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''for each successive class of 

phenomena, a new calculus or a new 

geometry, as the case might be, 

which might prove not wholly inade­

quate to the subtlety of nature.'' 

Quoted, without citation, 
by H.J.S. Smith; Nature, 
Volume 8 (1873), page 450. 



P R E F A C E 

In August of 1970 we constructed a comprehensive family 

of calculi, which includes the classical calculus as well as 
an infinite subfamily of non-Newtonian calculi that we had 

constructed three years earlier. 

Each calculus possesses the following: 

a distinctive method of measuring changes in 

function arguments; 

a distinctive method of measuring changes in · 

function values; 

four operators: a gradient (i.e., an average 

rate of change), a derivative, a natural 
average, and an integral; 

a characteristic class of functions having a 

conetant derivative; 

a Basic Theorem involving the gradient, deriv­

ative, and natural average; 

a Basic Problem whose solution motivates a sim­

ple definition of the integral in terms of 

the natural average; 

and two Fundamental Theorems which reveal that 
the derivative and integral are 'inversely' 

related in an appropriate sense. 

A popular method of creating a new mathematical system 

is to vary the axioms of a known system. Although it may be 

~ssible to axiomatize the classical calculus, we did not and 

shall not pursue that course. Instead, in Chapter 1 we for­

mulate the classical calculus in a novel manner that leads 

naturally to the subsequent construction of the non-Newtonian 
calculi. 

In Chapters 2 - 4, we construct three specific non-New­

tonian calculi: the geometric, anaqeometric, and bigeometric. 

Chapter 5 is devoted to arithmetics (slightly specialized com­

plete ordered fields), which are used in subsequent chapters • 
• 

In Chapter 6 we simultaneously construct all the calculi, in­

dicate the unifornt relationships between the corresponding 

operators of any two calculi, and provide suitable graphic 

v 



• V1 P r e f a c e 

interpretations. Chapters 7 and 8 contain brief developments 
of the quadratic, anaquadratic, biquadratic, harmonic, anabar 
monic, and biharmonic calculi. (The har1nonic calculus is not 

to be confused with harn~nic analysis.) Chapter 9 includes 
a variety of heuristic guides for selecting gradients, deriv­
atives, averages, and integrals. In Chapter 10 we discuss 

certain generalized spaces, vectors, and least squares method: 
which were suggested by our work with the non-Newtonian calcu· 
li; we introduce a trend concept that may be considered as a 

kind of global derivative; and we indicate some connections 
between the non-Newtonian calculi and calculus in Banach 
spaces. Sundry digressions and comments have been placed in 

the Notes at the rear of the book, for example, in Note 2 we 

explain how a simple algebraic identity suggested the possi­

bility of constructing the geometric calculus. 
Since this book is intended for a wide audience, includ­

ing students, engineers, scientists, as well as mathematician: 
we have presented many details that would not appear in a re­
search report and we have excluded all proofs. (All stated 

results can be proved in a straightforward way.) It is as­
sumed, of course, that the reader has a working knowledge of 

the rudiments of classical calculus. 
Finally we wish to express our gratitude to Professor 

Dirk J. Struik for his interest and encouragement, and to 

Messrs. Charles Rockland, Charles K. Wilkinson, and David J. 
Liben for their helpful comments and assistance. However, 

we alone are responsible for the form and content of this 

book. 
Criticism and suggestions are cordially invited. 

M.G. 

R.K. 
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PRELIMINARIES 

Since complex numbers are not used in this book, the 
word "number" will mean real number. Except for f, g, and 
h, lower-case Roman letters are used for referring to num­

bers. The letter R denotes the set of all numbers, and the 

symbol R+ denotes the set of all positive numbers. 

If r < s, then the interval [r,s] is the set of all 

numbers x such that r < x < s. (We do not use open inter-- -
vals in this book.) The interior of [r,s] is obtained by 

deleting r and s therefrom. The classical extent of [r,s] 

is s - r. (Although the number s - r is usually called the 
length of [r,s], we use the term "classical extent" in order 
to achieve a unifornt terminology for all the calculi.) 

By a point we mean an ordered pair of numbers' by a 
function we mean a set of points, each distinct two of which 
have distinct first members. We use the letters f, g, h, 

and occasionally others, for referring to functions, and we 
usually identify a function with its graph, thereby avoid­
ing undesirable circumlocution. 

The domain of a function is the set of all its argu­
ments (first members of the points); the range of a function 

is the set of all its values (second members of the points). 

A function is said to be on its domain, to be onto its range, 

and to be defined at each of its arguments. 

If every two distinct points of a function f have dis­

tinct second members, then f is one-to-one and its inverse, 
£-1 , is the one-to-one function consisting of all points 

(y,x) for which (x,y) is a point of f. Please bear in mind 
that f-l is not the reciprocal of f. 

A positive function is a function whose values are all 
• 

positive; a discrete function is a function that has only a 

finite number of arguments. 
A linear function is a function of the foJ:Iu mx + c, 

where m and c are constants and x is unrestricted in R. An 

especially important linear function is the identity func­

tion, I, for which I(x) = x. (All linear functions are on 
R.) The function exp assigns to each number x the number ex, 

where e is the base of the natural logarithm function, ln, 

1 



2 Preliminaries 

which is the inverse of exp. 

In the sequel we shall introduce some new teruas and 
symbols, which, however, we have endeavored to keep to a 

• • m1n1mum. 



Chapter 1 

THE CLASSICAL CALCULUS 

1.1 INTRODUCTION 

In this chapter we present some of the basic ideas of 

the classical calculus in a novel manner that leads naturally 

to the subsequent construction of the non-Newtonian calculi. 

In the classical calculus, chanqes in function arguments 
and values are measured by differences. 

1.2 THE CLASSICAL GRADIENT 

The classical change of a function f over [r,s] (or from 

r to s) is the number f(s) - f(r). 

A classically-unifonn function is a function that is on 

R, is continuous, and has the same classical change over any 

two intervals of equal classical extent. Clearly every con­

stant function on R is classically-uniform. 

Since the classically-uniform functions turn out to be 

the linear functions, we shall henceforth use the term "lin­

ear function." 

It is characteristic of a linear function that for each 

arithmetic progression of arguments, the corresponding se­

quence of values is also an arithmetic progression. 

The classical slope of a linear function is its classi­

cal change over any interval of classical extent 1. Of 

course, the classical slope of the function mx + c turns out 

to be m. 

The classical gradient of a function f over [r,s] is 

the classical slope of the linear function containing the 

points (r,f(r)) and (s,f(s)), and turns out to be 

f(s) - f(r) 
• 

s - r 

There are several reasons why we decided to use the 

British texm "qradient" instead of "average rate of change" 

or ''rate of change": the first term is the shortest; the 

second leaves us wonderinq of what it is the average; the 

third is often taken to mean "instantaneous rate of change." 

3 



4 The Classical Calculus 

There will be no confusion with the gradient concept in vec­

tor analysis, since vector analysis is not treated in this 

book. 
Clearly the classical gradient is independent of the 

origins used for measuring the magnitudes that the function 
arguments and values may represent. 

1.3 THE CLASSICAL DERIVATIVE 

Throughout this section, f is assumed to be a function 
defined at least on an interval containing the number a in 

its interior. 

If the following limit exists, we denote it by [Of] (a), 

call it the classical derivative of f at a, and say that f 

is classically differentiable at a: 

lim 
x-ta 

f (x) - f (a) 

x - a 
• 

The classical derivative of f, denoted by Of, is the 
function that assigns to each number t the number [Of] (t) , 

if it exists. 

The operator D is additive and homogeneous: 

O(f + g) = Df + Og, 

D(c·f) = c•Df, c constant. 

(We are intentionally avoiding the term "linear operator.") 
In the classical calculus a distinctive role is played 

by the linear functions, for only they possess classical de­
rivatives that are constant on R. 

Next we define a familiar concept in a special way that 
will perntit a suitable generalization in Section 6. 3. 

The classical tangent to a function f at the point 
(a,f(a)) is the unique linear function g, if it exists, 

which possesses the following two properties. 

1. The li~ear function g contains (a,f(a)). 
2. For each linear ·function h containing (a,f(a)) 

and distinct from q, there is a positive number 
p such that for every number x in [a - p, a + p] 
but distinct from a, 
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lg(x) - f(x) I < lh(x) - f(x) I . 

Mr. Charles Rockland of Princeton University has proved 
that [Df] (a) exists if and only if f has a classical tangent 

at (a,f(a)), and that if [Df] (a) does exist, it equals the 
classical slope of that classical tangent. 

We say that two functions are classically tangent at a 
common point if and only if they have the same classical tan­
gent there. 

1.4 THE ARITHMETIC AVERAGE 

The arithmetic average of n numbers v1 , ••. ,vn is the 

number (v1 + ••• + vn)/n. 
In our treatment of classical calculus an important role 

is played by the arithmetic average of a continuous function 

on an interval, the definition of which will be simplified by 

introducing the concept of an arithmetic partition of an in­
terval. 

An arithmetic partition of an interval [r,s] is any 

arithmetic progression whose first and last terms are r and 
s, respectively. An arithmetic partition is n-fold if it 

has n terms. 
The arithmetic average of a continuous function f on 

[r,s] is denoted by 

M8 f r 

and defined to be the limit of the 
nth term is the arithmetic average 
a1 , ••• ,a is then-fold arithmetic 

convergent sequence 

of f(a1), ••• ,f(an)' 
partition of [r,s]. 

n s 
The operator Mr is additive and homogeneous: 

whose 

where 

The arithmetic average of a linear function on [r,s] is 
equal to the arithmetic average of its values at r and s, and 

is equal to its value at the arithmetic average of r and s. 
The arithmetic average is the only operator that has the 

following three properties. 
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1. For any interval [r,s] and any constant function 
h(x) =bon [r,s], 

M8 h = b. r 

2. For any interval [r,s] and any functions f and g 

that are continuous on [r,s], if f(x) < g(x) for -
every number x in [r,s], then 

Msf < Mrsq. 
r -

3. For any numbers r,s,t such that r < s < t, and 
any function f continuous on [r,t], 

-- (t - r)• M~f. 

1.5 THE BASIC THEOREM OF CLASSICAL CALCULUS 

Our discussion of the Basic Theorem of Classical Cal­

culus begins with its discrete analogue, which is a propo­
sition that concerns discrete functions and appropriately 
conveys the spirit of the theorem. 

The Discrete Analogue of the 
Basic Theorem of Classical Calculus 

Let h be a discrete function whose arguments 

a1 , ••• ,an are an arithmetic partition of [r,s]. 
Then the arithmetic average of the following 

n - 1 classical gradients is equal to the 
classical gradient of hover [r,s]: 

I i = l, ••• ,n-1. 

The Basic Theorem of Classical Calculus 

If Dh is continuous on [r,s], then its arithmetic 
average on [r,s] equals the classical gradient of 
hover [r,s], that is 

h(s) - h(r) 
-- ------. 

s - r 

In view of the preceding theorem we say that the arith-



1.6 The Classical Integral 

metic average fits naturally into the scheme of classical 
calculus. 

The Basic Theorem of Classical Calculus provides an 

immediate solution to the following problem. 

The Basic Problem of Classical Calculus 

Suppose that the value of a function h is known at 

an argument r, and suppose that f, the classical 

derivative of h, is continuous and known at each 

number in [r,s]. Find h(s). 

Solution 

By the Basic Theorem of Classical Calculus we have 

= M;(Dh) = 
h(s) - h(r) 
------. 

s - r 

Solving for h(s), we get 

s h ( s) = h ( r) + ( s - r ) • Mr f • 

7 

The number (s- r)•M;f in the foregoing solution arises 
with sufficient frequency to warrant a special name, which 

is introduced in the next section and is justified by the en­

suing discussion. 

1.6 THE CLASSICAL INTEGRAL 

The classical inteqra~ of a 

s [r,s] is the number (s - r)•Mrf' 

We set lr f = 0. 
r 

continuous function f on 

and is denoted by ls f • 
r 

The classical integral is a weighted arithmetic average, 

since 

l sf = M8 
[ ( s - r) • f 1 • 

r r 

Furthermore, ls f equals the limit of the convergent sequence 
r 

whose nth terua is the sum kn•f(a1 ) + ••• + k
0
•f(an_1), where 

a 1 , ••• ,an is then-fold arithmetic partition of [r,s], and kn 

is the common value of 
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l s 
The operator 

r 
is additive and homogeneous: 

[s (c• f) = c ·18 
f, c constant. 

r r 

The classical integral is the only operator that has 

the following three properties. 

1. For any interval [r,s] and any constant function 
h(x) =bon [r,s], 

18
h = (s - r)•b. 

r 

2. For any interval [r,s] and any functions f and g 

that are continuous on [r,s], if f(x) < q(x) for -
every number x in [r,s], then 

3. For any numbers r, s, t such that r < s < t, and 

any function f continuous on [r,t], 

lsf ltf 
t 

+ - 1 f. -
r s r 

1. 7 THE FUNDAMENTAL THEOREMS OF CLASSICAL CALCULUS 

The classical derivative and integral are 'inversely' 

related in the sense indicated by the following two theorems. 

First Fundamental Theorem 

Iff is continuous on [r,s], and 

then 

q(x) = [xf, for every number x in [r,s], 
r 

Dg = f, on [r,s]. 

Second Fundamental Theorem 

If Dh is continuous on [r,s], then 

ls (Db) = h(s) - h(r). 
r 



Chapter 2 

THE GEOMETRIC CALCULUS 

2.1 INTRODUCTION 

During the Renaissance many scholars, including Galileo, 

discussed the following problem: 

Two estimates, 10 and 1000, are proposed as 

the value of a horse. Which estimate, if any, 

deviates more from the true value of 100? 

