal is the sum of the noise and the clean speech power
spectrum:

(35)

The method assumes that the noise characteristics change
slowly relative to those of the speech signal. Therefore, the noise
spectrum estimated during a non-speech period can be used for
suppressing the noise contaminating the speech. The simplest
way to get the estimated noise power spectrum, , is to
average the noise power spectrum in non-speech frames:

(36)

where denotes the th bin of the speech power spectrum
in the th frame.
Then the clean speech power spectrum can be estimated by

subtracting from the noisy speech power spectrum:

(37)

(38)

where

(39)
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is a real-valued gain function, and

(40)

is the frequency-dependent signal-to-noise ratio estimate.
While the method is simple and efficient for stationary or

slowly varying additive noise, it comes with several problems:
• The estimation of the noise spectrum from noisy speech is
not an easy task. The simple scheme outlined in Eq. (36)
relies on a voice activity detector (VAD). However, voice
activity detection in low SNR is known to be error-prone.
Alternatives have therefore been developed to estimate the
noise spectrum without the need of a VAD. A compre-
hensive performance comparison of state of the art noise
trackers can be found in [104].

• The instantaneous noise power spectral density will fluc-
tuate around its temporally and spectrally smoothed esti-
mate, resulting in amplification of random time frequency
bins, a phenomenon known under the name musical noise
[105], which is not only annoying to a human listener but
also leads to word errors in a machine recognizer.

• The subtraction in Eq. (37) may result in negative power
spectrum values because is an estimated value and
may be greater than . If this happens the numerator
of Eq. (40) should be replaced by a small positive constant.

Many very sophisticated gain functions have been proposed
which are derived from statistical optimization criteria.

b) Wiener Filtering: Wiener filtering is similar to spectral
subtraction in that a real-valued gain function is applied in order
to suppress the noise.
Wiener filtering aims at finding a linear filter such that

the sequence

(41)

has theminimum expected squared error from . This results
in the frequency domain filter

(42)

Here, and are the cross power spectral density be-
tween clean and noisy speech and the power spectral density of
noisy speech, respectively.
With the assumption that the clean speech signal and the noise

signal are independent, Eq. (42) becomes

(43)

which is referred to as the Wiener filter [106], [107], and can be
realized only if and are known.
In practice the power spectra have to be estimated, e.g., via

the periodograms and . Plugging them in Eq. (43)
we obtain

(44)

which shows that Wiener filtering and spectral subtraction are
closely related.
From Eq. (44), it is easy to see that theWiener filter attenuates

low SNR regions more than high SNR regions. If the speech
signal is very clean with very large SNR approaching to ,
is close to 1, resulting in no attenuation. In contrast, if the speech
is buried in the noise with very low SNR approaching 0, is
close to 0, resulting in total attenuation. Similar reasoning also
applies to spectral subtraction.

c) Advanced Front-End: In 2002, the advanced front-end
(AFE) for distributed speech recognition (DSR) was standard-
ized by ETSI [108]. It obtained 53% relative word error rate
reduction from the MFCC baseline on the Aurora 2 task [109].
The AFE is one of the most popular methods for comparison
in the noise robustness literature. It integrates several noise ro-
bustness methods to remove additive noise with two-stage Mel-
warped Wiener filtering [109] and SNR-dependent waveform
processing [110], and mitigates the channel effect with blind
equalization [111].
The two-stage Mel-warped Wiener filtering algorithm is the

main body of the noise reduction module and accounts for
the major gain of noise reduction. It is a combination of the
two-stage Wiener filter scheme from [112] and the time domain
noise reduction proposed in [113]. The algorithm has two stages
of Mel Wiener filtering. The denoised signal in the first stage is
passed to the second stage, which is used to further reduce the
residual noise. Although having outstanding performance, the
two-stage Mel-warped Wiener filtering algorithm has a high
computational load which is significantly reduced in [114] by
constructing and applying Wiener filters in the Mel-warped
filter-bank domain.
The basic idea behind SNR-dependent waveform processing

[110] is that the speech waveform exhibits periodic maxima and
minima in the voiced speech segments due to the glottal ex-
citation while the additive noise energy is relatively constant.
Therefore, the overall SNR of the voiced speech segments can
be boosted if one can locate the high (or low) SNR period por-
tions and increase (or decrease) their energy.
Blind equalization [111] reduces convolutional distortion by

minimizing themean square error between the current and target
cepstrum. The target cepstrum corresponds to the cepstrum of a
flat spectrum. Blind equalization is an online method to remove
convolutional distortion without the need to first visit the whole
utterance as the standard CMN does. As shown in [111], it can
obtain almost the same performance as the conventional offline
cepstral subtraction approach. Therefore, it is preferred in real-
time applications.

B. Model-Space Approaches

Model-domain methods modify the acoustic model pa-
rameters to incorporate the effects of noise. While typically
achieving higher accuracy than feature-domain methods, they
usually incur significantly higher computational cost. The
model-domain approaches can be further classified into two
sub-categories: general adaptation and noise-specific com-
pensation. General adaptation methods compensate for the
mismatch between training and testing conditions by using
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generic transformations to convert the acoustic model param-
eters. These methods are general, applicable not only to noise
compensation but also to other types of acoustic variations.
As in Eq. (29), model-domain methods only adapt the model

parameters to fit the distorted speech signal. The model adapta-
tion can operate in either supervised or unsupervised mode. In
supervised mode, the correct transcription of the adapting utter-
ance is available. It is used to guide model adaptation to obtain
the adapted model, , used to decode the incoming utterances.
In unsupervised mode, the correct transcription is not available,
and usually two-pass decoding is used. In the first pass, the ini-
tial model is used to decode the utterance to generate a hy-
pothesis. Usually one hypothesis is good enough. The gain from
using a lattice or N-best list to represent multiple hypotheses is
limited [115]. Then, is obtained with the model adaptation
process and used to generate the final decoding result.
Popular speaker adaptation methods such as maximum a

posteriori (MAP) and its extensions such as structural MAP
(SMAP) [116], MAPLR [117], and SMAPLR [118], may not
be a good fit for most noise-robust speech recognition sce-
narios where only a very limited amount of adaptation data is
available, e.g., when only the utterance itself is used for unsu-
pervised adaptation. Most popular methods use the maximum
likelihood estimation (MLE) criterion [119], [120]. Discrimina-
tive adaptation is also investigated in some studies [121]–[123].
Unlike MLE adaptation, discriminative adaption is very sensi-
tive to hypothesis errors [124]. As a result, most discriminative
adaptation methods only work in supervised mode [121],
[122]. Special processing needs to be used for unsupervised
discriminative adaptation. In [123], a speaker-independent
discriminative mapping transformation (DMT) is estimated
during training. During testing, a speaker-specific transform is
estimated with unsupervised ML, and the speaker-independent
DMT is then applied. In this way, discriminative adaptation is
implicitly applied without the strict dependency on a correct
transcription.
In the following, popularMLE adaptation methods will be re-

viewed. Since they are general adaptation methods not specific
to the problem of noise robustness, we will not address them in
detail. Maximum likelihood linear regression (MLLR) is pro-
posed in [119] to adapt model mean parameters with a class-de-
pendent linear transform

(45)

where and are the clean and distorted mean vec-
tors for Gaussian component , and is the corresponding
regression class. and are the regression-class-de-
pendent transform and bias to be estimated, which can be put
together as .
The expectation-maximization (EM) algorithm [125] is used

to get the maximum likelihood solution of . First, an
auxiliary function for an utterance is defined

(46)

where denotes the adapted model, and is the posterior
probability for Gaussian component at time . can

be obtained by setting the derivative of w.r.t. to 0.
A special case of MLLR is the signal bias removal algorithm
[126], where the only single transform is simply a bias. The
MLE criterion is used to estimate this bias, and it is shown that
signal bias removal is better than CMN [126].
The variance of the noisy speech signal also changes with

the introduction of noise. Hence, in addition to transforming
mean parameters with Eq. (45), it is better to also transform
covariance parameters [120], [127] as

(47)

A two-stage optimization is usually used. First, the mean
transform is obtained, given the current variance.
Then, the variance transform is computed, given the
current mean. The whole process can be done iteratively. The
EM method is used to obtain the solution, which is done in a
row-by-row iterative format.
Constrained MLLR (CMLLR) [120] is a very popular model

adaption method in which the transforms of the mean and co-
variance, and , are constrained to be the same:

(48)

(49)

Rather than adapting all model parameters, CMLLR can be
efficiently implemented in the feature space with the following
relation

(50)

or

(51)

with and . The likelihood
of the distorted speech can now be expressed as

(52)
As a result, CMLLR is also referred to as feature spaceMLLR

(fMLLR) in the literature. Note that signal bias removal is a
special form of CMLLR with a unit scaling matrix.
In [128], fMLLR and its projection variant (fMLLR-P) [129]

are used to adapt the acoustic features in noisy environments.
Adaptation needs to accumulate sufficient statistics for the test
data of each speaker, which requires a relatively large number
of adaptation utterances.
As reported in [130] and [128], general adaptation methods

such as MLLR and fMLLR in noisy environments yield mod-
erate improvement, but with a large gap to the performance
of noise-specific methods [131], [132] on the same task.
Noise-specific compensation methods usually modify model
parameters by explicitly addressing the nature of the distortions
caused by the presence of noise. Therefore, they can address
the noise-robustness issue better. The representative methods
in this sub-category are parallel model combination (PMC)
[133] and model-domain vector Taylor series [134]. Some
representative noise-specific compensation methods will be
discussed in detail in Section V.
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IV. COMPENSATION USING PRIOR KNOWLEDGE
ABOUT DISTORTION

In addition to training an HMM, all methods analyzed in this
section have the unique attribute of exploiting prior knowledge
about distortion in the training stage. They then use such prior
knowledge as a guide to either remove noise or adapt models in
the testing stage.