The scholars who maintained that the deviations should 

be measured by differenqes concluded that the estimate of 10 

was closer to the true value. However, Galileo eventually 

maintained that the deviations should be measured by ratios, 

and he concluded that the two estimates deviated equally from 

the true value. 

Now let us consider a more sophisticated problem. At 

time r, a man invests f(r) dollars with a promoter who guar­

antees that at a certain subsequent time s, the value of the 

investment would be f(s) dollars. In event that the investor 

should desire to withdraw at any other time t, it was agreed 

that the value of the investment increases continuously and 

uniforutly. The problem is this: How much, f(t), would the 

investor be entitled to at time t? We shall give two reason­

able solutions; there is no unique solution. 

Solution 1. Since it was agreed that the value of the invest­

ment increases uniformly, we may reasonably assume that it in­

creases by equal amounts in equal times. Since it was agreed, 

furthermore, that the value of the investment increases con­

tinuously, it can be proved that the growth must be linear 

and, in fact, that 

f(s) - f(r) 
f(t) = f(r) + (t - r) • 

s - r 

Notice that the expression within the brackets represents the 

classical gradient off over [r,s]. 

Solution 2. Since it was agreed that the value of the invest­

ment increases uniformly, we may reasonably assume that it in-

9 



10 The Geometric Calculus 

creases by equal percents in equal times. Since, furthermore, 
the value of the investment increases continuously, it can be 
proved that the growth must be exponential and, in fact, that 

f(t) = f(r)• 
f (s) 

f (r) 

1 t-r 
s-r 

• 

We shall see that the expression within the brackets is of 
fundamental importance in geometric calculus. 

In the geometric calculus, changes in function arguments 
and values are measured by differences and ratios, respec­

tively, and the operators are applied only to positive func­
tions. Therefore, every function in this chapter is positive, 

except for the natural logarithm function, ln, which is used 
for special purposes. Lest the reader be disappointed by 
such a restriction, we hasten to say that a geometric-type 

calculus for negative (valued) functions is discussed briefly 
in Section 6.10. 

Heuristic guides for selecting appropriate gradients, 
derivatives, averages, and integrals are discussed in Chapter 

9. 

2.2 THE GEOMETRIC G~DIENT 

The geometric change of a positive function f over [r,s] 
is the number f(s)/f(r). 

A geometrically-unifor!n function is a positive function 
that is on R, is continuous, and has the same geometric change 
over any two intervals of equal classical extent. Clearly 
every positive constant function on R is geometrically-unifornt. 

The geometrically-uniforut functions are those expressible 
in the form exp(mx +c), where m and care constants and xis 

unrestricted in R. If p is a positive constant, then the func­
tions pmx+c are also geometrically-uniform, for they are ex-

pressible in the form indicated. 

It is characteristic of a geometrically-uniform function 

that for each arithmetic progression of arguments, the corre­
sponding sequence of values is a geometric progression. That 
fact provides one reason for the name "geometric calculus"; 

another reason will appear in Section 2.4. 



2.3 The Geometric Derivative 11 

The geometric slope of a geometrically-uniform function 
is its geometric change over any interval of classical extent 
1. For example, the geometric slopes of the functions 

mx+c m m . exp(mx + c) and p turn out to be e and p , respect1vely. 
If one plots a geometrically-uniform function h on semi­

log paper that is logarithmically scaled on the y-axis, the 
result is a straight line whose classical slope equals the 
natural logarithm of the geometric slope of h. Other aspects 
of graphical interpretation will be discussed more fully in 
Section 6.11. 

The 
[r,s] is 
function 
be 

geometric gradient of a positive function f over 
the geometric slope of the geometrically-uniform 
containing (r,f(r)) and (s,f(s)), and turns out to 

f(s) 

f (r) 

1 
s-r 

• 

Clearly the geometric gradient is independent of the 
origin and unit used for measuring the magnitudes that the 
arguments and values may represent, respectively. 

The foregoing expression for the geometric gradient 
yields the indeter1ninate form 1 00 when r = s, in contrast to 
the indeterntinate forua 0/0 yielded by the expression for the 
classical gradient. 

2.3 THE GEOMETRIC DERIVATIVE 

Throughout this section, f is assumed to be a positive 
function defined at least on an interval containing the num­
ber a in its interior. 

If the followinq limit exists and is positive, we de­
note it by [0£] (a), call it the geometric derivative off at 
a, and say that f is geometrically differentiable at a: 

f (x) 
lim 
X.fa f(a) 

1 
x-a 

• • 

It is possible for tRe preceding limit to be 0 (this 
happens, for example, if f(x) = exp(-x113) and a= 0). Our 
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reason for requiring [0f] (a) to be positive will be given in 

Section 6.10. 

It can be proved that [Of] (a) and [0f] (a) coexist; that 

is, if either exists then so does the other. Moreover, if 

they do exist, then [5f] (a) equals exp{[Df] (a)/f(a)} and 

equals the geometric slope of the unique geometrically-uni­

form function that is classically tangent to fat (a,f(a)). 

(Incidentally, the expression [Df] (a)/f(a) represents the 

so-called logarithmic derivative of f at a, which is not a 

non-Newtonian derivative according to our use of the term.) 

The geometric derivative of f, denoted by Of, is the 

function that assigns to each number t the number [~f] (t) , 
if it exists. 

If f is geometrically-uniform, then 0£ has a constant 

value equal to the geometric slope of f. Indeed, only geo­

metrically-uniform functions have geometric derivatives that 

are constant on R. In particular, if f is a positive con­

stant function on R, then Of is everywhere equal to 1. 
~ ,.,., ~ ,.,., 

Since D(l + 1) ~ D(l) + D(l), the operator D is not 
""'-~ 

additive; however D is multiplicative: 
~ ~ l'ttJ 

D(f•g) = Df·Dg. 

Furthermore, 

Recalling that the function exp equals its classical de­

rivative, we point out that the function exp[exp(x)] equals 

its geometric derivative. 
In Note 1 we define the relative gradient, which is in­

timately related to the geometric gradient, is often called 

the compound growth rate,and gives rise to the relative de­

rivative. 

2.4 THE GEOMETRIC AVERAGE 

The geometric calculus was so named principally because 

the geometric average fits naturally thereinto, a fact that 

will be explained in the next section. 

The geometric average of n positive numbers v1 , ••• ,vn 
is the positive number 



2.5 The Basic Theorem of Geometric Calculus 13 

The geometric average of a continuous positive function 
f on [r,s] is denoted by Msf and defined to be the positive 

r 
limit of the convergent sequence whose nth term is the geo-

metric average of f(a1 ), ••. ,f(an)' where a 1 , •.. ,an is the 
n-fold arithmetic partition of [r,s]. 

Also, 

~s 
The operator M is multiplicative: r 

~s ~s ~s 
~ (f·g) = M f · M g. r r r 

M~(fc) = (M~f)c, c constant. 

The geometric average of a geometrically-uniform func­

tion on [r,s] is equal to the geometric average of its val­

ues at r and s, and is equal to its value at the arithmetic 

average of r and s. 

The geometric average is the only operator that has the 

following three properties. 

1. For any interval [r,s] and any positive constant func­

tion h(x) =bon [r,s], 

~h = b. 

2. For any interval [r,s] and any positive functions f 

and g that are continuous on [r,s], if f(x) < g(x) .... 
for every number x in [r,s], then 

M~£ ~ M~g. 

3. For any numbers r, s, t such that r < s < t, and any 

positive function f continuous on [r,t], 

rMs£1s-r • rMt£1t-s = rMrt£1t-r. 
r s 

2.5 THE BASIC THEOREM OF GEOMETRIC CALCULUS 

Our investigation of non-Newtonian calculi began with 

an observation of the simple identity indicated in the fol­

lowing proposition. (In Note 2 we explain how this identity 

provided the original insight into the constructibility of 

the geometric calculus.) 

The Discrete Analosue of the 
Basic Theorem of Geometric Calculus 

Let h be a discrete positive function whose arguments 
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a1 , ••• ,an are an arithmetic partition of [r,s]. 
Then the geometric average of the following n-1 
geometric gradients is equal to the geometric 
gradient of h over [r,s]: 

h (a.) 
1 

1 

. 1 1 , 1 = , ••• ,n- . 

The Basic Theorem of Geometric Calculus 
~ 

If Dh is continuous on [r,s], then its geometric 
average on [r,s] equals the geometric gradient 
of hover [r,s], that is 

h (s) 

h (r) 

1 
s-r 

• 

In view of the preceding theorem we say that the geo­
metric average fits naturally into the scheme of geometric 

calculus. 

The Basic Theorem of Geometric Calculus provides an 

immediate solution to the following problem. 

The Basic Problem of Geometric Calculus 

Suppose that the value of a positive function h 

is known at an argument r, and suppose that £, 
the geometric derivative of h, is continuous and 

known at each number in [r,s]. Find h(s). 

Solution 

h (s) = h (r)·[M8 f] s-r. 
r 

The number [M8 £] 8 -r in the foregoing solution arises 
r 

with sufficient frequency to warrant a special name, which 

is introduced in the next section. 

2.6 THE GEOMETRIC INTEGRAL 

The geometric integral of a continuous positive func­
tion f on [r,s] is the positive number [M8 £]s-r and is de­

r 
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~s 

noted by l f • We set 
r 

r 
f = 1. 

The geometric integral is a weighted geometric average, 
• s1nce s 

f = 
,.....,s 

FurtherJnore, 1 f equals the positive limit of the conver­
r 

gent sequence whose nth term is the product 
k k k 

[f (a1 ) 1 n • [f (a2) 1 n • • · [f (an-l) 1 n, 

where a1 ,a2 , ••• ,an is then-fold arithmetic partition of 
[r,s], and kn is the common value of a 2 - a1 , a 3 - a 2 , ••• , 

8 n- an-1· 

Also, 

~ 

The operator ls is multiplicative: 
r 
~s ~s ~s 1 (f·g) = I f • 1 9· 
r r r 

c 
, c constant. 

The geometric integral is the only operator that has 

the following three properties. 

1. For any interval [r,s] and any positive constant 
function h(x) =bon [r,s], 

~s J h = bs-r. 
r 

2. For any interval [r,s] and any positive functions 
f and q that are continuous on [r,s], if f(x) < g(x) -
for every number x in [r,s], then 

< -
3. For any numbers r,s,t such that r < s < t, and any 

positive function f continuous on [r,t], 
~ s ,._,t ,...,t 

1 f • 1 f = I £. 
r s r 
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2.7 THE FUNDAMENTAL THEOREMS OF GEOMETRIC CALCULUS 

The geometric derivative and integral are 'inversely' 

related in the sense indicated by the following two theorems. 

First Fundamental Theorem 

If f is positive and continuous on [r,s], and 
,._.,X 

g(x) = 1 £, for every number x in [r,s], 
r 

then 
~ 

Dg = f, on [r,s]. 

Second Fundamental Theorem 
~ . 

If Dh 1s continuous on [r,s], then 
IIIWS 1 (Db) = h ( s) /h ( r) • 
r 

Just as the Second Fundamental Theorem of Classical Cal­

culus is useful for evaluating classical integrals, so is the 
Second Fundamental Theorem of Geometric Calculus useful for 

evaluating geometric integrals. 

exp(l/x) and h(x) = x, for x > 0. 
For example, let f(x) = 

IIIW 
Then f = Dh, and so 

IIIWS 

1 f = 
3 

5 
(0h) = h(5)/h(3) = 5/3. 

2.8 RELATIONSHIPS TO THE CLASSICAL CALCULUS 

Our presentation of the geometric calculus was indepen­

dent of the classical calculus, for the operators of the for­

mer were not defined in terms of the operators of the latter. 

However, the corresponding operators of the two calculi are 

uniformly related. 
-Let f be a positive function and set f(x) = ln(f(x)). 

s- -Let Grf be the classical gradient off over [r,s], and let 

G~f be the geometric gradient off over [r,s]. Then we have 
the following uniforut relationships. 

(1) G~f = expjG~fJ 
(2) [0£] (a) = exp I [Of] (a)J 

(3) M~f = exp~M~f} 

(4) Js f = exp{/s f} 
r r 
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,..., 

Remark. For (2) we assume that [Df] (a) exists; for (3) and 

(4), that f is continuous on [r,s]. 

The preceding observations clearly indicate that for 

each theorem in classical calculus there is a corresponding 

theorem in geometric calculus, and conversely. For example, 

we have the following mean value theorem of geometric calcu­

lus. 

If a positive function f is continuous on [r,s] 

and geometrically differentiable everywhere be­

tween r and s, then between r and s there is a 

number at which the geometric derivative of f 

equals the geometric gradient off over [r,s]. 

The relationship of the nth-geometric derivative to the 

nth-classical derivative follows the familiar pattern: 

(i5n£] (a) = exp{ [Dnf] (a)}, 

-where f(x) = ln(f(x)). 

The second geometric derivative of the function exp(-x2) 

turns out to be the constant l/e2 , a fact that may provide 

additional insight into that important function. 



Chapter 3 
THE ANAGEOMETRIC CALCULUS 

3.1 INTRODUCTION 

In the anageometric calculus, changes in function argu­
ments and values are measured by ratios and differences, re­
spectively, and the operators are applied only to functions 

whose arguments are positive. However, an anageometric-type 
calculus for functions with negative arguments is discussed 
briefly in Section 6.10. 

A positive interval is an interval [r,s] for which 

0 < r < s. The geometric extent of a positive interval 
[r,s] is the number s/r. 

We were interested to learn that in his Principia, New­
ton expressed Galilee's law of descent of freely falling bod­

ies as follows: "When a body is falling, ••• the spaces de­

scribed in proportional times are as ••• the squares of the 

times." (Scholiwn to Corollary VI in "Axioms, or Laws of 

Motion.") That is, in time intervals of equal geometric ex­
tent, the distances traversed are proportional to the squares 

of the times elapsed. 
Heuristic guides for selecting appropriate gradients, 

derivatives, averages, and integrals are discussed in Chap­
ter 9. 

3.2 THE ANAGEOMETRIC GRADIENT 

An anageometrically-unifor!" function is a function that 

is on R+' is continuous, and has the same classical change 
over any two positive intervals of equal geometric extent. 

Clearly every constant function on R+ is anageometrically­
uniforiu. 

The anageometrically-uniform functions are those express­
ible in the form ln(cxm), where c and mare constants, c > 0, 

and x is unrestricted in R+. 
It is characteristic of an anageometrically-uniform func­

tion that for each geometric progression of arguments, the 

corresponding sequence of values is an arithmetic progression. 

The anaqeometric slope of an anageometrically-uniform 

18 
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function is its classical change over any positive interval 
of geometric extent e. (In Note 3 and Section 6.10 we ex­
plain why e was chosen here.) The anageometric slope of the 

function ln(cxm) turns out to be m. 
If one plots an anageometrically-~niforna function h on 

semi-log paper that is logarithmically scaled on the x-axis, 
the result is a straight line whose classical slope equals 
the anageometric slope of h. Other aspects of graphical in­

terpretation will be discussed more fully in Section 6.11. 

The anageometric gradient of a function f over a posi­
tive interval [r,s] is the anageometric slope of the anageo­
metrically-uniforna function containing (r,f(r)) and (s,f(s)), 
and turns out to be 

f(s) - f(r) 

ln(s) - ln(r) 
• 

It is easy to verify that the anageometric gradient is 

independent of the unit and origin used for measuring the 
magnitudes which the arguments and values may represent, re­
spectively. 

The foregoing expression for the anageometric gradient 

yields the indeterminate form 0/0 when r = s. 

3.3 THE ANAGEOMETRIC DERIVATIVE 

Throughout this section, f is assumed to be a function 

defined at least on a positive interval containing the num­
ber a in its interior. 

If the following limit exists, we denote it by lR£1 (a), 

call it the anageometric derivative of f at a, and say that 

f is anageometrically differentiable at a: 

lim 
x-ta 

f(x) - f(a) 

ln(x) - ln(a) 
• 

It can be proved that [Df] (a) and [Df] (a) coexist; that 
#IW 

if they do exist, then 

[l}f] (a) = [Df] (a)/ [D (ln)] (a) = a· [Df] (a); 

and that [Df] (a) equals the anageometric slope of the unique 
~ 
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anageometrically-uniform function which is classically tan­

gent to fat (a,f(a)). 

Observe that [Ef1 (a) equals the classical derivative of 

f with respect to ln at a. 

The anageometric derivative of £, denoted by Rf, is the 

function that assigns to each number t the number [~f) (t) , 

if it exists. 

The operator ~ is additive and homogeneous: 

If f is anageometrically-uniform, then Of has a constant --
value equal to the anageometric slope of f. Indeed, only ana-

geometrically-uniform functions have anageometric derivatives 

that are constant on R+. 

It is worth noting that if h(x) = mx, where m is a con­

stant and x > 0, then Dh = h. ,., 

3. 4 THE ANAGEOMETRIC AVERAGE 

Since changes in function arguments are measured by ra­

tios in the anageometric calculus, one should not be surprised 

that the definition of the anageometric average requires the 

use of partitions in which the successive points form a geo­

metric progression. 

A geometric partition of a positive interval [r,s] is 

any geometric progression whose first and last terms are r 

and s, respectively. A geometric partition is n-fold if it 

has n terms. 

The anageometric a~erage of a continuous function f on 

a positive interval [r,s] is denoted by M8 f and defined to 
~r 

be the limit of the convergent sequence whose nth term is 

the arithmetic average of f(a1 ) , ••• ,f(an), where a 1 , ••• ,an 

is then-fold geometric partition of [r,s]. 

The arithmetic and anageometric averages are NOT iden­

tical; for example, if f(x) = x, for x > 0, then 

whereas 

M8 f = (s - r)/[ln(s) - ln(r)], Alfr 

Msf = (s + r)/2. 
r 
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Nevertheless, the operator Ms is additive and homoge­
~r 

neous: 

s s 
~r(c·f) = c·~rf' c constant. 

The anageometric average of an anageometrically-uniform 

function on [r,s] is equal to the arithmetic average of its 

values at r and s, and is equal to its value at the geomet­
ric average of r and s. 

The anageometric average is the only operator that has 

the following three properties. 

1. For any positive interval [r,s] and any constant 
function h(x) =bon [r,s], 

s M h = b. 
~r 

2. For any positive interval [r,s] and any functions 

f and g that are continuous on [r,s], if f(x) < g(x) -
for every number x in [r,s], then 

Msf < Msg • 
.wr - ~r 

3. For any numbers r,s,t such that 0 < r < s < t, and 

any function f continuous on [r,t], 

[ln(s) - ln(r)]·M8 f + [ln(t) - ln(s)]·Mtf Nr NS 

= [ln(t) - ln(r)]·Mtf. IIIWr 

3.5 THE BASIC THEOREM OF ANAGEOMETRIC CALCULUS 

In view of the following theorem we say that the anageo­

metric average fits naturally into the scheme of anageometric 

calculus. (We forego the discrete analogue.) 

The Basic Theorem of Anageometric Calculus 

If Rh is continuous on a positive interval [r,s], 

then its anageometric average on [r,s] equals the 

anageometric gradient of hover [r,s], that is, 

h(s) - h(r) 
Mrs (Dh) = N _, 

ln(s) - ln(r) 
• 

The preceding theorem provides an immediate solution to 
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the following problem, which will motivate our definition of 
the anageometric integral. 

The Basic Problem of Anageometric Calculus 

Suppose that the value of a function h is known 
at a positive argument r, and suppose that f, 

the anageometric derivative of h, is continuous 

and known at each number in [r,s]. Find h(s). 

Solution 

h(s) = h(r) + [ln(s) - ln(r)].M8 f. ,_r 

3.6 THE ANAGEOMETRIC INTEGRAL 

The anageometric integral of a continuous function f on 
a positive interval [r,s] is the number [ln(s) - ln(r)]·M8 f ._.,r 

and is denoted by J sf. We set / r f = 0. 
"'r ~r 

The anageometric integral is a weighted anageometric 
• average, s1nce 

/
sf--

41Wr 
~;{[ln(s) - ln(r)]·f}. 

Furthermore, ls f equals the limit of the convergent se­
~r 

quence whose nth term is the sum 

[ln(kn)]·f(a1 ) + ••• + [ln(kn)]·f(an-l)' 

where a1 , ••• ,an is then-fold geometric partition of [r,s], 

and kn is the common value of a 2/a1 , a 3/a2 , ••• , an/an-l· 

The reader who is familiar with Stieltjes integrals 

will notice that the preceding result justifies the asser-

tion that 

is the Stieltjes integral off with respect to ln on [r,s]. 

The operator / s is additive and homogeneous: 
41Wr 



3.7 Fundamental Theorems of Anageometric Calculus 23 

/
8 

(c· f) = c ·ls f, c constant. 
-v r -..,r 

The anageometric integral is the only operator that has 

the following three properties. 

1. For any positive interval [r,s] and any constant 

function h(x) =bon [r,s], 

[
8

h = [ln(s) - ln(r)]·b. 
~r 

2. For any positive interval [r,s] and any functions 

f and 9 that are continuous on [r,s], if f(x) < g(x) -
for every number x in [r,s], then 

3. For any numbers r,s,t such that 0 < r < s < t, and 

any function f continuous on [r, t] , 

[sf + ltf - lt f. -
"'r --s ,...,r 

3 • 7 THE FUNDAMENTAL THEOREMS OF ANAGEOMETRIC CALCULUS 

The anageometric derivative and integral are 'inversely' 

related in the sense indicated by the following two theorems. 

First Fundamental Theorem 

Iff is continuous on a positive interval [r,s], and 

g(x) = /xf, for every number x in [r,s], 
-vr 

then 

99 = f, on [r,s]. 

Second Fundamental Theorem 

If gh is continuous on a positive interval [r,s], then 

1 8 
( Bh) = h ( s) - h ( r) • 

.-,r 

The preceding theorem is useful, of course, for evalu­

ating anageometric integrals. 
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3.8 RELATIONSHIPS TO THE CLASSICAL CALCULUS 

Let G5 f be the anageometric gradient of f over a posi­Nr 
.. X -tive interval [r1sl1 and set f(x) = f(e) 1 r = ln(r) 1 s = 

ln(s), and a= ln(a). (Of course, G~f is the classical gra­r -dient of f over [r,s] .) Then we have the following uniform 

relationships between the corresponding operators of the ana­

geometric and classical calculi. 

-
(1) G5 f = .-vr 

Gsf r 
(2) [Of] (a) - ro£1 (a) -#1111 

(3) M8 f = 
~r 

M!l 
f 

-
(4) /sf= /_sr 

~r r 

Remark. For (2) 1 we assume that [Df] (a) exists; for (3) and 
. N 

(4) 1 that f is continuous on [r,s]. 

The preceding observations clearly indicate that for 

each theorem in classical calculus there is a corresponding 

theorem in anageometric calculus, and conversely. 



Chapter 4 

THE BIGEOMETRIC CALCULUS 

4.1 INTRODUCTION 

In the bigeometric calculus, changes in function argu­

ments and values are measured by ratios, and the operators 

are applied only to functions with positive arguments and 

positive values. However, bigeometric-type calculi for oth­

er functions can be constructed (Section 6.10). 

Heuristic guides for selecting appropriate gradients, 

derivatives, averages, and integrals are discussed in Chap­

ter 9. 

4.2 THE BIGEOMETRIC GRADIENT 

A bigeometrically-uniform function is a positive func­

tion that is on R+, is continuous, and has the same geomet­

ric change over any two positive intervals of equal geomet­

ric extent. Clearly ~very positive constant function on R+ 

is bigeometrically-uniform. 

The bigeometrically-uniform functions are those express­

ible in the form cxm, where c and mare constants, c > 0, and 

x is unrestricted in R+. 

It is characteristic of a bigeometrically-uniform func­

tion that for each geometric progression of arguments, the 

corresponding sequence of values is also a geometric progres-
• s1on. 

The bigeometric slope of a bigeometrically-uniform func­

tion is its geometric change over any positive interval of 

geometric extent e. (Our reason for choosing e here is sim­

ilar to the reason for using e in defining anageometric slope, 

as explained in Note 3 and Section 6.10.) The bigeometric 

slope of the function cxm turns out to be em. 

If one plots a bigeometrically-uniform function h on 

log-log paper, the result is a straight line whose classical 

slope equals the natural logarithm of the bigeometric slope 
of h. Other aspects of graphical interpretation will be dis-

cussed more fully in Section 6.11. 

The bigeometric gradient of a positive function f over a 

25 
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positive interval [r,s] is the bigeometric slope of the bi­

geometrically-uniform function containing (r,f(r)) and 

(s,f(s)), and turns out to be 

f(s) 1/[1n(s)-1n(r)] 

• 
f (r) 

It is easy to verify that the bigeometric gradient is 

independent of the units used for measuring the magnitudes 

which the arguments and values may represent. 

The foregoing expression for the bigeometric gradient 

yields the indeterminate form 1~ when r = s. 

4.3 THE BIGEOMETRIC DERIVATIVE 

Throughout this section, f is assumed to be a positive 

function defined at least on a positive interval containing 

the number a in its interior. 

If the following limit exists and is positive, we de­

note it by [~£](a), call it the bigeometric derivative off 

at a, and say that f is bigeometrically differentiable at a: 

lim 
x-ta 

f(x) 1/[1n(x)-1n(a)] 

f (a) 
• 

Our reason for requiring [p£1 (a) to be positive will be in­

dicated in Section 6.10. 

It can be proved that [Df] (a) and lD£1 (a) coexist; that 

if they do exist, then 

[~f] (a) = exp{a. [Df] (a) /f (a)}; 

and that [~f] (a) equals the bigeometric slope of the unique 

bigeometrically-uniform function which is classically tan­

gent to fat (a,f(a)). 

The bigeometric derivative of £, denoted by ~£, is the 

function that assigns to each number t the number [~£] (t) , 

if it exists. 

The operator B is multiplicative: 

o(f·g> = i5£·Dg. 
~ #Itt# N 

Furthermore, 
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If f is bigeometrically-uniforna, then ~f has a constant 
value equal to the bigeometric slope of f. Indeed, only bi­

geometrically-uniforna functions have bigeometric derivatives 

that are constant on R+. 

It is also worth noting that if h(x) = exp(x) for x > 0, 

then f>h = h. 

We noted above that 

£P£1 (a) = exp{a• [Df] (a) /f (a)}. 

Since economists refer to the expression within the braces as 
the elasticity of f at a, we call [~f] (a) the resiliency of f 

at a. We believe that resiliency will prove to be more use­

ful than elasticity because the former is the derivative in a 

complete system of calculus (the naturalness of which is ex­

hibited in this chapter), whereas it appears to be impossible 

to construct a complete, natural system of calculus in which 

the derivative is the elasticity. 