A. Learning from Stereo Data

There are many methods that use stereo data to learn the map-
ping from noisy speech to clean speech. The stereo data consists
of time-aligned speech samples that have been simultaneously
recorded in training environments and in representative test en-
vironments. The success of this kind of method usually depends
on how well the representative training samples for the test en-
vironments really match test scenarios.
1) Empirical Cepstral Compensation: One group of methods

is called empirical cepstral compensation [135], developed at
CMU. In Eq. (14), the distorted speech cepstrum is expressed
as the clean speech signal plus a bias . In empirical cepstral
compensation, this bias can be dependent on the SNR, the
location of vector quantization (VQ) cluster , the presumed
phoneme identity , and the specific testing environment .
Hence, Eq. (14) can be re-written as

(53)

can be learned from stereo training data.
During testing, the clean speech cepstrum can be recovered
from the distorted speech with

(54)

Depending on how is defined, there are
different cepstral compensation methods. If SNR is the only
factor for , it is called SNR-dependent cepstral normalization
(SDCN) [136]. During training, frame pairs in the stereo data
are allocated into different subsets according to SNR. Then,
the compensation vector corresponding to a range
of SNRs is estimated by averaging the difference between the
cepstral vectors of the clean and distorted speech signals for all
frames in that range. During testing, the SNR for each frame
of the input speech is first estimated, and the corresponding
compensation vector is then applied to the cepstral vector for
that frame with Eq. (54).
Fixed codeword-dependent cepstral normalization (FCDCN)

[5] is a refined version of SDCN with the compensation vector
as , which depends on both SNR and VQ cluster lo-
cation. Phone-dependent cepstral normalization (PDCN) [137]
is another empirical cepstral compensation method in which
the compensation vector depends on the presumed phoneme
the current frame belongs to. It can also be extended to in-
clude SNR as a factor, and is called SNR-dependent PDCN
(SPDCN) [137]. Environment is also a factor of the compen-
sation vector. FCDCN and PDCN can be extended to multiple
FCDCN (MFCDCN) andmultiple PDCN (MPDCN)whenmul-
tiple environments are used in training [97].

2) SPLICE: Stereo-based Piecewise LInear Compensation
for Environments (SPLICE), proposed originally in [138] and
described in more detail in [40], [139], is a popular method
to learn from stereo data and is more advanced than the
above-mentioned empirical cepstral compensation methods. In
SPLICE, the noisy speech data, , is modeled by a mixture of
Gaussians

(55)

and the a posteriori probability of clean speech vector given
the noisy speech and the mixture component is modeled
using an additive correction vector :

(56)

where is the covariance matrix of the mixture compo-
nent dependent posterior distribution, representing the predic-
tion error. The dependence of the additive (linear) correction
vector on the mixture component gives rise to a piecewise linear
relationship between the noisy speech observation and the clean
speech, hence the name of SPLICE. The feature compensation
formulation is

(57)

The prediction bias vector, , is estimated by minimizing
the mean square error (MMSE) as

(58)

and can be obtained as

(59)
To reduce the runtime cost, the following rule can be used

(60)

Note that for implementation simplicity, a fundamental as-
sumption is made in the above SPLICE algorithm that the ex-
pected clean speech vector is a shifted version of the noisy
speech vector . In reality, when and are Gaussians given
component , their joint distribution can be modeled as

(61)

and a rotation on is needed for the conditional mean as

(62)

where

(63)

(64)
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The feature compensation formulation in this case is

(65)

It is interesting that feature space minimum phone error
(fMPE) training [140], a very popular feature space discrimina-
tive training method, can be linked to SPLICE to some extent
[141]. Originally derived with the MMSE criterion, SPLICE
can be improved with the maximum mutual information crite-
rion [142] by discriminatively training and [143]. In
[144], dynamic SPLICE is proposed to not only minimize the
static deviation from the clean to noisy cepstral vectors, but to
also minimize the deviation between the delta parameters. This
is implemented by using a simple zero-phase, non-causal IIR
filter to smooth the cepstral bias vectors.
In addition to SPLICE, the MMSE-based stereo mapping is

studied in [145], and the MAP-based stereo mapping is formu-
lated in [146], [147]. Most stereo mapping methods use a GMM
to construct a joint space of the clean and noisy speech signal.
This is extended in [148], where a HMM is used. The mapping
methods can also be extended into a discriminatively trained
feature space, such as the fMPE space [149].
One concern for learning with stereo data is the requirement

of stereo data, which may not be available in real-world appli-
cation scenarios. In [150], the pseudo-clean features generated
with a HMM-based synthesis method [151] are used to replace
the clean features which are usually hard to get in a real deploy-
ment. It is shown that this pseudo-clean feature is even more
effective than the ideal clean feature [150].
In addition to the above-mentioned methods, a recurrent

neural network (RNN) has also been proposed to predict the
clean speech from noisy speech [80] by modeling temporal
signal dependencies in an explicit way. With its nonlinear
modeling power, the RNN has been shown to be a very effec-
tive noise-cleaning method [80]. This is further improved with
a bidirectional long short-term memory (BLSTM) structure
[152] which allows for a more efficient exploitation of temporal
context, leading to an improved feature mapping from noisy
speech to clean speech.

B. Learning from Multi-Environment Data

Usually, the speech model can be trained with a multi-condi-
tion training set to cover a wide range of application environ-
ments. However, there are two major problems with multi-style
training. The first is that during training it is hard to enumerate
all of the possible noise types and SNRs that may be present
in future test environments. The second is that the distribution
trained with multi-style training is too broad because it needs to
model the data from all environments. Therefore, it is better to
build environment-specific models, and use the model that best
fits the test environment when doing runtime evaluation.
1) Linear Model Combination: The model combination

methods build a set of acoustic models, each modeling one spe-
cific environment. During testing all the models are combined,
usually with the MLE criterion, to construct a target model used
to recognize the current test utterance. Assume that envi-
ronment-specific models share the same covariance matrix and
only differ in mean parameters. The mean parameters for each
environment-specific model are concatenated together to form

mean supervectors ( ), and the mean supervector
of the testing utterance, , is obtained as a linear combination
of mean supervectors of the environment-specific models

(66)

where is the combination weight for the -th mean super-
vector, and .
The EM algorithm is used to find the solution of iteratively.

The auxiliary function is defined as the following by ignoring
standard constants and terms independent of

(67)

where is the previous weight estimate, is the posterior
of Gaussian component at time determined using previous
parameters, and is the feature vector of frame . is the
adapted mean of Gaussian component , represented as

(68)

where is the subvector for Gaussian component in su-
pervector and . is the variance of
Gaussian component , shared by all the environment-specific
models. By maximizing the auxiliary function, the combination
weight can be solved as

(69)

This model combination method is very similar to general
speaker adaptation methods such as cluster adaptive training
(CAT) [153] and eigenvoice [154]. In the CAT approach, the
speakers are clustered together and stands for clusters in-
stead of individual speakers. In the eigenvoice approach, a small
number of eigenvectors are extracted from all the supervec-
tors and are used as . These eigenvectors are orthogonal to
each other and guaranteed to represent the most important infor-
mation. Although originally developed for speaker adaptation,
both CAT and eigenvoice methods can be used for noise-robust
speech recognition. Storing supervectors in memory during
online model combination may be too demanding. One way to
reduce the cost is to use methods such as eigenMLLR [155],
[156] and transform-based CAT [153] by adapting a canon-
ical mean with environment dependent transforms. In this way,
only transforms are stored in memory. Moreover, adaptive
training can be used to find the canonical mean as in CAT [153].
One potential problem of ML model combination is that usu-

ally all combination weights are not zero, i.e., every environ-
ment-dependent model contributes to the final model. This is
obviously not optimal if the test environment is exactly the
same as one of the training environments. There is also a sce-
nario where the test environment can be approximated well by
interpolating only few training environments. Including unre-
lated models into the construction brings unnecessary distortion
to the target model. This can be solved by ensemble speaker
and speaking environment modeling [157], in which an online
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cluster selection is first used to locate the most relevant cluster
and then only the supervectors in this selected cluster contribute
to the model combination. Another way is to use Lasso (least ab-
solute shrinkage and selection operator) [158] to impose an
regularization term in the weight estimation problem. In [159],
it is shown that Lasso usually shrinks the weights of the mean
supervectors not relevant to the test environment to zero. By
removing some irrelevant supervectors, the resulting mean su-
pervectors are found to be more robust to noise distortions.
Note that the noisy speech signal variance changes with

the introduction of noise, therefore simply adjusting the mean
vector of the speech model cannot solve all of the problems.
It is better to adjust the model variance as well. One way
is to combine the pre-trained CMLLR matrices as in [160].
However, this is not trivial, requiring numerical optimization
methods, such as the gradient descent method or a Newton
method as in [160].
2) Source Separation: In Section IV-B1, the acoustic model

for the current test utterance is obtained by combining the pre-
trained acoustic models. Recently, there is increasing interest to
use exemplar-based methods for general ASR [161], [162] and
noise-robust ASR [163]–[165]. Exemplar refers to an example
speech segment from the training corpus. In exemplar-based
noise-robust ASR [163]–[165], noisy speech is modeled by a
linear combination of speech and noise [163], [165] (or other
interfering factors, such as music [164]) exemplars. If the recon-
structed speech consists of only the exemplars of clean speech,
the impact of noise is removed. This is a source separation ap-
proach, and non-negative matrix factorization (NMF) [166] has
been shown to be a very successful method [167], [168], and
can directly benefit noise-robust ASR [163]–[165], [169]. The
source separation process with NMF is described below.
First the training corpus is used to create a dictionary

of clean speech exemplars and a matrix is formed as
. The exemplars are drawn randomly from a

collection of magnitude spectral vectors in a training set. Simi-
larly, the noise matrix is formed with noise exemplars. Then
speech and noise exemplars are concatenated together to form a
single matrix , with a total of exemplars. The ex-
emplars of are denoted . The reconstruction
signal is

(70)

with as the -dimension activation vector. All exemplars
and activation weights are non-negative. The objective is to
minimize the reconstruction error between the ob-
servation and the reconstruction signal while constraining
the matrices to be element-wise non-negative. It is also good
to embed sparsity into the objective function so that the noisy
speech can be represented as a combination of a small set of
exemplars. This is done by penalizing the nonzero entries of
with the norm of the activation vector , weighted by ele-
ment-wise multiplication (operation ) of a non-negative vector
. Therefore the objective function is

(71)

If all the elements of are zero, there is no enforced sparsity
[164]. Otherwise, sparsity is enforced [163], [165]. In [166],
two measures are used for the reconstruction error, namely Eu-
clidean distance and divergence. In most speech-related work
[163]–[165], Kullback-Leibler (KL) divergence is used to mea-
sure the reconstruction error.