Perhaps the psychophysicists will find some interest in 

the bigeometric calculus, for one of their basic laws may be 

stated thus: The resiliency of the stimulus-sensation func­

tion is constant. (That constant is determined by the nature 

of the stimulus.) 
The biqeometric calculus may also prove to be useful in 

biology, for a fundamental law of growth is the following: 

If f is the function relating the size of one organ to the 

size of any other given organ in the same body at the same 

instant, then, within certain time limits, the resiliency of 
f is constant. 

A physicist who preferred not to settle on specific units 

of time and distance could, nevertheless, assert that the hi­

geometric speed of an object falling freely to the earth is 
constant. 

Heuristic guides for selecting appropriate derivatives 

are discussed more fully in Section 9.2. 

4.4 THE BIGEOMETRIC AVERAGE 

The bigeometric average of a continuous positive func­

tion f on a positive interval [r,s] is denoted by B~f and de­
fined to be the positive limit of the convergent sequence 
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whose nth term is the geometric average of f(a1 ) , ••• ,f(an), 

where a1 , ••• ,an is then-fold geometric partition of [r,s]. 
The geometric and bigeometric averages are not identi­

cal; for example, if f(x) = x2 for x > 0, then 

exp{2/(e- 1)}, 

whereas 

Also, 

#VMef = ~1 e. 

Nevertheless, the operator M8 is multiplicative: ,__r 

M8 (f•g) = M8 f·Msg. 
~r ~r ~r 

The bigeometric average of a bigeometrically-uniform 

function on [r,s] is equal to the geometric average of its 

values at r and s, and is equal to its value at the geomet­

ric average of r and s. 

The bigeometric average is the only operator that has 

the following three properties. 

1. For any positive interval [r,s] and any positive 

constant function h(x) =bon [r,s], 

~5h = b. 
~r 

2. For any positive interval [r,s] and any positive 

functions f and g that are continuous on [r,s],if 

f(x) < g(x) for every number x in [r,s], then -

3. For any numbers r,s,t such that 0 < r < s < t, and 

any positive function f continuous on [r,t], 

[ln(s)-ln(r)] 
[Ms£1 ,...,r 

--

"'t [ln(t)-ln(s)] 
• [tJsf] 

"'t [ln(t)-ln(r)] 
[tJrf 1 • 

4.5 THE BASIC THEOREM OF BIGEOMETRIC CALCULUS 

In view of the following theorem we say that the bigeo­

metric average fits naturally into the scheme of bigeornetric 

calculus. (We forego the discrete analogue.) 



4.6 The Bigeometric Integral 

The Basic Theorem of Bigeometric Calculus 

If Dh is continuous on a positive interval [r,s], 
N 

then its bigeometric average on [r,s] equals the 

bigeometric gradient of hover [r,s], that is, 

h(s) 1/[ln(s)-ln(r)] 

• 
h(r) 

29 

The preceding theorem provides an immediate solution to 

the following problem, which will motivate our definition of 

the bigeometric integral. 

The Basic Problem of Bigeometric Calculus 

Suppose that the value of a positive function h 

is known at a positive argument r, and suppose 

that f, the bigeometric derivative of h, is con­

tinuous and known at each number in [r,s]. Find 

h ( s) • 

Solution 

h(s) = h(r). [Msf] [ln(s) -ln(r) 1. 
~r 

4.6 THE BIGEOMETRIC INTEGRAL 

The bi9eometric integral of a continuous positive func­

tion f on a positive interval [r,s] is the positive number 

[Msf][ln(s)-ln(r)] 
'Wr 

A's 

and is denoted by / f. 
~r 

Air 
We set / f = 1. 

.._,r 

The bigeometric integral is a weighted bigeometric aver-
• age, s1.nce 

Ns j f = ~:{f[ln(s)-ln(r)1}. 
~r 

Als 
Furthermore, J f equals the positive limit of the convergent 

~r 

sequence whose nth term is the product 
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where a1 , ••• ,an is then-fold geometric partition of [r,s], 

and kn is the common value of a2;a1 , a 3;a2 , ••• ,an/an-l" 

Also, 

Ns 
The operator J is multiplicative: 

~r 

~'~s s ....,s 1 (f•g) . I g. - f -
~r Nr 

41Vs ~s c 
/ (fc) '- f 

- c constant. - I 

-vr 4Vr 

The bigeometric integral is the only operator that has 

the following three properties. 

1. For any positive interval [r,s] and any positive 
constant function h(x) =bon [r,s], 

""'s 1 h = b ln ( s) -ln ( r) • 
~r 

2. For any positive interval (r,s] and any positive 

functions f and g that are continuous on [r,s], if 

f(x) < g(x) for every number x in [r,s], then -
Ns ~s 

1 f ~ I g. 
4Wr 4Wr 

3. For any numbers r,s,t such that 0 < r < s < t, and 

any positive function f continuous on [r,t], 

""s t t 1 f • f = f • 
._, r ""s 

4.7 THE FUNDAMENTAL THEOREMS OF BIGEOMETRIC CALCULUS 

The bigeometric derivative and integral are 'inversely' 

related in the sense indicated by the following two theorems. 

First Fundamental Theorem 

If f is positive and continuous on a positive inter­

val [r,s], and 

then 

,_.,X 

g (x) = / f, for every number x in [r, s] , 
"'r 

1/W 

Dg = f, on [r,s]. _.., 
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Second Fundamental Theorem 

If ~his continuous on a positive interval [r,s], then 
Ns 

(Dh) = h(s)/h(r). 
"' 

The preceding theorem is useful for evaluating bigeo­
metric integrals. 

4.8 RELATIONSHIPS TO THE CLASSICAL CALCULUS 

Let G8 £ be the bigeometric gradient of a positive func­._,r -ti0n f OVer a eositiVe interval [r,S] 1 and Set f(X) = 
ln(f(ex)), r = ln(r), i = ln(s) I and a= ln(a). (Of course, 

G~l is the classical gradient off over [f,J].) Then we have 

the following uniform relationships between the corresponding 

operators of the bigeometric and classical calculi. 

(1) 

(2) 

( 3) 

(4) 

~s s-
c..; f = exp{Gff} ---r 

Ill# -[Df] (a) = exp{ [Df] (a)} 
N 

N 

Remark. For (2) we assume that [Df] (a) exists; for (3) and 
IV 

(4), that f is continuous on [r,s]. 

The preceding observations clearly indicate that for 

each theorem in classical calculus there is a corresponding 

theorem in bigeometric calculus, and conversely. 



5.1 INTRODUCTION 

Chapter 5 

SYSTEMS OF ARITHMETIC 

In this chapter we discuss the general concept of an 

arithmetic, without which it would be impractical to con­

struct the non-Newtonian calculi in Chapter 6. We also 

present here one specific arithmetic, the geometric arith­

metic, which will be used in Section 6.10. In Chapter 7 

we shall discuss and use the quadratic arithmetic, and in 

Chapter 8, the harmonic arithmetic. 

5.2 ARITHMETICS 

The concept of a complete ordered field evolved from 

the axiomatization of the real number system, whose basic . 
* ideas are assumed known to the reader. Informally, a 

complete ordered field is a system consisting of a set A, 
• • • • four (binary) operations, +, -, x, I for A, and an order-

• inq relation < for A, all of which behave with respect to 

A exactly as +, 

of all numbers. 

dered field. 

-, x, /, < behave with respect to the set 

We call A the realm of the complete or-

There are infinitely-many complete ordered fields, 

all of which are structurally equivalent (isomorphic) • 

The real number system is nowadays conceived as an arbi­

trarily selected complete ordered field whose realm is 

denoted by R and whose operations and ordering relation 

are denoted by+, -, x, /, and<. 

By an arithmetic we mean a complete ordered field 

whose realm is a subset of R. (Although the term "arith­

metic" is commonly used for referring to the system or 

study of the positive integers, we have taken the liberty 

of using the term in the sense just indicated.) There are 

infinitely-many arithmetics, one of which is the real num-

* Complete ordered fields are discussed in many textbooks 
on modern algebra and in some works on analysis. A detailed 
new axiomatic treatment of the real number system is pre­
sented in the authors' Axiomatic Analysis, obtainable from 
Lee Press. 
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ber system, henceforth called the classical arithmetic. 

• • • • • The rules for handling any arithmetic (A,+,-,x,j,<) 

are exactly the same as the rules for handling classical 

arithmetic. For example, + and x are commutative and as­

sociative; x is distributive with respect to +; < is tran­

sitive; and there are two unique numbers 0 and i in A such 
• • • • that y + 0 = y and y x 1 = y, for every number y in A. The 

• • notation "y < z" is, of course, an abbreviation of "y < z -
or y = z." 

Although all arithmetics are structurally equivalent, 

only by distinguishing among them do we obtain suitable 

tools for constructing all the non-Newtonian calculi. But 

the usefulness of arithmetics is not limited to the con­

struction of calculi; we believe there is a more fundamen­

tal reason for considering alternative arithmetics: they 
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may also be helpful in developing and understanding new sys­

tems of measurement that could yield simpler physical laws. 

In his Foundations of Science (formerly titled, Physic~: 

The Elements) , Norntan Robert Campbell, a pioneer in the the­

ory of measurement, clearly recognized that alternative arith­

metics might be useful in science, for he wrote, "we must rec­

ognize the possibility that a system of measurement may be ar­

bitrary otherwise than in the choice of unit; there may be ar­

bitrariness in the choice of the process of addition." 

5. 3 a-ARITHMETIC 

A generator is a one-to-one function whose domain is R 

and whose range is a subset of R. For example, the following 

are generators: the identity function I, the function exp, 
and the function x 3 • 

Consider any generator a with range A. By a-arithmetic 

we mean the arithmetic whose realm is A and whose operations 

and ordering relation are defined as follows. 
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a-addition ••••••••••• y + z = a{a-1 (y) + a-1 (z)} 

a-subtraction •••••••• y ~ z = a{a-1 (y) - a-1 (z)} 

a-multiplication ••••• y X z = a{a-1 (y) x a-1 (z)} 

a-division (z ~ 0) ... y i z = a{a-1 {y) I a-1 {z)} 

• 
a-order •••••••••••••• y < z if and only if 

a-1 {y) < a-1 {z) 

We say that a 9enerates a-arithmetic; for example, the 
identity function generates classical arithmetic, and the 

function exp generates geometric arithmetic, which is dis­

cussed in Section 5.4. Each generator generates exactly one 

arithmetic, and, conversely, each arithmetic is generated by 

exactly one generator. 

All concepts in classical arithmetic have natural coun­

terparts in a-arithmetic, some of which we now discuss. 

The a-positive numbers are the numbers x in A such that 
• • • • 0 < x; the a-negative numbers are those for which x < 0. The 

• • a-zero, 0, and the a-one, 1, turn out to be a(O) and a(l) • 
• The a-integers consist of 0 and all the numbers that result 

• • • by successive a-addition of 1 to 0 and by success1ve a-sub-
• . 

traction of 1 from 0. Thus the a-integers turn out to be the 

following: 

• • • I a(-2), a(-1), a(O), a(l), a(2), ••• 

• • For each integer n, we set n = a(n). Of course, if n 

is an a-positive integer, then 

• • • • • 
n = 1 + • • • + 1. 

n terms 

The a-absolute value of a number x in A is 

• • 
X if X > 0 • • 

I X I 0 • - if X = 0 -
• • • • O-x if X < 0 
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• • • The a-average of n numbers ul' ••• , un 1n A l.S the un1.que 

number u in A such that 
• 

• • • • u + + u - ul + + u • • • - • • • • n 
n terms 

It turns out that u equals 

which equals 
-1 -1 a{(a (u1 ) + ••• +a (un)]/n}. 

We shall occasionally refer to the a-average as the nat­

ural average in a-arithmetic. The natural average in clas­

sical arithmetic is the arithmetic average; the natural aver­
age in geometric arithmetic is the geometric average. 

Although the a-average is widely known, we have seen no 

reference to it as the natural counterpart in a-arithmetic of 
the arithmetic average in classical arithmetic. Indeed, the 

a-average has the same properties in the context of a-arith­

metic as the arithmetic average has in the context of classi­
cal arithmetic. (An important example will be given in Sec­
tion 10. 4.) 

An ~-progression (or natural pro9ression in a-arithmetic) 

is a finite sequence of numbers u1 , ••• ,un in A such that 
• ui+l- ui is the same for every integer i from 1 to n-1. In 

classical arithmetic the natural progressions are the arith­

metic progressions; in geometric arithmetic they are the geo­

metric progressions. 
• For any numbers r and s in A, if r < s, then the set of 

• • all numbers x in A such that r < x < s is called an a-inter-- -• • • val, is denoted by [r,s], has a-extent of s- r, and has an 
• a-interior consisting of all numbers x in A such that r < 

• 
X < s. 

An a-partition of an a-interval lr,sf is any a-progres­

sion whose first and last terms are r and s. An a-partition 

is n-fold if it has n terms. 
Let {un} be an infinite sequence of numbers in A. Then 

there is at most one number u in A such that every ~-interval 
with u in its a-interior contains all but finitely-many terms 
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If there is such a number u, then {u } is said to n 
be a-convergent to u, which is called 

For a = I, a-convergence reduces 

the a-limit of {un}· 
to classical conver-

gence. 

5.4 GEOMETRIC ARITHMETIC 

The arithmetic generated by the function exp will be 

called geometric arithmetic rather than exp-arithmetic. Sim­

ilarly, the notions in geometric arithmetic will be indicat~ 

by the adjective "geometric" rather than by the prefix "exp." 

For example, the natural average will be referred to as the 

geometric average, a usage that is consistent with generally 

accepted terminology. 

In Section 6.10 we shall show that by apt use of geomet­

ric arithmetic one can readily obtain the geometric calculus, 

the anageometric calculus, and the bigeometric calculus. 

Geometric arithmetic has the following features. (The 

letters y and z represent arbitrary positive numbers.) 

Generator ••••••••••••••••• exp 

Realm. • • • • • • • • • • • • • • • • • • • • R+ 

Geometric zero •••••••••••• 1 

Geometric one ••••••••••••• e 

[ = exp(O)] 

[ = exp ( 1)] 

Geometric sum exp{ln(y) + ln(z)} 
• • • • • • • • • • • 

of y and z = yz 

Geometric difference exp{ln(y) - ln(z)} 
• • • • • • 

between y and z - y/z -

Geometric product exp{ln(y) •ln(z)} 
• • • • • • • • • ln (z) ln(y) of y and z -= y - z 

Geometric quotient exp{ln(y)/ln(z)} 
• • 1/ln ( z) of y and z, (z .;. 1) -- y 

Geometric order ••••••••••• Identical with classical order 

Geometric positive numbers Numbers greater than 1 

Geometric negative numbers Positive numbers less than 1 

Geometric intervals ••••••• Identical with 
positive intervals 
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Geometric extent of [y,z] ••••• z/y 

Natural average ••••••••••••••• Geometric average 

Natural progressions •••••••••• Geometric progressions 

Geometric partition of [y,z] •• Any geometric progression 
whose first and last 
terms are y and z 
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Geometric convergence is equivalent to classical conver­

gence in the sen$e that a sequence {pn} of positive numbers 

geometrically converges to a positive number p if and only 

if {pn} classically converges to p. 

Geometric arithmetic should be especially useful in sit­

uations where products and ratios provide the natural methods 

of combining and comparing magnitudes. Of course, geometric 

arithmetic applies only to positive numbers, since the range 

of exp is R+. But it is a simple matter to construct a geo­

metric-type arithmetic that applies to negative numbers: one 

simply uses the generator -exp, which assigns to each number 

x the negative number -ex. 



6.1 INTRODUCTION 

Chapter 6 

THE *-CALCULUS 

For the remainder of this book, a and B are arbitrarily 

selected generators and * ("star") is the ordered pair of 

arithmetics (a-arithmetic, B-arithmetic). The following 
notations will be used. 

Realm •••••••••••• 

Addition ••••••••• 

Subtraction •••••• 

Multiplication ••• 

Division ••••••••• 

Order •••••••••••• 

a-Arithmetic a-Arithmetic 

A 

• 
+ 

• -
• 
X 

• 
I 
• 
< 

B 

•• -
•• 
X 

•• 
I 
•• < 

It should be understood that all the definitions in 

Chapter 5 apply equally well to a-arithmetic. For example, 
a-convergence is defined by means of a-intervals and their 

a-interiors. 

In the *-calculus, a-arithmetic is used on arguments 

and a-arithmetic is used on valuesJ in particular, changes 
in arguments and values are measured by a-differences and 
a-differences, respectively. The operators of the *-calcu­
lus are applied only to functions with arguments in A and 

values in B. Accordingly, unless indicated or implied oth­

erwise, all functions are assumed to be of that character. 

Heuristic guides for selecting appropriate gradients, 

derivatives, integrals, and averages are discussed in Chap­

ter 9. 

The *-limit of a function f at a number a in A is, if 
it exists, the unique number b in B such that for every in­

finite sequence {an} of arguments of f distinct from a, if 

{an} a-converges to a, then {f(an)} a-converges to b. We 

write 
*-lim f(x) = b. 
x-fa 
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A function f is *-continuous at a number a in A if and 

only if a is an argument of f and 

*-lim f(x) = f(a). 
x•a 

When a and S are the identity function I, the concepts 

of *-limit and *-continuity are identical with those of clas­

sical limit and classical continuity, but that is possible 
even when a and a do not equal I. 

The isomorphism from a-arithmetic to B-arithmetic is 
the unique function t (iota) that possesses the following 

three properties. 

1. 1 is one-to-one. 

2. 1 is on A and onto B. 

3. For any numbers u and v in A, 

• 
t(u + v) = • • 

1 (u) + 1 (v) , 

1 (u .:. v) = t (u) :.: 1 (v) , 

1(U 
• 
x v) = •• 

1 (u) x 1 (v) , 

• •• • 
t (u I v) = 1 (u) I 1 (v) , v ~ 0, 

• u < v if and only if 
•• 

\ (u) < 1 (v) • 

It turns out that 1(x) = 6{a-1 (x)} for every number x 

in A, and that t(n) = n for every integer n. 
. -1 .• 

Since, for example, u + v = 1 {t(u) + 1(v)}, it should 

be clear that any statement in a-arithmetic can readily be 

transformed into a statement in a-arithmetic. 

6.2 THE *-GRADIENT 
• • 

The B-change of a function f over an a-interval [r,s] 

is the number f(s) ~ f(r) in B. 

A *-uniform function is a function that is on A, is *­
continuous, and has the same a-change over any two a-inter­

vals of equal a-extent. Clearly every constant function on 

A is *-uniform. 
The *-uniform functions are those expressible in the 

• • fornt 1 { (m x x) + c} , where m and c are constants in A and 
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• • 

x is unrestricted in A. By choosing m = 1 and c = 0, we see 

that 1 is *-uniform. 

It is characteristic of a *-uniform function that for 

each a-progression of arguments, the corresponding sequence 

of values is a a-progression. 

The *-slope of a *-uniform function is its a-change 
• 

over any a-interval of a-extent 1. For example, the *-slope 
• • of the function l{(m x x) + c} turns out to be t(m). In par-

•• 
ticular, the *-slope of 1 equals 1, and the *-slope of a con-

•• stant function on A equals 0. 
• • 

The *-g;adient of a function f over [r,s] is the *-slope 

of the *-uniform function containing (r,f(r)) and (s,f(s)), 
and turns out to be 

•• 
[f(s) ~ f(r)]/[t(s) ~ t(r)]. 

The preceding expression yields the indeterminate form 
•• o/o when r = s. 

6.3 THE *-DERIVATIVE 

Throughout this section, f is assumed to be a function 

defined at least on an a-interval containing the number a in 

its a-interior. 
* If the following *-limit exists, we denote it by [Df] (a) 

call it the *-derivative of f at a, and say that f is *-dif­

ferentiable at a: 

*-lim{[f(x) ~ f(a)]/[t(x) ~ t(a)]}. 
x+a 

* If it exists, [Of] (a) is necessarily in B. 
* The *-derivative of f, denoted by Df, is the function 

* that assigns to each number tin A the number [Df](t), if it 

exists. 
* The operator D is B-additive and B-homogeneous, that is 

* .. * .. * D(f + g) = Df + Dg, 

* .. .. * D(c x f) = c x Of, c constant in B. 

* If f is *-uniforin, then Of has a constant value equal 

to the *-slope of f. Indeed, only *-uniform functions have 

*-derivatives that are constant on A. 
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Now we generalize the concept of classical tangent de­

fined in Section 1.3. 

The *-tangent to a function fat the point (a,f(a)) is 

the unique *-uniform function g, if it exists, which possess­

es the following two properties: 

1. q contains (a,f(a)). 

2. For each *-uniform function h containing (a,f(a)) 

and distinct from g, there is an a-positive number 
• • • 

p such that for every number x in [a ~ p, a + p] 

but distinct from a, 
•• •• •• •• I g (x) ~ f (x) f <t I h (x) ~ f (x) I . 

* It can be proved that [Df] (a) exists if and only if f 
* has a *-tangent at (a,f(a)), and that if [Of] (a) does exist, 

it equals the *-slope of that *-tangent. 

We say that two functions are *-tangent at a common 

point if and only if they have the same *-tangent there. 
* The derivatives [Of] (a) and [Of] (a) do not necessarily 

coexist and are seldom equal; however, if the following 

exist, 

* then [Of] (a) and [Df] (a) do coexist, and the *-tangent to f 

at (a,f(a)) is, if it exists, classically tangent there. 

6.4 THE *-AVERAGE 
• • 

The *-average of a *-continuous function f on [r,s] is 

denoted by ~sf and defined to be the a-limit of the a-conver­
r 

gent sequence whose nth term is the B-average of f(a1 ) , ••• , 
• • 

f(a ), where a1 , ••• ,a is then-fold a-partition of [r,s]. n n 
The operator ~~ is a-additive and a-homogeneous (Section 

6. 3). 
• • 

The *-average of a *-uniform function on [r,s] is equal 

to the a-average of its values at r and s, and is equal to 

its value at the a-average of r and s. 

The *-average is the only operator that has the follow­

ing three properties. 
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1. 

2. 

3. 

The *-Calculus 
• • For any a-interval [r,s] and any constant function 

• • h(x) =bon [r,s], 

*s 
Mrh = b. 

• • For any a-interval [r,s] and any functions f and g 

that are *-continuous on fr,sJ, if f(x) < g(x) for -• • every number x in [r,s], then 

• • For any numbers r,s,t in A such that r < s < t, 
• • and any function f *-continuous on [r,t], 

[t(s) ~ t(r)] •• + 

--

[1 (t) !.• 1 (s) 1 

[ \ (t) •• •• *t 
- 1 (r)) X M f. 

r 

6.5 THE BASIC THEOREM OF *-CALCULUS 

We begin with the discrete analogue. 

The Discrete Analogue of the 
Basic Theorem of *-Calculus 

Let h be a discrete function whose arguments a1 , ••• ,an 
• • are an a-partition of [r,s]. Then the B-average of 

the following n-1 *-gradients is equal to the *-gradi­

ent of hover fr,sf: 
•• 

[h(ai+l) :.• h(ai) 1 / [1 (ai+l) ~ 1 (ai) 1, 

i = 1, ..• ,n-1. 

In view of the following theorem we say that the *-aver­

age fits naturally into the scheme of *-calculus. 

The Basic Theorem of *-Calculus 
* . . If Dh is *-continuous on [r,s], then its *-average on 

• • • • 
[r,s] equals the *-gradient of hover [r,s], that is, 

*s * .. 
Mr(Dh) = [h(s) :.: h(r) 1 I [1 (s) :.: 1 (r) 1. 

The preceding theorem provides an immediate solution to 

the following problem, which will motivate our definition of 

the *-integral. 
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The Basic Problem of *-Calculus 

Suppose that the value of a function h is known at 

an argument r, and suppose that f, the *-derivative 

of h, is *-continuous and known at each number in 
• • 
[r,s]. Find h(s). 

Solution 

•• J •• *s J h(s) = h(r) + 1 [t(s) ~ t(r)] x Mrf • 

6.6 THE *-INTEGRAL 
• • 

The *-integral of a *-continuous function f on [r,s], 
* 

denoted by j(sf, is the following number in B: 
r 

* 
We set /r f = 0. 

r 

[t(s) ~ t(r)] 

The *-integral is a weighted *-average, since 

* 
/

sf -- *s J Mr 1 [ t ( s ) :.: 
r 

t(r)] X f J. 

* 
/

sf Furthermore, equals the B-limit of the B-convergent 
r 

sequence whose nth terut is 

• • 
where a 1 , ••• ,an is then-fold a-partition of [r,s], and k

0 

is the common value of a 2 ~ a 1 , a 3 ~ a 2 , ••• ,an ~ an-l· 

(If a is classically continuous and B = I, then the 

*-integral is a Stieltjes integral.) 
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The *-integral is B-additive and S-homogeneous (Section 

6.3) and is the only operator that has the following three 

properties. 
• • 

1. For any a-intervpl [r,s] and any constant function 
• • 

h(x) =bon [r,s], 

* 

/
sh 

r 
= [l(S):.! t(r)] •• 

X b. 
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• • 

2. For any a-interval [r,s] and any functions £ and q 
• • •• that are *-continuous on [r,s], if f(x) < g(x) for -• • 

every number x in [r,s1, then 

* * Js f ~ /s g. 
r r 

• • 3. For any numbers r,s,t in A such that r < s < t, 
• • 

and any function f *-continuous on [r 1 t 1 1 

* * * /sf •• ltf /t f. + --
r s r 

6.7 THE FUNDAMENTAL THEOREMS OF *-CALCULUS 

The *-derivative and *-integral are 'inversely' related 

in the sense indicated by the following two theorems. 

First Fundamental Theorem 
• • 

If f is *-continuous on [r,s1, and 

• • 
* 

g(x) = /xf, 
r 

for every number x in [r, s 1 , 

then 
* . . 
Dg = f, on [r,s]. 

Second Fundamental Theorem 

* • • • 
If Dh is *-continuous on [r, s 1 , then 

* Js * •• (Dh) - h (s) - h (r) • -
r 

6.8 RELATIONSHIPS TO THE CLASSICAL CALCULUS 

In this section we indicate the uniform relationships 

between the corresponding notions of the *-calculus and c1as­

sical calculus. 
For each number a in A, let a = a-1 (a). Let f be a 

-function with arguments in A and values in B, and set f(t) = 
a-1 {£(a(t))}. 

Then *-lim f(x) and lim f(t) coexist, and if they do 
x•a t•~ 

exist, 

*-lim f (x) = a ~lim l (t) J • 
x~a t~a 
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-Furthermore, f is *-continuous at a if and only if f is clas-

sically continuous at a. 
G*sf • • 

If is the *-gradient of f over [r,s], then 
r 

*s { s -} Grf = B Gff , 
-

where G;f is the classical gradient off over [f,§]. 

* -The derivatives [Of] (a) and [Df] (a) coexist, and if 

they do exist, 
* [Dfl (a) = B{ [Of] (a)}. 