(72)

where is the vector dimension.
To solve Eq. (71), the entries of the vector are initialized to

unity. Then Eq. (71) can be minimized by iteratively applying
the update rule [165]

(73)

with and denoting element-wise multiplication and divi-
sion, respectively. is a vector with all elements set to 1.
After getting , the clean speech feature can be recon-

structed by simply combining all the speech exemplars with
nonzero weights [167]. Good recognition performance has
been observed particularly at very low SNR (below 0 dB).
Better results are reported by using the following filtering
[164], [165], [170] as

(74)

where and denote the exemplars and activation vector
for clean speech, respectively, and and denote the ex-
emplars and activation vector for noise, respectively. This is re-
ferred as feature enhancement (FE) in [165], [170].
Instead of cleaning the noisy speech magnitude spectrum, a

sparse classification (SC) method is proposed in [163] to di-
rectly use the activation weights to estimate the state or word
likelihood. Since each frame of each speech exemplar in the
speech dictionary has state or word labels obtained from the
alignment with conventional HMMs, the weights of the exem-
plars in the sparse representation can be used to calculate
the state or word likelihood. Then, these activation-based like-
lihoods are used in a Viterbi search to obtain the state sequence
with maximum likelihood.
Although the root methodology of FE and SC are the same,

i.e., NMF source separation, it is shown in [170], [171] that
they are complementary. If combined together, more gain can
be achieved. There are also variations of standard NMF source
separation. For example, a sliding time window approach [172],
that allows the exemplars to span multiple frames is used for
decoding utterances of arbitrary length. Convolutive extension
of NMF is proposed to handle potential dependencies across
successive input columns [171], [173]. Prior knowledge of the
co-occurrence statistics of the basis functions for each source
can also be employed to improve the performance of NMF
[174]. In [175], by minimizing cross-coherence between the
dictionaries of all sources in the mixed signal, the bases set of
one source dictionary can be prevented from representing the
other source signals. This clearly gives better separation results
than the traditional NMF. Superior digit recognition accuracy
has been reported in [170] with the exemplar-based method
by increasing the number of update iterations and exemplars,
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designing artificial noise dictionary, doing noise sniffing, and
combining SC with FE. An advantage of the exemplar-based
approach is that it can deal with highly non-stationary noise,
such as speech recognition in the presence of background
music. However, there are still plenty of challenges. e.g., how
to deal with convolutive channel distortions, how to most
effectively deal with noise types in testing that have not been
previously seen in the development of the noise dictionary, and
how to generalize to LVCSR tasks.
3) Variable-Parameter HMM: Variable-parameter HMM

(VPHMM) [176] models the speech Gaussian mean and vari-
ance parameters as a set of polynomial functions of the environ-
ment variable , which is SNR in [176]. Hence, the Gaussian
component is now modeled as .

and are polynomial functions of environment
variable . For example, can be denoted by

(75)

where is a vector with the same dimension as the input
feature vectors. The choice of polynomial function is based
on its good approximation to continuous functions, its simple
derivation operations, and the fact that the change of means
and variances in terms of the environment is smooth and can be
modeled by low order polynomials. Other functions can also
be used. For example, in [177], piecewise spline interpolation
is used to represent the dependency of the HMM parameters
on the conditioning parameters. To reduce the total number of
parameters for VPHMM, parameter clustering can be employed
[178]. The VPHMM parameters can be trained either with the
MLE criterion [176] or a discriminative criterion [179]. In
addition to Gaussian mean and variance parameters, other
model parameters can also be modeled. In [180], [181], a more
generalized form of VPHMM is investigated by modeling tied
linear transforms as a function of environment variables.
During testing, speech model parameters can be calculated

with the estimated environment variable. Even if the estimated
environment is not seen during training, the curve fitting opti-
mization naturally uses the information on articulation/context
from neighboring environments. Therefore, VPHMM can work
well in unseen environments.

V. EXPLICIT DISTORTION MODELING

An explicit distortion modeling method is a noise-robustness
method that employs a physical model of how distorted speech
features are generated. Because the physical constraints are ex-
plicitly modeled, the explicit distortion modeling methods re-
quire only a relatively small number of distortion parameters
to be estimated. They also exhibit high noise-robustness per-
formance due to the explicit modeling of the distorted speech
generation process.

A. Parallel Model Combination

Parallel model combination (PMC) uses the explicit distor-
tion model to adapt the clean speech model. The model param-
eters of clean speech and noise in the cepstral domain are first
transformed to the log-Mel-filter-bank domain and further to

the Mel-filter-bank domain. Then, the model parameters of dis-
torted speech in theMel-filter-bank domain can be calculated by
using the explicit distortion model which assumes that noise and
clean speech are independent and additive in theMel-filter-bank
domain. With either the log-normal approximation [133] or the
log-add approximation [133], the model parameters of distorted
speech in the log-Mel-filter-bank domain can be obtained and fi-
nally are transformed back to the cepstral domain with the DCT
transform.
The basic PMC method can also be extended for situations

where there is channel distortion as well as additive noise [133].
A simple technique presented in [133] uses a one state single
Gaussian speech model to calculate the convolutive compo-
nent. An approximate solution of the convolutive component by
steepest descent methods has also been reported [182], which re-
lies on the Viterbi approximation and does not handle mixture of
Gaussian distributions. The method in [183] uses an additional
universal speech Gaussian mixture model and incorporates an
existing bias estimation procedure [184] for channel estimation.
As shown in [185], the vector Taylor series (VTS) approx-

imation appears to be more accurate than the log-normal ap-
proximation in PMC. Therefore, many studies of explicit dis-
tortion modeling have switched to the VTS direction over the
last decade.

B. Vector Taylor Series

In recent years, a model-domain approach that jointly com-
pensates for additive and convolutive (JAC) distortions (e.g.,
[131], [132], [134], [185]–[189]) has yielded promising results.
The various methods proposed so far use a parsimonious non-
linear physical model to describe the environmental distortion
and use the VTS approximation technique to find closed-form
HMM adaptation and noise/channel parameter estimation for-
mulas. Although some methods are referred to with different
names, such as Jacobian adaptation [186] and JAC [131], [132],
[188], they are in essence the VTS methods since VTS is used
to linearize the involved nonlinearity, from which the solutions
are derived.
Eq. (14) is a popular nonlinear distortion model between

clean and distorted speech in the cepstral domain. It can be
re-written as

(76)

where

(77)

In standard VTS adaptation [134], the nonlinear function in
Eq. (77) is approximated using a first order VTS expansion at
point . , , and are the static cep-
stral means of the clean speech Gaussian component , noise,
and channel, respectively.
Denoting

(78)

(79)
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where is the Jacobian matrix for Gaussian component ,
defined as

(80)
Eq. (76) can then be approximated by a vector Taylor series
expansion, truncated after the linear term:

(81)

With Eq. (81), the distorted speech is now a linear function
of the clean speech , the noise , and the channel , in the cep-
stral domain. This linearity facilitates the HMM model adapta-
tion and distortion parameter estimation by providing possible
closed-form solutions because a Gaussian distribution, domi-
nantly used in ASR, with linear operation is still a Gaussian dis-
tribution.
1) Vector Taylor Series Model Adaptation: By taking the

expectation on both sides of Eq. (81), the static mean of the
distorted speech signal for Gaussian component can be
written as

(82)

and the static variance of the distorted speech signal for
Gaussian component can be obtained by taking the variance
operation on both sides of Eq. (81):

(83)
The delta parameters can be updated [185] with the contin-

uous time approximation [190]:

(84)

(85)

The delta-delta model parameters are updated similarly.
Note that although the cepstral distortion formulation, i.e.,

Eq. (14), is widely used in VTS studies, the log spectral dis-
tortion formulation, i.e., Eq. (13), can also be used [188]. Some
studies [191] even work in the linear frequency domain. How-
ever, this brings a large computational cost and the diagonal co-
variance assumption used in [191] may not be valid for linear
frequency. Therefore, there are only a small number of VTS
methods working in the linear frequency domain.
2) Distortion Estimation in VTS: Although proposed in 1996

[134], VTS model adaptation has shown great accuracy advan-
tages over other noise-robustness methods only recently [131],
[132] when the distortion model parameters are re-estimated
based on the first-pass decoding result with the expectation-
maximization (EM) algorithm [131], [132]. First, an auxiliary
function for an utterance is

(86)

where denotes the adapted model, and is the posterior
probability for the Gaussian component of the HMM, i.e.,