• • 
And if f is *-continuous on [r,s], then 

~~f = a{M~f}, and 

The following facts are also worth noting. Let a E A 

and b £ B. If a and a are classically continuous at a-1 (a) 

and a-1 (b), respectively, then 

*-lim f(x) = b if and only if lim f(x) = b. 
x-+a x+a 

If a and a are classically continuous at a-1 (a) and 

a-1 (f(a)), respectively, then f is *-continuous at a if and 

only if f is classically continuous at a. 

6.9 RELATIONSHIPS BETWEEN ANY TWO CALCULI 

In this section we indicate the uniform relationships 

between the corresponding notions of any two given calculi, 
-the *-calculus and the *-calculus. 

For the *-calculus there are two generators, a and S, 
-which generate arithmetics with realms A and B. For the *-

calculus there are two generators, a and a, which generate 

arithmetics with realms A and B. 
Since all arithmetics are isomorphic, there is a unique 

isomorphism T1 from a-arithmetic to a-arithmetic and a unique 

isomorphism T2 from a-arithmetic to a-arithmetic. For each 
- . -number x in A let x be the number T1 (x) 1n A, and for each 

number y in B let Y be the number T2 (y) in B. For each func-
-tion f with arguments in A and values in B, let f be the 
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function consisting of all ordered pairs (x,y) , where (x,y) 

is an arbitrary ordered pair in f. Clearly f has arguments 
- -in A and values in B. 

-B (i,Y> = (T1 (x) ,T2 (y)) 

and 

B 

I 

y I 

I 

I 

I 
T21 

I 
I 

I 

I 

I 
I 

-y 

I 
I 

I 

• -1\ 
I 

I 

I -
I X -

~,~------.---~A 
I /71 

I , 
I / 

I /~ 
(x,y) // 1 

~ 
/ 

------~~--------~A 
X 

The following notations will also be used. 

-*-Calculus *-Calculus 

Limits ••••••••• *-lim -*-lim 
-* * Gradients •••••• G G 
-* * Derivatives •••• D D 
-* * Averages ••••••• M M 
-* * 

Integrals •••••• I I 
Let f be a function with arguments I A and l.n 

let the number a be in A. Then the following 

- -*-lim f (x) , *-lim f (t); -x~a t-ta 

and if they do exist, then 

*-lim f(x) = *-lim f(t). -x-ta t-ta 

values • l.n 

coex·ist: 

Furthermore, f is *-continuous at a if and only if f is *­
continuous at a. 

B 
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If r and s are • numbers in A such that r < s, then 
-*s *1-

Grf = Grf· 

-* *- -The derivatives [Df] (a) and [Df] (a) coexist, and if they 
do exist, -* *- -[Df] (a) = [Df] (a). 

Finally, iff is *-continuous on [r,s], then 

and 

The preceding observations clearly indicate that each 

theorem in any given calculus has an analogue, or correspon­

dent, in every other calculus. In particular, each theorem 
in classical calculus has an analogue in *-calculus, and con­

versely. As an illustration we state the followi~q theorem. 

First Mean Value Theorem of *-Calculus 
• • 

Let f be *-continuous on (r,s] and *-differentiable 
• • at each number x in A for which r < x < s. Then 

• • there exists a number c in A such that r < c < s 
* and such that [Df] (c) equals the *-gradient of f 

• • 
over [r,s]. 

6.10 APPLICATIONS OF GEOMETRIC ARITHMETIC 

By appropriately specifying a and B one can obtain from 

the *-calculus the calculi developed in Chapters 1-4: 

Calculus a s 
classical ••••• I I 

geometric ••••• I exp 

anageometric •• exp I 

bigeometric ••• exp exp 

Thus, one uses geometric arithmetic on function values 

in the geometric calculus, on function arguments in the ana­
geometric calculus, and on both arguments and values in the 

biqeometric calculus. 
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In defining anageometric slope (Section 3.2), we used 

geometric intervals of geometric extent e, one reason for 

which appears in Note 3. But the fundamental reason stems 

from our desire that the anageometric calculus be the *-cal­

culus for which a = exp and B = I, since there the *-slope 
• 

is defined by means of a-intervals of a-extent 1, which 

equals e. 

Similarly, geometric intervals of geometric extent e 

were used in defining bigeometric slope (Section 4.2) to 

assure that the bigeometric calculus be the *-calculus for 

which a = B = exp. 

Our definition of the geometric derivative (Section 2.3) 

required that it be positive. The fundamental reason for the 

restriction rests upon our desire that the geometric calculus 

be the *-calculus for which a = I and B = exp, since there 

the *-derivative,if it exists, must necessarily be in the 

realm of a-arithmetic, that is, in R+. A similar reason un­

derlies the stipulation that the bigeometric derivative be 

positive (Section 4.3). 

The operators of the geometric calculus are applied only 

to functions with positive values. However, a geometric-type 

calculus for negative (valued) functions can easily be ob­

tained by choosing a = I and 8 = -exp. 

By choosing a = -exp and B = I, one obtains an anageo­

metric-type calculus for functions with negative arguments. 

By choosing a = -exp and S = -exp, one gets a bigeometric­

type calculus for functions with negative arguments and val­

ues. Or one could, for example, choose a = -exp and S = exp, 

thereby obtaining a bigeometric-type calculus for functions 

with negative arguments and positive values. 

Our emphasis, thus far, on the geometric family of cal­

culi may be explained by the fact that these calculi possess 

gradients and derivatives which are independent of the units 

used in measuring certain magnitudes. The invariance of gra­

dients and derivatives is discussed more generally in Section 

9.2. 

Of course an endless variety of calculi can be obtained 

by using geometric arithmetic in tandem with other arithmetics 

For instance, one could choose a = exp and B = tanh. Other 
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specific calculi are treated in Chapters 7 and 8. In Note 4 

we discuss briefly the sigmoidal arithmetic and related cal­

culi, which may prove useful in statistics and biology. 

6.11 GRAPHICAL INTERPRETATIONS 

Except for the concept of •-tangency introduced in Sec­

tion 6.3, we have thus far treated the •-calculus not geomet­

rically but analytically, which was the way we conceived it. 

In this section we give two graphical interpretations of the 

•-calculus. 

By •-paper we mean paper that is ruled off in squares 

and marked thus: 
B 

I ~ 

.,.. 

' • .d 6 i / -1 
A 

•• 
-1 

For example, if a = I and 6 = exp, then •-paper is semi­

log paper that is logarithmically scaled on the vertical axis. 

A •-point is an ordered pair of numbers in A and B, in 

that order. 
* Inforuaally, the •-distance, d(P1 ,P2), between two *-

points P1 and P2 is deteru,ined by plotting them on •-paper 
and measuring their separation with the 'S-ruler' provided 

by the vertical axis. The result is a a-nonnegative number. 

(The concept of •-distance will be discussed formally in 

Section 10.2.) 

The •-sraph of a set of •-points is the result of plot­

ting them on •-paper. As expected, the •-graph of every •­
uniform function is a straight line. 

Consider the •-graph of a •-uniform function g whose •­

slope is 6-positive. Let P1 and P 2 be two distinct •-points 

on g, as shown below, and let P3 be the vertex of the indi­

cated right triangle. 
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B 

----~--~----------------------~A • 
1 

* .. * Then the •-slope of q equals d(P2 ,P3) I d(P1 ,P3). With obvi-

ous adjustments an interpretation may be provided if the •-
•• 

slope of q is B-negative. If the •-slope of g is 0, then the 

•-graph of g is horizontal. 

In Section 6.3 we observed that the •-derivative of a 

function f at an argument a is equal to the •-slope of the •­

unifornt function g that is •-tangent to fat (a,f(a)). The 
•-graph would look like this: 

B 

f 

•• 
1 

--~--~~------------------~A • 
1 

The purely ari~hmetic nature of the •-average surely ob­

viates a graphic interpretation thereof. 

Now we interpret the •-integral. All references here to 

geometric figures are intended to apply to figures as they 

appear on •-paper. The •-area of a rectangle is defined to 

be the B-product of its '•-length' and '•-width.' The •­
area of a unit square (i.e., a square whose sides all have 

•• •• 
length 1) turns out to be 1. If a rectangle can be decem-

•• posed into n unit squares, then its •-area equals n, as ex-

pected. 
• • 

Let f be a B-positive, •-continuous function on [r,s], 
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and let S be the region, on •-paper, bounded by the •-graph 

of f, the horizontal axis, and the vertical lines at r and s. 
By usinq a-partitions, rectangles, and the S-limit process, 

one can readily define the •-area of S, which turns out to 

* 
be /sf. 

r 

Another graphic interpretation of the •-calculus may be 

obtained by using Cartesian paper, by which we mean paper 

that is ruled off in squares and marked thus: 

I ~ 

1 

' -1 0 1 
, 

_, 

The C-graph of a •-point (a,b) is the graph of the point 

(a-1 (a),B-1 (b)) on Cartesian paper. The C-qraph of a set of 

•-points consists of the C-graphs of all the individual •­
points. The C-graph of each •-uniform function is a straight 

l.ine. 

If P1 and P2 are •-points and t is the Euclidean dis­
tance between their c-graphs, then the •-distance between P1 
and P2 equals B(t). 

If f is a •-uniforiu function and m is the classical 
slope of its C-graph, then the •-slope off equals S(m). 

• • 
If f is a B-positive, •-continuous function on [r,s], 

and w is the (usual) area of the region bounded by the c­

graph of f, the horizontal axis, and the vertical lines at 

a-1 (r) and a-1 (s), then * 
/sf = B (w). 
r 



Chapter 7 

THE QUADRATIC FAMILY OF CALCULI 

7.1 THE QUADRATIC ARITHMETIC 

In this chapter we obtain three specific calculi from 

the *-calculus by using the classical and quadratic arith­

metics. 

Quadratic arithmetic is the arithmetic generated by 

the function that assigns to each number x the number 

1/2 
X --

rx if 

0 if 

X > 0 

X = 0 

-1-x if x < 0 

That function is on R, onto R, and one-to-one; its in­

verse assigns to each number x the number 

--2 
X --

x2 if x > 0 

0 
2 -x 

if 

if 

X = 0 

X < 0 

For any numbers y and z, we have 

(yz)l/2 

(y2)I72 --

--

y 

1/2 1/2 y •z , 

--
Quadratic arithmetic has the following features. (The 

numbers y and z are arbitrary.) 

Realm ••••••••••••••••••••• 

Quadratic zero •••••••••••• 

Quadratic one ••••••••••••• 

Quadratic addition •••••••• 

Quadratic subtraction ••••• 

Quadratic multiplication •• 
Quadratic division •••••••• 
Quadratic order ••••••••••• 
Quadratic intervals ••••••• 
Quadratic convergence ••••• 

R 

0 

1 
- -- -

y(f) (y 2 + z2)1/2 z --
- -- -

Y e z (y 2 z2)1/2 - --

Identical with 

corresponding 

classical notions 

Quadratic extent of [y,z]. z e y 

52 
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The quadratic average of n numbers u1 , •.. ,un turns out 

to be 

which reduces to the well-known root mean square when the u. 
1 

are non-negative. The definitionsof quadratic progressions 

and quadratic partitions specialize readily from those of 

a-progressions and a-partitions in Section 5.3. 

Quadratic arithmetic is a member of the infinite family 

of power arithmetics discussed in Note 5. 

7.2 THE QUADRATIC CALCULUS 

The guadratic calculus is the *-calculus determined by 

the ordered pair * whose members are classical arithmetic 

and quadratic arithmetic, in that order. 

In the quadratic calculus, the operators are applied to 

functions with arguments and values in R, *-limits and *­

continuity are identical with classical limits and classical 

continuity, the isomorphism 1 is the generator of quadratic 

arithmetic, and the a-change of a function f over [r,s] is 

equal to 
== ==}172 

{[f(s)1 2 - [f(r)] 2 , 

which is negative if f(s) < f(r), zero if f(s) = f(r), and 

positive if f(s) > f(r). 

For the remainder of this section we shall use the ad­

jective "quadratic" instead of the prefix "*." 
The quadratically-uniform functions are expressible in 

the form (rnx + c) 112 , where rn and care constants and xis 

unrestricted in R. The quadratic slope of the preceding func-

t . 172 
~on equals m • 

The quadratic gradient of f over [r,s] equals 

- - I72 
[f(s)1 2 - [f(r)] 2 

• 
s - r 

0 

The quadratic derivative of f at a, denoted by [Df] (a), 
= 

coexists with [D(£2 )1 (a), and 



54 The Quadratic Family of Calculi 

- rn 
£1)£] (a) = { [D(f2) 1 (a)} • 

0 0 

If [Df] (a) exists, then [Df] (a) exists; and if [Of] (a) 
0 

exists and f(a) ~ 0, then [Df] (a) exists. Moreover, [Df] (a) 

exists if and only if f has a quadratic tangent T at (a,f(a)L 
0 

If [Df] (a) does exist, it equals the quadratic slope of T, 

and if, furthermore, f(a) ~ 0, then T is classically tangent 
to fat (a,f(a)). 

0 

Of course, Df is constant on R if and only if f is quad-

ratically-uniform. 

The quadratic average of a continuous function f on 

[r,s] equals 
1/2 

, 

which reduces to the root mean square when f is non-negative. 

The quadratic integral of a continuous function f on 
0 

[r,s], denoted by /sf, equals 
r 

s al: 1/2 1 (f2) , 
r 

which, for f non-negative, reduces to 

1/2 
• 

That expression appears often in the mathematical literature, 

though we have never seen it identified as an integral. 

All the operators of the quadratic calculus are homoge­
nous and quadratically additive; for example, 

0 0 

D(c•f) = c•Df, c constant, 
0 0 0 

D ( f ~ g) = Df ~ Dg. 