(87)

where denotes the previous model.
To maximize the auxiliary function in the M-step of the EM

algorithm, the derivatives of are taken with respect to and
, and are set to 0. Then, the mean of the noise can be

updated according to [132]:

(88)

with

(89)

(90)

(91)

where and are the VTS expansion points for and
, respectively. The channel mean can be updated simi-

larly as in [132]. Newton’s method, an iterative second order
approach, is used to estimate the noise variance [132].
Distortion parameter estimation can also be done in other

ways. In [192], a gradient-descent method is used to obtain the
noise variance estimate. Since there is no guarantee that the
auxiliary function will increase, a back-off step is needed. In
[193], a Gauss-Newton method is used by discarding the second
derivative of the residual with respect to the distortion parame-
ters when calculating the Hessian. In [187], both the static mean
and variance parameters in the cepstral domain are adjusted
using the VTS approximation technique. In that work, however,
noise was estimated on a frame-by-frame basis, which is com-
plex and computationally costly. It is shown in [194] that the
estimation method used in this section [131], [132] is clearly
better than the estimation method in [187].
3) VTS Feature Enhancement: As shown in [132], VTS

model adaptation achieves much better accuracy than several
popular model adaptation technologies. Although VTS model
adaptation can achieve high accuracy, the computational cost
is very high as all the Gaussian parameters in the recognizer
need to be updated every time the environmental parameters
change. This time-consuming requirement hinders VTS model
adaptation from being widely used, especially in LVCSR tasks
where the number of model parameters is large.
On the other hand, VTS feature enhancement has been pro-

posed as a lower-cost alternative to VTS model adaptation. For
example, a number of techniques have been proposed that can
be categorized as model-based feature enhancement schemes
[134], [195]–[197]. These methods use a small GMM in the
front-end and the same methodology used in VTS model adap-
tation to derive a minimum-mean-square-error (MMSE) esti-
mate of the clean speech features given the noisy observations.
In addition to the advantage of a low runtime cost, VTS fea-
ture enhancement can be easily combined with other popular
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feature-based technologies, such as CMN, HLDA, fMPE, etc.,
which are challenging to VTS model adaptation.
In general, the MMSE method can be used to get the estimate

of clean speech

(92)

Denote the clean-trained GMM as

(93)

along with Eq. (14), the MMSE estimate of clean speech be-
comes

(94)

where is the Gaussian posterior probability, calculated
as

(95)

If the 0th-order VTS approximation is used for the nonlinear
term in Eq. (94), the MMSE estimate of cleaned speech is
obtained as

(96)
This formulation was first proposed in [134]. In [195], an-

other solution was proposed when expanding Eq. (14) with the
1st-order VTS. For the th GMM component, the joint distri-
bution of and is modeled as Eq. (61).
The following can be derived [195]

(97)
Then the MMSE estimate of clean speech is [195]

(98)
Two key aspects of VTS feature enhancement are how to

obtain reliable estimates of the noise and channel distortion
parameters and how to accurately calculate the Gaussian occu-
pancy probability. In contrast to using static features alone to
calculate the Gaussian occupancy probability [189], both static
and dynamic features are used to obtain more reliable Gaussian
occupancy probabilities. Then, these probabilities are plugged
into Eq. (96) or Eq. (98). In [198], it is shown that recent
improvements in VTS model adaptation can be incorporated
into VTS feature enhancement to improve the algorithm perfor-
mance: Updating all of the environment distortion parameters

[131] and subsequently carrying out noise adaptive training
[199].
A common concern of feature enhancement is that after the

enhancement, the clean speech signal is distorted and the accu-
racy on clean testing will drop. As shown in [200], VTS feature
enhancement enjoys the nice property that it significantly im-
proves accuracy in noisy test conditions without degrading ac-
curacy in clean test conditions.
By incorporating the recent advances in VTS model adapta-

tion, VTS feature enhancement can obtain very high accuracy
on some noisy tasks [198]. However, it is shown that there is
still a small accuracy gap between VTS feature enhancement
and VTS model adaptation [198]. Regarding the runtime cost,
VTS model adaptation needs to adapt HMM parameters twice,
while VTS feature enhancement needs to adapt GMM param-
eters twice. Usually, the number of parameters in a front-end
GMM is much smaller than that in the back-end HMM. Further-
more, two rounds of decoding are needed in VTS model adapta-
tion while only one round of decoding is performed in VTS fea-
ture enhancement. As a consequence, VTS feature enhancement
has a much lower computational cost than VTS model adap-
tation. Therefore, the tradeoff between accuracy and computa-
tional cost will determine which technology is more suitable in
a real world deployment scenario.
4) Improvements over VTS: Recently, there has been a se-

ries of studies focusing on how to improve the performance
of VTS. A natural extension to the VTS methods described in
the previous section is to use high-order VTS expansion instead
of first-order VTS expansion. That way, the nonlinear relation
found in Eq. (14) can be well modeled. There are several studies
[201]–[203] along this line. As shown in [203], the 2nd-order
VTS is shown to achieve a noticeable performance gain over the
1st-order VTS, although the accuracy gap between the 3rd-order
VTS and 2nd-order VTS is small. Another way to address the
inaccuracy problem of the first-order Taylor series expansion in
the VTS is to use piecewise functions to model the nonlinearity,
such as a piecewise linear approximation [204] or linear spline
interpolation [205].
Eq. (14) is simplified from Eq. (12) of the phase-sensitive

model, by approximating as 0 [19]. There is some work
[202] that uses the phase-sensitive model for better modeling of
the distortion. can be estimated from the training set [202].
Due to its physical interpretation, the value of elements in
ranges from -1 to 1. In [206], this value constraint is broken by
assigning a constant value to the elements of . If is set to
0 and 1, VTS can be considered to work with MFCCs extracted
from the power spectrum and magnitude spectrum, respectively
[132]. It is shown in [206] that the best accuracy is obtained on
the Aurora 2 task when the value is set to around 2.5, which is
larger than 1, the theoretical maximum value. Similar observa-
tions are also reported in later work [207], [208]. Therefore, the
phase-sensitive model with a constant value can also be con-
sidered to be a generalization function of the distortion model.
The phase-sensitive model with a large value may be consid-
ered as a way to compensate the loss brought by the inaccurate
approximation in VTS. Another way to handle the phase term
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is to use the ALGONQUIN algorithm [209], which models the
phase term as the modeling error with Eq. (76).
In standard VTS, the delta and delta-delta model parame-

ters are updated [185] with the continuous time approximation
[190], which makes the assumption that the dynamic cepstral
coefficients are the time derivatives of the static cepstral coef-
ficients. In [210], extended VTS is proposed to provide a more
accurate form to adapt dynamic model parameters. Extended
VTS has been shown to outperform standard VTS with the cost
of more expensive computation [210].
As mentioned before, high computational cost is a concern

for VTS model adaptation. Feature VTS enhancement uses a
small GMM on the front-end and the same methodology used in
VTS model adaptation to derive a MMSE estimate of the clean
speech features given the noisy observations. However, even
after employing the recent advanced methods in VTS model
adaptation, feature VTS enhancement still has an obvious accu-
racy gap between it and VTS model adaptation [198]. In [200],
VTS model adaptation with a diagonal Jacobian approximation
method is proposed to have a relatively small accuracy loss and
to offer a drastic savings in computational cost over all three
major components in standard VTSmodel adaptation. The com-
putational cost reduction is on a scale of for the Jacobian
calculation and most parts of parameter adaptation, and
for online distortion estimation, where is the dimension of
static cepstral feature. There is also a family of joint uncertainty
decoding (JUD) methods [211]–[213] that can reduce the com-
putational cost of VTS by changing the Jacobian in Eq. (80)
from being Gaussian-dependent to regression-class-dependent.
We will discuss these methods in Section VI-C2.

C. Sampling-Based Methods

The PMC methods in Section V-A rely on either the log-
normal or the log-add approximation while the VTS methods in
Section V-B rely on the first-order or higher-order VTS approx-
imation. These approximations inevitably cause loss in model
adaptation or feature enhancement. To improve the implemen-
tation accuracy of explicit distortion modeling, sampling-based
methods can be used.
1) Data-Driven PMC: Data-driven parallel model combina-

tion (DPMC) [133] can be used to improve the modeling accu-
racy of PMC. This method is based on Monte-Carlo (MC) sam-
pling by drawing random samples from the clean speech and
noise distributions. In a non-iterative DPMC, the frame/state
component alignment within a state does not change, and the
clean speech samples are drawn from each Gaussian of the clean
speech distributions.

(99)

Then, the distorted speech samples can be obtained with Eq.
(14), and the static mean and variance of the distorted speech
for Gaussian component are estimated as the sample mean
and variance of distorted speech samples.
As , the sample mean and covariance are ap-

proaching the true values. However, due to the nature of
random sampling, needs to be very large to guarantee the

approximation accuracy. Hence, the biggest disadvantage
of DPMC is the computational cost. As a solution, a model
adaptation method based on the unscented transform [214] is
proposed in [215], [216].
2) Unscented Transform: Originally developed to improve

the extended Kalman filter and introduced to the field of ro-
bust ASR in [215], [216], the unscented transform (UT) [214]
gives an accurate estimate of the mean and variance parameters
of a Gaussian distribution under a nonlinear transformation by
drawing only a limited number of samples. This is achieved by
systematically drawing samples jointly from the clean speech
and noise distributions, described in the following.
An augmented signal is formed with a -di-

mensional clean speech cepstral vector and a noise cepstral
vector , with dimensionality . The UT
algorithm samples the Gaussian-dependent augmented signal
with sigma points .
In the feature space, the transformed sample from the

sigma point is obtained with the map-
ping function of Eq. (14). Then, the static mean and variance of
the distorted speech are estimated as the sample mean and vari-
ance of these transformed samples.
It is shown in [214] that the UT accurately matches the mean

and covariance of the true distribution. Due to the special sam-
pling strategy of the UT, the number of samples to be computed,

, is much smaller than . Therefore model adaptation
with the UT is more affordable than the MC method.
In [216], the static mean and variance of nonlinearly distorted

speech signals are estimated using the UT, but the static noise
mean and variance are estimated from a simple average of the
beginning and ending frames of the current utterance. This tech-
nique was improved in [217], where the static noise parameters
were estimated online with MLE using the VTS approximation
and the estimates were subsequently plugged into the UT for-
mulation to obtain the estimate of the mean and variance of
the static distorted speech features. In [218], a robust feature
extraction technique is proposed to estimate the parameters of
the conditional noise and channel distribution using the UT and
embed the estimated parameters into the EM framework. In all
of these approaches [216]–[218], sufficient statistics of only the
static features or model parameters are estimated using the UT
although adaptation of the dynamic model parameters with re-
liable noise and channel estimations has shown to be important
[131], [132]. As a solution, an approach is proposed in [219]
to unify static and dynamic model parameter adaptation with
online estimation of noise and channel parameters in the UT
framework.
3) Methods Beyond the Gaussian Assumption: As shown in

Fig. 2, with the introduction of noise, the distorted speech is no
longer Gaussian distributed. Therefore, the popular one-to-one
Gaussian mapping used in the above-mentioned methods has
a theoretic flaw. The iterative DPMC method [133] solves
this problem by sampling from GMMs instead of Gaussians
and then uses the Baum-Welch algorithm to re-estimate the
distorted speech parameters. This is extended in [220], where
a variational method is used to remove the constraint that
the samples must be used to model the Gaussians they are
originally drawn from. This is also extended to variational
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PCMLLR [220], which is shown to be better than PCMLLR
[211] and has a much lower computational cost than variational
DPMC. In [221] the Gaussian at the input of the nonlinearity
is approximated by a GMM whose individual components
have a smaller variance than the original Gaussian. A VTS
linearization of the individual GMM components then incurs
fewer errors than the linearization of the original Gaussian.
Thus the overall modeling accuracy could be improved.
The explicit distortion modeling methods discussed in this

section separate the clean speech feature from the environment
(noise and channel) factors. This can be further extended to an
acoustic factorization [222] problem: separate the clean speech
feature/model from the multiple speaker and environmental fac-
tors irrelevant to the phonetic classification. There are plenty of
recent studies addressing acoustic factorization [223]–[228].
From the work on explicit distortion modeling and acoustic

factorization, we can see the trend of building increasingly so-
phisticated models to characterize the impact of different dis-
tortion sources, such as noise, channel, and speaker, on clean
speech. Importantly, these better and better explicit distortion
models and the related techniques are already providing out-
standing performance which is superior to other methods ex-
ploiting less powerful distortion models. A greater performance
gap is expected in the future as more advanced explicit distor-
tion models are being developed and incorporated into noise-ro-
bust ASR methods.

VI. COMPENSATION WITH UNCERTAINTY PROCESSING

The effects of strong noise necessarily create inherent uncer-
tainty, either in the feature or model space, which can be ben-
eficially integrated into the popular plug-in MAP decoding in
the ASR process. When a noise-robust method takes into con-
sideration that uncertainty, we call it an uncertainty processing
method.

A. Model-Domain Uncertainty

Uncertainty in the HMM parameters has been represented by
their statistical distribution [229]. In order to take advantage of
the model parameter uncertainty, the decision rule for recogni-
tion can be improved from the conventional MAP decision rule
in Eq. (100)

(100)

to the minimax decision rule [230]1

(101)

or to the Bayesian prediction classification (BPC) rule [231],
[232]

(102)

1This is derived from minimizing the upper bound of the worse-case proba-
bility of classification error.

where is the hyper-parameter characterizing the distribution
of acoustic model parameter , and denotes the space that
lies in. Both minimax classification and BPC consider the

uncertainty of the estimated model, reflected by . They change
the decision rule to address this uncertainty using two steps. In
the first step, either the maximum value of within
the parameter neighborhood (as in minimax classification) or
the integration of in this parameter neighborhood (as
in BPC) for word is obtained. In the second step, the value
obtained in the first step is plugged into the MAP decision rule.
It is usually difficult to define the parameter neighborhood
. Moreover, with two-stage processing the computational cost
of model space uncertainty using the modified decision rule is
very large. It usually involves a very complicated implemen-
tation, which prevents this type of method from being widely
used although there was some research into minimax classifi-
cation [230], [233] and BPC [231], [232] until around 10 years
ago. An alternative treatment of uncertainty is by integrating
over the feature space instead of over the model space. This will
offer a much simpler system implementation and lower compu-
tational cost. Therefore, research has switched to feature space
uncertainty or joint uncertainty decoding as described in the fol-
lowing sections.

B. Feature-Domain Uncertainty

1) Observation Uncertainty: Although it has been shown that
more gain can be obtained with a context window (e.g., [64],
[234]), it is still a very popular assumption in most noise-robust
ASRmethods that the clean feature is only dependent on the dis-
torted feature of current frame. In this way, is replaced
by and Eq. (24) becomes

(103)

As in Eq. (26), the most popular noise robustness techniques
use a point estimate which means that the back-end recognizer
considers the cleaned signal to be noise free. However,
the de-noising process is not perfect and there may exist some
residual uncertainty. Hence, in the observation uncertainty work
[235], instead of using a point estimate of clean speech, a pos-
terior is passed to the back-end recognizer. The prior al-
ways has a larger variance than the posterior . If it is
much larger, the denominator in Eq. (103) can be con-
sidered constant in the range of values around . As a conse-
quence, the denominator is neglected in [236]–[238], and
Eq. (103) becomes

(104)

If the de-noised speech is , the clean speech
estimate can be considered as a Gaussian distribution
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. Then, the integration in Eq. (104)
reduces to

(105)

It is clear that during recognition, every Gaussian component
in the acoustic model has a variance bias in observation
uncertainty methods. The key is to have this frame-dependent
variance , which depends on which noise-robustness method
is used to clean the noise. If SPLICE is used as in Section IV-A2,
the bias variance is given in Eq. (59). In [235], it is a polynomial
function of SNR.
Eq. (103) is reduced to Eq. (104) by omitting with the

belief that it has a larger variance than the posterior .
However, this assumption may not be always true. Another
better variation of Eq. (103) is to multiply both the numerator
and denominator by . By applying Bayes’ rule, we get

(106)
Then, Eq. (106) is plugged into Eq. (103) and is omitted

since it does not affect the MAP decision rule, and we obtain

(107)

We can denote

(108)

The key to calculating is to estimate the conditional
distribution because has already been
trained. It is better to denote as a Gaussian or GMM
so that the integration of Eq. (108) is still a Gaussian or GMM.
Eq. (107) is used in uncertainty decoding with SPLICE [239]
and joint uncertainty decoding work [192], [212], [240], [241]
which we will discuss in detail in the next section. An inter-
esting alternative supervised approach to estimate uncertainties
was proposed in [242]. A more recent study on propagating un-
certainties from short-time Fourier transform into the nonlinear
feature domain appeared in [243] for noise-robust ASR.

C. Joint Uncertainty Decoding

Joint uncertainty decoding (JUD) uses a feature transform de-
rived from the joint distribution between the clean and noisy
speech and an uncertainty variance bias to modify the decoder.
While the joint distribution can be estimated from stereo data as
in SPLICE [139], the most popular way to obtain it is to use the
physical distortion model as in Section V. JUD has two imple-
mentation forms: front-end JUD and model JUD. In front-end
JUD, a front-end GMM is built and one of its components is
selected to pass one single transform and bias variance to the
decoder. In contrast, model JUD is connected with the acoustic

model and generates transform and uncertainty variance bias
based on the regression class that the individual acoustic model
component belongs to.
1) Front-end JUD: In front-end JUD, is represented

by a GMM

(109)

where and are functions used to calculate
the mean vector and covariances matrix. The joint distribution
of clean and noisy speech can be modeled the same as in Eq.
(61). It can be either obtained from stereo training data or de-
rived with physical distortion modeling as in Section V. In most
JUDmethods, the latter option is used given the difficulty to ob-
tain stereo data.
The Gaussian conditional distribution in Eq. (109) can be de-

rived front the joint distribution as [212]

(110)

with

(111)

(112)

(113)

These transforms can be obtained using VTS related schemes.
Using Eq. (110) and a rough assumption that

, Eq. (108) can be re-written as [212]

(114)

The summation in Eq. (114) is time consuming, involving the
clean speechGMM component and the front-end GMM com-
ponent . One popular approach is to select the most dominating
front-end component

(115)

and Eq. (114) can be simplified as

(116)

Comparing Eq. (116) with Eq. (105), we can see that front-end
uncertainty decoding transfers the distorted feature in ad-
dition to adding a variance bias. SPLICE with uncertainty de-
coding [239] is similar to front-end JUD, but with a different
format of , , and .
As discussed in [212], [244], in low SNR conditions where

noise dominates the speech signal, the conditional distribution
degenerates to the distribution of additive noise as

(117)
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Then the distribution of distorted speech in Eq. (108) also
becomes the distribution of additive noise

(118)

With Eq. (118), the distribution of every state is the same.
Therefore, the current frame cannot contribute to differentiating
states using acoustic model scores. This is the biggest theoretical
issue with front-end uncertainty decoding, although SPLICE
with uncertainty decoding can circumvent this issue with ad-
ditional processing [239].
2) Model JUD: In front-end JUD, its conditional distribu-

tion is completely decoupled from the acoustic model used for
recognition. In contrast, model JUD [192] links them together
with

(119)

where is the regression class index of acoustic model
Gaussian component , generated with the method in [245].
The joint distribution of clean and noisy speech can be modeled
similarly as in Eq. (61) by replacing the front-end component
index with the regression class index . With a similar
derivation as in front-end JUD, the likelihood of distorted
speech can be denoted by

(120)

Comparing Eq. (120) with Eq. (116), we can tell that the
difference between model JUD and front-end JUD is that in
front-end JUD only the best component selected in front-end
processing is passed to modify the likelihood evaluation during
decoding while in model JUD every Gaussian component is
associated with a regression-class-dependent transform. There-
fore, in model JUD, the distorted feature is transformed
by multiple transforms, similar to CMLLR [120]. However,
it differs from CMLLR due to the regression-class-dependent
variance term .
There are several extensions of model JUD. in Eq.