The Basic Theorem of Quadratic Calculus 
0 

If Of is continuous on [r, s] , then·· its quadratic 

average on [r,s] equals the quadratic gradient 

off over [r,s]. 
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The First Fundamental Theorem of Quadratic Calculus 

Iff is continuous on [r,s], and 

then 

0 

9 (x) = /xf, for every number x in [r, s], 
r 

0 

Dg = f, on [r,s]. 

The Second Fundamental Theorem of Quadratic Calculus 
0 

If Dh is continuous on [r,s], then 
0 

f s c Dh > = h c s > e h c r > • 
r 

7. 3 THE ANAQUADRATIC CALCULUS 
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The anaquadratic calculus is the *-calculus determined 

by the ordered pair * whose members are quadratic arithmetic 

and classical arithmetic, in that order. 

In the anaquadratic calculus the operators are applied 

to functions with arguments and values in R, *-limits and *­
continuity are identical with classical limits and classical 

continuity, the isomorphism 1 is the inverse of the genera­

tor of quadratic arithmetic, and the a-change of a function 

f over [r,s] equals f(s) - f(r), since here S = I. 
For the remainder of this section we shall use the ad­

jective "anaquadratic" instead of the prefix "*·" 
The anaquadratically-unifonn functions are expressible 

-= 

in the form mx2 + c, where m and c are constants and x is 
unrestricted in R. The anaquadratic slope of the preceding 

function equals m. 
The anaquadratic gradient of f over [r,s] equals 

f(s) - f(r) 
• 

2 2 
s - r 

The anaquadratic derivative of f at a, denoted by 

[Df] (a), coexists with, and is equal to, the classical de-

r~vative of the function f(x) = f(xi72) at a2
1 

:-= 

[Df] (a) = [Df](a2 ) • 
0 
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If [Df] (a) exists, then [Df] (a) exists; and if [Of] (a) 
0 

exists and a ~ 0, then [Df] (a) exists. Moreover, [Of] (a) 
0 0 

exists if and only if f has an anaquadratic tangent T at 

(a,f(a)). If [Of] (a) does exist, it equals the anaquadrat-
o 

ic slope of T, and if, furthermore, a ~ 0, then T is clas-

sically tangent to fat (a,f(a)). 

Also worth noting is the fact that [Df] (a), if it exists, 
0 

equals the classical ~erivative, at a, of f with respect to 

the function h(x) = x2 • 
Of course, Df is constant on R if and only if f is ana-

o 

quadratically-uniform. 

Let f be continuous on [r,s], and set f(x) = f(x112), 
- -- -- - average of f on r2, 2 

r = and s - s Then the anaquadratic - • 

[r, s 1 equals -1 J_sr, 
- -s - r r 

s 
and the anaquadratic integral off on [r,s], denoted by~ f, 

0 -
equals J_sf, which is the Stieltjes integral of f with respect 

r 
== 
2 to the function h(x) = x on [r,s]. 

All the operators of the anaquadratic calculus are addi­

tive and homogeneous. 

The Basic Theorem of Anaquadratic Calculus 

If Of is continuous on [r,s], then its anaquadratic 
0 

average on [r,s] equals the anaquadratic gradient 

of£ over [r,s]. 

The First Fundamental Theorem of Anaquadratic Calculus 

If f is continuous on [r,s], and 

then 

X 
g (x) = [ f, for every number x in [r ,s], 

r 
0 

Dg = £, on [r,s]. 
0 
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The Second Fundamental Theorem of Anaquadratic Calculus 

If Dh is continuous on [r,s], then 
0 

Js <ph) = h(s) - h(r). 
r 

0 

7.4 THE BIQUADRATIC CALCULUS 

The biquadratic calculus is the •-calculus determined by 

the ordered pair * both of whose members are quadratic arith­

metic. 

In the biquadratic calculus the operators are applied to 

functions with arguments and values in R, •-limits and •-con­

tinuity are identical with classical limits and classical con­

tinuity, the isomorphism 1 is the identity function I, and 

the a-change of a function f over [r,s] equals 

{ 
== ==}172 

[f(s)] 2 - [f(r)] 2 • 

For the remainder of this section we shall use the ad­

jective "biquadratic" instead of the prefix "*·" 
The biquadratically-uniform functions are expressible in 

the form (mx~ + c)I7!, where m and c are constants and x is 

unrestricted in R. The biquadratic slope of the preceding 

function equals m!7!. 
The biquadratic gradient of f over [r,s] equals 

[f(s)]'2- [f(r)]2 

52- /2 

1/2 

• 

The biquadratic derivative of f at a, denoted by 
-= 
2 

coexists with [Df] (a) where f(x) = [f(x112 >1 and a= 

0 

0 

[Df] (a) , 
0 

== 2 a ; and 

If a ~ 0 and f(a) ~ 0, then [Df] (a) and [Df] (a) coexist. 
0 

0 

Moreover, [Df·] (a) exists if and only if f has a biquadratic 
0 0 

at (a, f(a)). If [Df] (a) does exists, it equals the 
0 

tangent T 
biquadratic slope of T, and if, furthermore, a ~ 0 and f(a) ~ 
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0, then Tis classically tangent to fat (a,f(a)). 
0 

Of course, Df is constant on R if and only if f is bi-
o 

quadratically-uniform. 

Let f be continuous on [r,s], and set 

-r = r 2 , and i 2 = s • Then the biquadratic average of f on 
[r,s] equals 

1 

- - , 
s .. r 

and the biquadratic integral off on [r,s], denoted 
equals 

All the operators of the biquadratic calculus are homo 
qeneous and quadratically additive. 

The Basic Theorem of Biquadratic Calculus 
0 

If Df is continuous on [r,s], then its biquadratic 
0 

average on [r,s] equals the biquadratic qradient of 
f over [r,s]. 

The First Fundamental Theorem of Biquadratic Calculus 

Iff is continuous on [r,s], and 

then 

0 

g(x) = j[xf, for every number x in [r,s], 
r 

0 

0 

~ = £, on [r,s]. 

The Second Fundamental Theor~m of Biquadratic Calculus 
0 

If Db is continuous on [r,s], then 
0 

0 

l s o 
(Db) 

r o 
0 

- h(s) e h(r). 



Chapter 8 
THE HARMONIC FAMILY OF CALCULI 

8.1 THE HARMONIC ARITHMETIC 

In this chapter we obtain three calculi from the •-cal­
culus by usinq the classical and harnonic arithmetics. 

Harmonic arithmetic is the arithmetic generated by the 
function that assiqns to each number x the number 

1 1/x if x ~ 0 
= • 

X 0 if X = 0 

We shall also use the notation l#x. 
The preceding function is on R, onto R, one-to-one, and 

identical with its inverse, since 

for every number x. 
Harmonic arithmetic has the following features. (The 

numbers y and z are arbitrary.) 

Realm. • • • • • • • • • • • • • • • • • • • • R 

Harmonic zero ••••••••••••• 0 
Harmonic one •••••••••••••• 1 

Harmonic addition ••••••••• 
Har1nonic subtraction •••••• 
Harmonic multiplication ••• 
Harmonic division ••••••••• 

Harn~nic order •••••••••••• 
0 0 

y [±] z = l;(l#y + l;z) 
ytj z = l#(~y- l#z) 
Jldentical with corresponding 
lclassical notions. 

y ~ z if and only if l#y < l#z. 

Ha~1uonic interval 1 [y, z] •• All numbers x such that y ~ x ~ z. 
0 0 

Harmonic extent of [y 1 z] •• z E1 y 

The followinq facts should also be noted: the symbol; 

does not stand for harmonic division, which is identical with 
classical division; harmonic order is not identical with clas­
sical order (for example, -1 BJ -2); the generator of harmonic 
arithmetic is not classically continuous at 0; and harmonic 
convergence is not identical with classical convergence (for 
instance, the infinite sequence {n} is hantonically conver­
gent to 0). 

59 
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Harmonic sums occur frequently in science. For example, 

if two resistors of resistance y and z are connected in par­

allel, the combined resistance equals the harmonic sum of y 

and z. 

Since the natural average and natural progressions in 

harmonic arithmetic are direct extensions of the well-known 

harmonic average and harmonic progressions defined for pos­

itive numbers, we shall use the same names for the exten-
• s1.ons. 

The harmonic average of n numbers u1 , ••• ,un equals 

1 

• • • 

n 

+ (l#u ) n 

• 

Harmonic arithmetic is a member of the infinite family 

of power arithmetics discussed in Note 5. 

8.2 THE HARMONIC CALCULUS 

The harmonic calculus is the •-calculus determined by 

the ordered pair * whose members are classical arithmetic 

and harmonic arithmetic, in that order. 

In the harmonic calculus the operators are applied to 

functions with arguments and values in R, •-limits and •­

continuity are NOT always identical with classical limits 

and classical continuity, the isomorphism 1 is the generator 

of harmonic arithmetic, and the a-change of a function f over 

[r,s] equals 

1 
, 

l#f (s) - l#f (r) 

which is 0 when f(s) = f(r). 

For the remainder of this section we shall use the ad­

jective "harmonic" instead of the prefix "*·" 
The harmonically-uniform functions are expressible in 

the form l#(mx +c), where m and care constants and xis un­

restricted in R. The harmonic slope of the preceding func­

tion equals l#m. 
The harmonic gradient of f over [r,s] equals 
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1 
• 

l#f(s) - l#f(r) 

s - r 
0 

The harmonic derivative off at a, denoted by [Df] (a), 

coexists with [D(l#f)] (a), and 

0 1 
[Of] (a) -- • 

[D(l#f)](a) 
0 

If f(a) ; 0, then [Df] (a) and [Of] (a) coexist. More-
a 

over, [Df] (a) exists if and only if f has a harmonic tangent 
0 

Tat (a,f(a)). If [Df] (a) does exist, it equals the harmonic 

slope of T, and if, furthermore, f(a) ~ 0, then T is clas­

sically tangent to fat (a,f(a)). 
0 

Of course, Of is constant on R if and only if f is har-
monically-uniform. 

The harmonic average of a harmonically continuous func­

tion f on [r,s] equals 

1 

s - r 

1 

Js (l#f) 
r 

, 

which reduces to the traditional harmonic average when f is 

positive. 

The harmonic integral of a harntonically continuous func-

os 
tion f on [r,s], denoted by ~ f, equals 

r 

1 

/s (l#f) 
r 

• 

All the operators of the harmonic calculus are homoge­

neous and harmonically additive; for example, 

D(c•f) = c•Df, c constant, 

D(f (±]g) = Df [±) Dg. 
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The Basic Theorem of Harmonic Calculus 

If ~f is harmonically continuous on [r,s], then 
l ts har1uonic average on [r, s] equals the harmonic 
qradient off over [r,s]. 

The First Fundamental Theorem of Harmonic Calculus 

Iff is harmonically continuous on [r,s], and 

ox 
g(x) = ~ f, for every number x in [r,s], 

r 

then 
0 
Dg = f, on [r,s]. 

The Second Fundamental Theorem of Harmonic Calculus 
0 

If Dh is harmonically continuous on [r,s], then 

as 
~ cHh> = h(s> EJ h(r>. 
r 

8. 3 THE ANAHARMONIC CALCULUS 

The anaharutonic calculus is the •-calculus determined 
by the ordered pair * whose members are harmonic arithmetic 
and classical arithmetic, in that order. 

In the anaharmonic calculus the operators are applied 
to functions with arguments and values in R, •-limits and 
*-continuity are NOT always identical with classical limits 
and classical continuity, the isomorphism t is the (self­
inverse) generator of harutonic arithmetic, and the a-change 

0 0 
of a function f over [r,s] equals f(s) - f(r), since here 

B = I. 

For the remainder of this section we shall use the ad­

jective "anaharmonic" instead of the prefix "*·" 
The anaharmonically-uniform functions are expressible in 

the form m(l#x) + c, where m and c are constants and x is un­

restricted in R. The anaharmonic slope of the preceding func­

tion equals m. 
0 0 

The anaharmonic gradient of f over [r,s] equals 

f(s) - f(r) 
• 

l#s - 1//r 
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The anaharmonic derivative of f at a, denoted by lSf1 (a), 
coexists with, and is equal to, the classical derivative of 

the function l(x) = f(~x) at l§a: 

[Df] (a) = [Df] (l#a) • 
0 

then [Df] (a) and [Df] (a) coexist. Moreover, 
0 

if and only if f has an anahar1uonic tangent 
If a ~ 0, 

[Bf 1 (a) exists 
Tat (a,f(a)). If lBf1 (a) does exist, it equals the ana­
hariiionic slope of T, and if, furthe:r1uore, a ~ 0, then T is 

classically tangent to fat (a,f(a)). 

Of course, Bf is constant on R if and only if f is ana­
harmonically-uniforlu. 

0 0 
Let f be anaharmonically continuous on [r,s], and set 

f(x) = f(l#x), r = l#r, and s = l§s. Then the anaharmonic 
averaqe of f on Yr,sY equals 

-
- 1 - f_·t, 
s - r r 

and the anahaxmonic inteqral off on (r,sY, denoted by )(sf, 
- or 

equals J_ sf.. 
r 

All the operators of the anaharmonic calculus are addi­
tive and homogeneous. 

The Basic Theorem of Anaharmonic Calculus 
[] [] 

If Df is anaharmonically continuous on [r,s], then 
0 0 C 

its anahar1uonic average on [r ,s] equals the anabar-

monic qradient off over ?r,sY. 

The First Fundamental Theorem of Anaharmonic Calculus 

Iff is anaharmonically continuous on ?r,s9, and 

then 

o a 
for every number x in [r,s], 

0 0 
Dq = f, on [r,s]. 
0 

The Second Fundamental Theorem of Anaharmonic Calculus 
If Dh is anaharmonically continuous on ?r,sY, then 

0 

J s (Db) = h(s) - h(r). 
or o 
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8.4 THE BIHARMONIC CALCULUS 

The biharmonic calculus is the •-calculus determined by 

the ordered pair * both of whose members are harmonic arith­

metic. 