(120) is a full covariance matrix. This brings a large compu-
tational cost when evaluating the likelihood. One direct solu-
tion is to diagonalize it, however, this solution turns out to have
poor performance [244]. Predictive CMLLR (PCMLLR) [211]
can be used to avoid the full covariance matrix by applying
a CMLLR-like transform in the feature space transformed by
model JUD

(121)

The likelihood for PCMLLR decoding is given by

(122)

and are obtained by using CMLLR, with the
statistics obtained from the model JUD transformed feature .
With Eq. (122), the clean acoustic model is unchanged.

Another alternative is with VTS-JUD [213], [246] in which
the likelihood is computed as

(123)

where . VTS-JUD can be considered as the
model space implementation of model JUD, very similar to VTS
but with less computational cost. In [247], noise CMLLR is also
proposed to extend the conventional CMLLR in Section III-B to
reflect additional uncertainty from noisy features by introducing
a covariance bias with the same form as Eq. (119). All of model
JUD, VTS-JUD, and PCMLLR use VTS in Section V to cal-
culate the regression-class-dependent transforms. If the number
of regression classes is identical to the number of Gaussians, it
can be proven that all of these methods are the same as VTS. By
using regression classes, some computational cost can be saved.
For example, in Eq. (123) of VTS-JUD, although it still needs
to apply transforms to every Gaussian mean and variance of the
clean acoustic model, the cost of calculating transforms is re-
duced because they are now regression-class-dependent instead
of Gaussian-dependent.
Recently, subspace Gaussian mixture models (SGMM) are

proposed in [248] with better performance than GMMs. In
[249], an extension of JUD when using SGMMs is presented
with good improvements in noisy conditions.

D. Missing-Feature Approaches

Missing-feature approaches [250], [251], also known as
missing-data approaches, introduce the concept of uncertainty
into feature processing. The methods are based on the in-
herent redundancy in the speech signal: one may still be able
to recognize speech effectively even with only a fraction of
the spectro-temporal information in the speech signal. They
attempt to determine which time-frequency cells are unreliable
due to the introduction of noise or other types of interference.
These unreliable cells are either ignored or filled in by estimates
of their putative values in subsequent processing [252], [253].
There are two major types of missing-feature approaches,

namely, feature vector imputation and classifier modification
[254]. Feature imputation methods treat unreliable spectral
components as missing components and attempt to reconstruct
them by utilizing spectrum statistics. There are several typ-
ical methods. In correlation-based reconstruction [255], the
spectral samples are considered to be the output of a Gaussian
wide-sense stationary random process which implies that the
means of the spectral vectors and the covariance between
spectral components are independent of their positions in the
spectrogram. A joint distribution of unreliable components
and reliable neighborhood components can be constructed and
the reconstruction is then estimated using a bounded MAP
estimation procedure. On the other hand, in cluster-based re-
construction [255] the unreliable components are reconstructed
only based on the relationships among the components within
individual vectors. Soft-mask-based MMSE estimation is sim-
ilar to cluster-based reconstruction, but with soft masks [256].
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In the second category of missing-feature approaches, clas-
sifier modification, one may discern between class-conditional
imputation and marginalization. In class-conditional imputa-
tion, HMM state-specific estimates are derived for the missing
components [257]. Marginalization, on the other hand, directly
performs optimal classification based on the observed reliable
and unreliable components. One extreme and popularly-used
case is where only the reliable component is used during
recognition.
While with feature vector imputation recognition can be done

with features that may be different from the reconstructed log-
spectral vectors, it was, until recently, common understanding
that state-based imputation and marginalization precluded the
use of cepstral features for recognition. This was a major draw-
back, since the log-spectral features to be used instead exhibit
strong spatial correlations, which either resulted in a loss of
recognition accuracy at comparable acoustic model size or re-
quired significantly more mixture components to achieve com-
petitive recognition rates, compared to cepstral features. How-
ever, recently it has been demonstrated that the techniques can
be applied in any domain that is a linear transform of log-spectra
[258]. In [259] it has been shown that (cepstral) features directly
computed from the masked spectrum can outperform imputa-
tion techniques, as long as variance normalization is applied on
the resulting features. Given the ideal binary mask, recognition
on masked speech has been shown to outperform recognition on
reconstructed speech. However, mask estimation is never per-
fect, and as the quality of the mask estimation degrades, recog-
nition on reconstructed speech begins to outperform recognition
on masked speech [260].
The most difficult part of missing-feature methods is the ac-

curate estimation of spectral masks which identify unreliable
spectrum cells. The estimation can be performed in multiple
ways: SNR-dependent estimation [261]–[263], Bayesian esti-
mation [264], [265], and with perceptual criteria [266], [267].
Also, deep neural networks have been employed for supervised
learning of the mapping of the features to the desired soft mask
target [268].
However, it is impossible to estimate the mask perfectly. Un-

reliable mask estimation significantly reduces the recognition
accuracy of missing-feature approaches [265]. This problem
can be remedied to some extent by using soft masks [264],
[265], [269] which use a probability to represent the reliability
of a spectrum cell. Strictly speaking, missing feature approaches
using soft masks can be categorized as uncertainty processing
methods, but not those that use binary masks. In [258] it was
shown how soft masks can be used with imputation techniques.
Further, the estimation of the ideal ratio mask, a soft mask ver-
sion of the ideal binary mask, was shown to outperform the esti-
mated ideal binary mask in [268]. There is a close link between
missing data approaches employing a soft mask and optimal
MMSE estimation of the clean speech features, as was shown,
among others, in [270].
Instead of treating the mask estimation and the classification

as two separate tasks, combining the two promises superior
performance. A first approach in this direction was the speech
fragment decoder of [253]. The fragment decoder simultane-
ously searches for the optimal mask and the optimal HMM

state sequence. Its initial limitations, which were that ASR had
to be carried out in the spectral domain and that the time-fre-
quency fragments were formed prior to the ASR decoding
stage and therefore could not benefit form the powerful ASR
acoustic models, have been recently overcome [271]–[274].
In [272] ASR-driven mask estimation is proposed. Similarly,
the bidirectional speech decoding of [274] also exploits the
modeling power of the ASR models for mask estimation. It
generates multiple candidate ASR features at every time frame,
with each candidate corresponding to a particular back-end
acoustic phonetic unit. The ASR decoder then selects the most
appropriate candidate via a maximum likelihood criterion.
Ultimately one could envision an iterative process, where a
baseline recognizer will generate first hypotheses for mask
estimation. Using the estimated mask ASR is improved which
in turn results in improved mask estimation [272].
To summarize, the state of the art in missing data techniques

has matured in recent years and the method has become a high-
performance noise robust ASR technique also for medium to
large vocabulary tasks.

VII. COMPENSATION WITH JOINT MODEL TRAINING

Most noise-robust methods assume that the ASR recognizer
has been trained from clean speech, and in the testing stage
noise robustness methods are used to reduce the mismatch be-
tween the clean acoustic model and distorted speech with either
feature enhancement or model adaptation techniques. However,
it is very difficult to collect clean training data in most prac-
tical ASR deployment scenarios. Usually, the training set may
contain distorted speech data obtained in all kinds of environ-
ments. There are several issues related to the acoustic model
trained from multi-style training data. First, the assumption of
most noise-robust methods is no longer valid. For example, in
the explicit modeling technique discussed in Section V, such
as vector Taylor series (VTS), the explicit distortion model as-
sumes that the speech model is only trained from clean data.
Another issue is that the trained model is too broad to model the
data from all environments. It fails to give a sharp distribution
of speech classes because it needs to cover the factors from dif-
ferent environments.
All of these problems can be solved with joint model training

which applies the same process at both the training and testing
stage so that the same sources of variability can be removed
consistently. More specifically, the feature compensation or
model adaptation technique used in the test stage is also used
in the training stage so that a pseudo-clean acoustic model is
obtained in training. Using the criterion of whether the ASR
models are trained jointly with the process of feature compen-
sation or model adaptation in the test stage, we can categorize
most existing noise-robust techniques in the literature into two
broad classes: disjoint and joint model training. The disjoint
model training methods are straightforward. We will focus on
joint model training in this section.
Among the joint model training methods, the most prominent

set of techniques are based on a paradigm called noise adap-
tive training (NAT) first published in year 2000 [138], which
can also be viewed as a hybrid strategy of feature enhance-
ment and model adaptation. One specific example of NAT is the
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multi-style training of models in the feature enhanced domain,
where noisy training data is first cleaned by feature compensa-
tion methods, and subsequently the enhanced features are used
to retrain the acoustic model for the evaluation of enhanced test
features. This feature-space NAT (fNAT) strategy can achieve
better performance than the standard noisy matched scheme, be-
cause it applies consistent processing during the training and
testing phases while eliminating residual mismatch in an other-
wise disjoint training paradigm. The feature compensation can
be any form of noise reduction or feature enhancement. The
model compensation can be any form of MLE or discrimina-
tive training, where it is multi-style training operating on the
feature-compensated training data.
fNAT is popular because it is easy to implement and has

been shown to be very effective, and hence it has been adopted
as one of the two major evaluation paradigms, called multi-
style training (after denoising), in the popular series of Aurora
tasks. However, fNAT decouples the optimization objective of
the feature compensation and model training parts, which are
not jointly optimized under a common objective function. In
contrast, the model-space NAT (mNAT) methods jointly train
a canonical acoustic model and a set of transforms or distor-
tion parameters under MLE or discriminative training criteria,
with examples such as source normalization training [275], joint
adaptive training (JAT) [241], irrelevant variability normaliza-
tion (IVN) [121], [276], andVTS-NAT [199], [277]. All of these
model-space joint model training methods share the same spirit
with speaker adaptive training (SAT) [278], proposed in 1996
for speaker adaptation. One difference between SAT and NAT
methods is whether there is a golden target for canonical model
learning. In NAT, the golden target is the truly clean speech fea-
tures or the model trained from it. However, in SAT, there is no
such predefined golden speaker as the target.

A. Speaker Adaptive and Source Normalization Training

General adaptation methods, such as MLLR and CMLLR,
are initially proposed for speaker adaptation. A speaker-in-
dependent acoustic model is obtained from a multi-speaker
training set using the standard MLE method. In testing,
speaker-dependent transforms are estimated for specific
speakers. However, the acoustic model estimated in this way
may be a good model for average speakers, but not optimal
for any specific speaker. SAT [278] is proposed to train a
canonical acoustic model with less inter-speaker variability.
A compact HMM model and the speaker-dependent trans-
forms are jointly estimated from
a -speaker training set by maximizing the likelihood of the
training data

(124)

where is the observation sequence of speaker . A trans-
form for speaker in the training set maps
the compact model to a speaker dependent model in the same
way as the speaker adaptation methods used in the testing stage.
With the compact model , the speaker-specific variation in the
training stage is reduced and the trained compact model repre-
sents the phonetic variation more accurately.

Fig. 3. Speaker adaptive training.

Eq. (124) can be solved with the EM algorithm by maxi-
mizing the auxiliary function when the MLLR transform is
used

(125)
As shown in Fig. 3, SAT is done with an iterative two-stage

scheme. In the first stage, the auxiliary function is maxi-
mized with respect to the speaker-dependent transforms
while keeping the Gaussian model parameters of the compact
model fixed. By setting the derivative of with respect to
to 0, the solution of can be obtained as in Section III-B. In the
second stage, the model parameters are updated by maximizing
the auxiliary function while keeping the speaker-dependent
transforms fixed. By setting the derivative of with respect
to and to 0, the model parameters can be obtained.
While the SAT formulations are derived with MLLR as the

adaptation method, a similar process can also be applied to other
adaptation methods, such as CMLLR described in III-B. Al-
though initially proposed to reduce speaker-specific variation in
training, SAT can also be used to reduce environment-specific
variation when MLLR or CMLLR is used to adapt models in
noisy environments.
In some real applications, we need to adapt to a cluster of

distortions such as a group of speakers or background noise
instead of individual speakers. Source normalization (SNT)
training [275] generalizes SAT, by introducing another hidden
variable to model distortion sources. SNT subsumes SAT by
extending the speaker ID to a hidden variable in training and
testing. In SNT the distortion sources (e.g. a speaker) do not
have to be tagged; they are discovered by unsupervised training
with the EM algorithm. SNT was used to explicitly address
environment-specific normalization in 1997 [275]. In [275],
an environment can refer to speaker, handset, transmission
channel or noise background condition.
MLLR and CMLLR are general adaptation technologies, and

cannot work as effectively as the noise-specific explicit mod-
eling methods in noise-robust ASR tasks. Therefore, the SAT-
like methods are not as popular as the model space noise adap-
tive training methods of the next section which are coupled with
the explicit distortion model methods in Section V.

B. Model Space Noise Adaptive Training

The model space noise adaptive training (mNAT) scheme
is very similar to SAT in Fig. 3. The speaker-dependent
transforms are replaced with the distortion model

, where is the total number of
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training utterances. Every utterance , has its own utter-
ance-dependent noise, channel, and adapted HMM parameters.
However, all utterances share the same set of canonical HMM
parameters. Similar to SAT, the mNAT methods are effective
when the same model adaptation methods are used in both
training and testing stages. The representative mNAT methods
are joint adaptive training (JAT) [241], irrelevant variability
normalization (IVN) [276], and VTS-NAT [199], [277]. The
JAT work uses joint uncertainty decoding (JUD) [192], [240] as
its model adaptation scheme. The IVN work uses the VTS algo-
rithm presented in [187] for model adaptation. The VTS-NAT
work is coupled with VTS adaptation in [131], [132], which is
described in detail in Section V-B1.
VTS-NAT model estimation is also done with an iterative

two-stage scheme. In the first stage, the auxiliary function
is maximized with respect to the utterance-dependent distortion
model parameters while keeping the canonical Gaussian
model parameters fixed. The auxiliary function can be written
as

(126)

where denotes the adapted model for utterance . Com-
paring this with the auxiliary function in Eq. (86), an additional
term is summed in Eq. (126) to include all the training utter-
ances. The solution is the same as in Section V-B1.
In the second stage, the canonical model parameters are up-

dated by maximizing the auxiliary function while keeping
the utterance-dependent distortion model parameters fixed.
The mean parameters of the canonical model are obtained by
taking the derivative of with respect to them and setting the
result to zero.
Similar to the solution of noise variance update in VTS, a

Newton’s method can be used to update the model variance
[199]. All of the joint model training techniques learn the canon-
ical model to represent the pseudo-clean speech model, and the
transforms are then used to represent the non-linguistic vari-
ability such as environmental variations. It has been well estab-
lished that joint training methods achieve consistent improve-
ment over the disjoint training methods. The latter are much
easier to implement, and easier to train the acoustic model pa-
rameters alone without making them compact and without re-
moving the non-linguistic variability.
Coupled with model JUD instead of VTS, JAT [241] is an-

other variation of NAT. Similar to VTS-NAT, the adaptive trans-
form in JAT is parameterized, and its parameters are jointly
trained with the HMM parameters by the same kind of max-
imum likelihood criterion. While most noise adaptive training
studies are based on themaximum likelihood criterion, discrimi-
native adaptive training can be used to further improve accuracy
[279]. To do so, standard MLE-based noise adaptive training
[241] is first performed to get the HMM parameters and distor-
tion model parameters. Then, the distortion model parameters
are fixed and the discriminative training criterion is applied to
further optimize the HMM parameters. While JAT is initially
proposed to handle GMMs, it is extended in [208] to work with
subspace GMMs to get further improvement.

The idea of irrelevant variability normalization (IVN) is a
very general concept. The argument is that HMMs trained from
a large amount of diversified data, which consists of different
speakers, acoustic environments, channels etc., may tend to fit
the variability of data irrelevant to phonetic classification. The
term IVN is proposed in [280] to build a better decision tree
that has better modeling capability and generalizability by re-
moving the speaker factors during the decision tree building
process. Then from 2002, IVN is widely used as a noise-robust-
ness method for jointly training the front-end and back-end to-
gether for stochastic vector mapping [281], which maps the cor-
rupted speech feature to a clean speech feature by a transform.
Every environment can have a bias vector [281], [282], or one
environment-dependent transform [283], or even multiple envi-
ronment transforms [284].
Although some forms of IVN are similar to SAT, IVN is de-

signed for noise robustness by using environment-dependent
transforms and biases to map the corrupted speech feature to
the clean speech feature. In [276], IVN is further linked with
VTS (VTS-IVN) by using explicit distortion modeling to char-
acterize the distortion caused by noise.

VIII. SUMMARY AND FUTURE DIRECTIONS

In this paper, we have provided an overview of noise-robust
ASR techniques guided by a unified mathematical framework.
Since noise robustness for ASR is a very large subject, a number
of topics had to be excluded to keep the overview reasonably
concise. Among the topics excluded are robustness against room
reverberation, blind speaker separation, microphone array pro-
cessing, highly nonstationary noise, and voice activity detec-
tion. The included topics have covered major core techniques
in the field, many of which are currently exploited in modern
speech recognition systems.
To offer insight into the distinct capabilities of these tech-

niques and their connections, we have conducted this overview
using the taxonomy-oriented approach. We have used five key
attributes—feature vs. model domain processing, explicit vs.
implicit distortion modeling, use of prior knowledge about
distortion or otherwise, deterministic vs. uncertain processing,
and joint vs. disjoint training, to organize the vast amount of
material and to demonstrate the commonalities and differences
among the plethora of noise-robust ASR methods surveyed in
this paper. We conclude this paper by summarizing the methods
surveyed in this paper in Table II using the five distinct at-
tributes discussed in this study. Note that the column with the
heading “explicit modeling” refers to the use of an explicit
model for the physical relation between clean and distorted
speech. As such, signal processing methods, such as PLP
and RASTA, while having auditory modeling inside, are not
classified as explicit distortion modeling. CMN is considered
to be an explicit modeling method because it can remove the
convolutive channel effect while CMVN is considered to be a
representative of implicit modeling because cepstral variance
normalization does not explicitly address any distortion. We
classify observation uncertainty and front-end uncertainty
decoding as hybrid (domain) methods in Table II because the
uncertainty is obtained in the feature space and is then passed
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TABLE II
A SUMMARY OF THE REPRESENTATIVE METHODS IN NOISE-ROBUST ASR SURVEYED IN THIS PAPER. THEY ARE ARRANGED ALPHABETICALLY

to the back-end recognizer by modifying the model covariance
with a bias.
In our survey we note that some methods were proposed a

long time ago, and they were revived when more advanced
technologies were adopted. As an example, VTS was first pro-
posed in 1996 [134] for both model adaptation and feature en-
hancement. But VTS has only quite recently demonstrated an
advantage with the advanced online re-estimation for all the
distortion parameters [131], [132]. Another example is the fa-
mous Wiener filter, proposed as early as 1979 [106] to improve
the performance on noisy speech. Only after some 20 years, in
2002, two-stage Mel-warped Wiener filtering was proposed to
boost the performance ofWiener filtering in several key aspects,
and has become the main component of the ETSI advanced
front-end. Furthermore, ANN-HMM hybrid systems [63] were
studied in the 1990s, and again only after 20 years, expanded to
deep architectures with improved learning algorithms to achieve
much greater success in ASR and in noise robustness in partic-
ular [71], [73]. Hence, understanding current well-established

technologies is important for providing a foundation for fur-
ther technology development, and is one of the goals of this
overview paper.
In the early years of noise-robust ASR research, the focus

was mostly on feature-domain methods due to their efficient
runtime implementation. Runtime efficiency is always a factor
when it comes to deployment of noise-robustness technologies.
A good example is CMLLR which can be effectively realized
in the feature space with very small cost although it can also
be implemented in the model space with a much larger cost by
transforming all of the acoustic model parameters instead of
very limited ones (e.g. a single vector per frame) as in MLLR.
Feature normalization methods come with very low cost and
hence are widely used. But they address noise-robustness
problems in an implicit way. In contrast, spectral subtraction,
Wiener filtering, and VTS feature enhancement use explicit
distortion modeling to remove noise, and are more effective.
Note that most feature-domain methods are decoupled from the
ASR objective function, hence they may not perform as well as
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model-domain methods. In contrast, while typically achieving
higher accuracy than feature-domain methods, model-domain
methods usually incur significantly larger computational costs.
With increasing computational power, research on model-do-
main methods is expected to become increasingly active. With
the introduction of bottleneck features enabled by the DNN, and
the use of DNN technology itself as acoustic models for ASR,
we also expect increasing activity in neural-network-based
noise-robustness methods for ASR in the coming years.
As we have reviewed in this paper, many of the model

and feature domain methods use explicit distortion models to
describe the physical relationship between clean and distorted
or noisy speech. Because the physical constraints are explicitly
represented in the models, the explicit distortion modeling
methods require only a relatively small number of distortion
parameters to be estimated. In contrast to the general-purpose
techniques, they also exhibit high performance due to the
explicit exploitation of the distorted speech generation process.
One of the most important explicit distortion modeling tech-
niques is VTS model adaptation [131], [132], which has been
discussed in detail in this paper. However, all of the model
adaptation methods using such explicit distortion models rely
on validity of the physical constraints expressed by the partic-
ular features used. Even with a simple feature normalization
technology such as CMN, the distortion model such as in
Eq. (14) is no longer valid. As a result, model adaption using
explicit distortion modeling cannot be easily combined with
all of the feature post-processing technologies, such as CMN,
HLDA, and fMPE etc. One solution is to use VTS feature
enhancement, which still utilizes explicit distortion modeling
and can also be combined with other feature post-processing
technologies, despite the small accuracy gap between VTS fea-
ture enhancement and VTS model adaptation [198]. Another
advantage of VTS feature enhancement is that it can reduce the
computational cost of VTS model adaptation, which is always
an important concern in ASR system deployment. JUD [192],
PCMLLR [211], and VTS-JUD [246] have been developed
also addressing such concerns. As shown in Section V, better
distortion modeling results in better algorithm performance,
but also incurs a large computation cost (e.g., UT [216], [219]).
While most adaptation is a one-to-one mapping between the
clean Gaussian and the distorted Gaussian due to easy imple-
mentation, recent work has appeared covering distributional
mappings between the GMMs [220]. In conclusion, research
in explicit distortion modeling is expected to grow, and an
important direction will be how to combine better modeling
with runtime efficiency and how to make it capable of working
with other feature processing methods.
Without explicit distortionmodeling, it is very difficult to pre-

dict the impact of noise on clean speech during testing if the
acoustic model is trained only from clean speech. The more
prior knowledge of that impact we have, the more we can better
recognize the corrupted speech during testing. The methods uti-
lizing prior knowledge about distortion discussed in this paper
are motivated by such reasoning. Methods like SPLICE learn
the environment-dependent mapping from corrupted speech to
clean speech. The extreme case is exemplar-based reconstruc-
tion with NMF, which restores cleaned speech by constructing

the noisy speech with pre-trained clean speech and noise exem-
plars and by keeping only the clean speech exemplars. How-
ever, the main challenge in the future direction is that methods
utilizing prior knowledge need to preform also well for unseen
environments, and we expect more research in this direction in
the future.
Since neither feature enhancement nor model adaptation is

perfect, there always exists uncertainty in feature or model
space, and uncertainty processing has been designed to address
this issue as reviewed in this paper. The initial study in the
model space modified the decision rule to use the minimax rule
or the BPC rule. Although the mathematics is well grounded, the
computational cost is very large and it is difficult to define the
model neighborhood. Research was subsequently switched to
the feature space, resulting in the methods exploiting observa-
tion uncertainty and JUD. The latter also serves as an excellent
approximation to VTS with much lower computational cost.
Future research in uncertainty processing is expected to focus
on the feature space, and on combining the technique with
advances in other areas such as explicit distortion modeling.
Joint training is a good way to obtain canonical acoustic

models. Feature-space NAT is a common practice that is
now widely used while model-space NAT is much harder to
develop and deploy partly because of the difficulty in finding
closed-form solutions in model learning and because of the
computational complexity. Despite the difficulty, joint training
is more promising in the long run because it removes the irrel-
evant variability to phonetic classification during training, and
multi-style training data is easier to obtain than clean training
data in real world applications. Better integrated algorithm
design, improved joint optimization of model and transform
parameters, and clever use of metadata as labels for the other-
wise hidden “distortion condition” variables are all promising
future research directions.
By comparing the methods in Table II, we clearly see the ad-

vantages of explicit distortion modeling, using prior knowledge,
uncertainty, and joint training methods over their counterparts.
When developing a noise-robust ASR method, their combina-
tions should be explored. For real-world applications, there are
also some other factors to consider. For example, there is al-
ways a tradeoff between high accuracy and low computational
cost. Special attention should also be paid to non-stationary
noise. Some methods such as NMF can handle non-stationary
noise very well because the noise exemplars are extracted from
a large dictionary which can consist of different types of noise.
The effectiveness of many frame-by-frame feature compensa-
tion methods (e.g., spectral subtraction andWiener filtering) de-
pends on whether the noise tracking module is good at tracking
non-stationary noise. Some methods such as the standard VTS
may not directly handle non-stationary noise well because they
assume the noise is Gaussian distributed. This problem can be
solved by relaxing the assumption using a time-dependent noise
estimate (e.g., [286]).
Finally, the recent acoustic modeling technology, CD-DNN-

HMM, brings new challenges to conventional noise-robustness
technologies. We classify CD-DNN-HMM as a feature-based
noise robust ASR technology since its layer-by-layer setup
provides a feature extraction strategy that automatically derives
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powerful noise-resistant features from primitive raw data for
senone classification. In [77], the CD-DNN-HMM trained with
multi-style data easily matches the state-of-the-art performance
obtained with complicated conventional noise-robustness
technology on GMM systems [227]. With deep and wide
hidden layers, the DNN provides a very strong normalization
to heterogeneous data [77], [78], [287]. The noise, channel, and
speaker factors may already be well normalized by the com-
plex nonlinear transform inside the DNN. In other words, the
layer-by-layer feature extraction strategy in deep learning pro-
vides an opportunity to automatically derive powerful features
from primitive raw data for HMM state classification. However,
this does not mean that the noise-robustness technologies are
not necessary when used together with CD-DNN-HMM. It is
shown in [288]–[290] that a robust front-end is still helpful
if the CD-DNN-HMM is trained with clean data, and tested
with noisy data. In a multi-style training setup, although some
robust front-ends cannot benefit DNNs [77], [289], VTS with
explicit distortion modeling and DOLPHIN (dominance based
locational and power-spectral characteristics integration) are
still very useful to improve the ASR performance [288], [290].
One possible reason is that the nonlinear distortion model used
in VTS and the spatial information used in DOLPHIN are not
available to the DNN. Therefore, one potential way to work
with a CD-DNN-HMM is to incorporate technologies utilizing
the information not explicitly exploited in DNN training. The
explicit modeling technologies such as VTS should work very
well. The DNN also makes it easy to work on all kinds of
acoustic features, which may be hard for a GMM. For example,
log-filter-bank features are usually not used as the input to a
GMM because of the correlation among feature dimensions. In
[78], [291], it is shown that log-filter-bank features are signif-
icantly better than the widely-used MFCCs when used as the
input to the DNN. And in [292], the filter bank is replaced with
a filter bank layer that is learned jointly with the rest of DNN by
taking the linear frequency power spectrum as the input. Fur-
thermore, some of the noise-robustness methods, as surveyed in
this paper, have the underlying assumption that a GMM is used
for state likelihood evaluation. If the CD-DNN-HMM is used,
this assumption is no longer valid. One potential solution is
to use the DNN-derived bottleneck features in a GMM-HMM
system, thereby utilizing both the power of DNN nonlinear
normalization and the GMM assumption validating many of
the currently successful noise-robustness approaches described
in this paper. The impact of using the DNN and DNN-induced
bottleneck features on noise-robustness ASR deserve intensive
research.
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