In the biharmonic calculus the operators are applied to 

functions with arguments and values in R, •-limits and •-con­

tinuity are NOT always identical with classical limits and 

classical continuity, the isomorphism 1 is the identity func-
o 0 

tion I, and the 6-chanqe of a function f over [r,s] equals 

1 
• 

l#f (s) - l#f (r) 

For the remainder of this section we shall use the ad­

jective "biharmonic" instead of the prefix "*·" 

The biharmonically-uniform functions are expressible in 

the form l#[m(l#x) +c), where m and care constants and x 

is unrestricted in R. The biharmonic slope of the preceding 

function equals ~m. 
0 0 

The biharn1onic gradient of f over [r, s 1 equals 

1 

l#f (s) - l#f (r) 

l#s - Vr 

• 

The biharmonic derivative of f at a, denoted by 

-coexists with [Df] (a), where f(x) = l#f(l#x) and a = 
0 

[Df1 (a) = l#[Df1 (a). 
0 

0 

0 
[Df] (a), 
0 

l#a; and 

If a ~ 0 and f(a) ~ 0, then [Of] (a) and [Df] (a) coexist. 
a 

0 
Moreover, [Df] (a) exists if and only if f has a biharmonic 

0 

tangent Tat (a,f(a)). If rB£1 (a) does exist, it equals the 
0 

biharmonic slope of T, and if, furthermore, a ~ 0 and f(a) ~ 

0, then Tis classically tangent to fat (a,f(a)). 
0 

Of course, Df is constant on R if and only if f is bi­
o 

harmonically-uniform. 
0 0 

Let f be biharmonically continuous on [r,s], and set 

f(x) = l#f(l/x) I r = l#r, and s = 1/s. Then the biharmonic 
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0 0 

average of f on [r 1 s] equals 

1 

- I 

1 /_sf 
- -

0 

and the biharmonic integral off on ?r,s), denoted by }(sf, 
equals or 

s - r r 

1 
• 

All the operators of the biharmonic calculus are homo­

geneous and harmonically additive. 

The Basic Theorem of Biharmonic Calculus 
0 • . . If Of 1s b1harmon1cally continuous on 
0 0 0 

its biharnonic average on [r,s] equals 
0 0 

monic gradient of f over [r,s]. 

0 0 
[r, s] 1 then 

the bihar-

The First Fundamental Theorem of Biharmonic Calculus 

The 

If f 

then 

is biharn~nically 
0 

0 0 
continuous on [r,s], and 

q(x) = /x f, 
or 

0 0 
for every number x in [r,s], 

0 0 0 
Dg = f, on [r,s]. 
0 

Second Fundamental Theorem of Biharmonic Calculus 
0 0 

is biharmonically continuous on [r,s], then 

OS 1 c8h> = h (s) a h (r). 
or o 



Chapter 9 

H E U R I S T I C S 

9.1 INTRODUCTION 

Since it is not unreasonable to suppose that there are 

situations where a non-Newtonian calculus might be useful, 

we shall propose some guides that may be helpful in selec­

ting appropriate gradients, derivatives, integrals, and av­

erages. Of course, one is always free to use any operator 

that is meaningful in a given context. 

We continue to let • be an ordered pair of arbitrarily 
• • • • •• 

chosen arithmetics, (A,+,~,x,;,<) and (B,+,~,x,/,<), with 

generators a and a, respectively. 

9.2 CHOOSING GRADIENTS AND DERIVATIVES 

Since the choice of a derivative tacitly involves a 

choice of the related gradient, we shall restrict our atten­

tion to gradients, for which three heuristic principles will 

be offered. 

Principle I 

If the natural methods of measuring changes in 

arguments and values are provided by a-differ­

ences and a-differences, respectively, then the 

•-gradient may be appropriate. 

For example, the classical gradient is appropriate for 

analyzing motion because changes in time and position are 

naturally measured by differences. The geometric gradient 

is appropriate for analyzing stock-price movements because 

changes in time and price are usually measured by differ­

ences and geometric differences (i.e., ratios). The bigeo­

metric gradient may be useful in psychophysics because 

changes in stimulus and sensation are often measured by geo­

metric differences. ("Equal stimulus ratios produce equal 

sensation ratios," according to s.s. Stevens.) 

Principle II 

If the functional relationship between two magnitudes 

would be, or is assumed to be, •-uniform under normal 

66 
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or ideal conditions, then the •-gradient may be 

appropriate. 
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For example, the geometric gradient may be appropriate 

for analyzing radioactive decay because the relationship of 

mass to time is assumed to be geometrically-uniform (i.e., 

exponential) under ideal conditions. Similarly, the sigmoi­

dal gradient may be useful in the study of growth that is 

normally sigmoidally-uniform (Note 4). The harmonic gradient 

may be appropriate for analyzing the relationship between two 

magnitudes that would normally be inversely proportional. 

Finally we observe that another reason for using the classi­

cal gradient in the study of motion is the assumption that 

under ideal conditions, i.e., the absence of forces, there­

lationship of position to time would be linear (Newton's 

First Law). 

It is worth noting that each one-to-one function f on R 

is •-uniform if one chooses a = I and S = f. This implies 

that each such function has a derivative that is constant 

on R. 

The statement of the third principle require~ some pre­

liminary definitions. 
• 

An a-translation is a function of the form x + k, where 

k is a constant in A and x is unrestricted in A. For example, 

the classical translations have the form x + k, and the qua­

dratic translations have the form 

{x2 + k2}1/2. 

• • Each a-translation x + k transforms 0 to k and preserves 

a-differences, that is, for any numbers u and v in A, the a­

difference between u and v equals the a-difference between 

the transforms of u arid v. Therefore one may say that each 

a-translation effects a shift in origin. 
• An a-similitude is a function of the form p x x, where 

p is an a-positive constant and x is an arbitrary a-positive 
• • number. Since each a-similitude p x x transforms 1 to p and 

preserves a-quotients, one may say that a-similitudes effect 

a change in unit. 

Of course, a-translations and 8-similitudes are defined 
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similarly. 

The classical similitudes are exp-translations, that is, 

geometric translations. Indeed, every similitude is a trans­

lation (each a-similitude is a y-translation, where y(x) = 
a (ex)). 

It is an important fact that the •-gradient (and •-de­

rivative) is invariant under all a-translations of the argu­
ments and all a-translations of the values. For example, the 
classical gradient is invariant under all classical transla­

tions of arguments and of values, and the geometric gradient 
is invariant under all classical translations of arguments 
and all geometric translations of values. 

Principle III 

If one desires a gradient that is invariant under 

all a-translations of arguments and all a-transla­
tions of values, then one should consider using 

the •-gradient. 

It is an interesting fact that the mixed second deriv-
~ 

ative D(D) is invariant under all classical translations and 
,.,., 

classical similitudes of values, and D(D) is invariant under 
""' all classical translations and classical similitudes of argu-

ments and of values. 

9.3 CHOOSING INTEGRALS 

Suppose that a scientific proposition has been expressed 

by a •-differential equation, that is, a differential equa­

tion involving •-derivatives and perhaps related arithmetic 
operations. To solve the equation one would certainly try 
to use •-integration. If obtained, the solutions would at 

first be expressed by means of •-integrals with variable up­

per limits, which in turn would be evaluated in terms of 

known functions or new functions defined for the purpose. 
(Many functions were originally defined as classical inte­
grals.) It is even conceivable that solutions in closed form 

could be obtained for certain intractable classical differen­

tial equations by re-expressinq them with appropriate non­
Newtonian derivatives and related arithmetic operations. 
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A differential equation containing several types of de­

rivatives can readily be transformed into an equation involv­

ing only classical derivatives or only non-Newtonian deriva­

tives of the same type. (See Sections 6.8 and 6.9.) 

Integrals are also used for defining scientific concepts. 

Consider, for example, the physicists' concept of work. If 

the force f is constant, the work on the position interval 

[r,s] is defined to be (s- r)•f, which we denote here by 

W5 f. When f is constant the following conditions are clearly 
r 

satisfied. 

1. W~f = (s- r)•f. 

2. Work is monotonic increasing with respect to force. 

3. Work is additive with respect to displacement, that 

is, for any positions r,s,t such that r < s < t, 

Desiring to extend the concept of work to the case where 
• 

the force f is continuously variable, the physicist stipulates 

that the extended work concept should satisfy Condition 1 when 

f is constant and should satisfy Conditions 2 and 3 in general 

The solution is now uniquely determined; for according to Sec­

tion 1.6, the operator W satisfies those three conditions if 

and only if W is the classical integral. Thus, the physicist 

must adopt the following definition: 

0 

The foregoing well-known example illustrates the fact 

that the characterization of the classical integral in Sec­

tion 1.6 is a heuristic guide for its appropriate use. 

Now suppose that a scientist is concerned with a posi­

tive magnitude g, called 'gorce,' which may be continuously 

variable with respect to time. If g is constant, he defines 

the 'toil' on the time interval [r,s] to be qs-r, denoted by 

T8 g. (Somewhere we have seen such a concept, perhaps in eco-
r 

nomics.) When g is constant, the following conditions are 

clearly satisfied. 
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s s-r 1. T g = q • r 

Heuristics 

2. Toil is monotonic increasing with respect to gorce. 

3. Toil is multiplicative with respect to time; that 

is, for any instants r,s,t such that r < s < t, 

s t t Tg.Tg=Tg. r s r 

To extend the toil concept to the case where the gorce 

g is continuously variable, we stipulate that the extended 

toil concept should satisfy Condition 1 when g is constant 

and should satisfy Conditions 2 and 3 in general. The solu­

tion is now uniquely determined; for, according to Section 

2.6, the operator T satisfies those three conditions if and 

only if T is the geometric integral. Thus, we must adopt 

the following definition: 

""s 
T~g = I g. 

r 

It should now be clear that the characterization of the 

•-integral in Section 6.6 is a heuristic guide for the use 

of integrals. 

9.4 CHOOSING AVERAGES 

Most of this section is devoted to a-averages rather 

than •-averages, since the choice of the latter depends pri­

marily on how one would average finite sequences of values, 

although the method of partitioning the argument intervals 

is certainly a factor. (In contrast to the •-integral, the 

•-average is not independent of the type of partitions used 

for the domain. ) 

First let it be noted that our definition of the B­
average corresponds to a definition of the arithmetic aver­

age of u1 , ••• ,un as the number u such that 

u + ••• + u = u 1 + ••• + un. 

n terms 

Accordingly, the S-average has the same properties relative 

to a-arithmetic as the arithmetic average has relative to 

classical arithmetic. (One important illustration of that 
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fact is given near the end of Section 10.4.) 
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The predominant use of the arithmetic average may be 

attributed, perhaps, to the custom of measuring deviations 

by differences rather than by ratios or some other B-differ-

ence. However, any statistical justification for the use 

of the arithmetic average relative to classical arithmetic 

can be matched by a justification for the use of the S-aver­

age relative to a-arithmetic. 

Scientists often invoke a kind of "normalcy" principle 

in choosing averages. For instance, it is commonly stated 

that the geometric average is appropriate in the study of 

those populations which normally increase in geometric pro­

gression. This idea can be extended as follows: If under 

normal or ideal conditions the measurements would be in a­
progression, then the a-average may be appropriate. 

Some scientists, notably the psychophysicist S.S.Ste-

vens, favor the use of invariance principles for choosing av­

erages. An interesting discussion may be found in the book 

Basic Concepts of Measurement by Brian Ellis. 

Now consider n measurements u1 , ••• ,un of magnitudes that 

naturally combine by S-sums; that is, the measure of a com­

bination of two or more magnitudes equals the S-sum of their 

individual measures. Surely, then, the B-average of the ui 

would be physically meaningful, though the arithmetic aver­

age of the ui might well be physically meaningless. For in­

stance, since the total resistance of n resistors connected 

in parallel equals the harmonic sum of the individual resist­

ances, one would expect their harmonic average to be physi­

cally meaningful. 

The intended use of an average is, of course, a basic 

factor in its choice. Suppose, for example, that u1 , ••• ,un 
are the measurements of one side of a square whose area is 

to be estimated. The standard procedure is to square the 

arithmetic average of the u .• But a different estimate of 
l. 

the area is usually obtained if one computes the arithmetic 

average of the squares of the ui. Although some consider 

that to be no serious objection, it should be noted that the 

geometric average always yields identical answers both ways. 
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The point here is that since the area is the square of a 

side, one should seriously consider using a multiplicative 

average rather than an additive average. 

As is the case for integrals, a fundamental heuristic 

guide for choosing averages is provided by the three charac­

terizing properties stated at the end of Section 6.4. 

In many situations, averages are intuitively more sat­

isfying than integrals. Consider, for instance, a particle 

moving rectilinearly with positive velocity v at time t. The 

distance s traveled in the time interval (a,b] is given by 

Although the derivation of this result may be clear to a stu­

dent, he may nevertheless find that the following formula 

conveys a more immediate meaning: 

s = (b- a).~v; a 

that is, the distance traveled equals the product of the time 

elapsed and the arithmetic average of the velocity. This 

version is a direct extension of the case where v is constant. 

Other examples will readily occur to the reader. (For the 

last example of the preceding section, we may write 

a formula that is a direct extension of the case where g is 

constant.) 

9.5 CONSTANTS AND SCIENTIFIC CONCEPTS 

In this section we illustrate the thesis that the inven­

tion of a scientific concept may depend on the isolation or 

discovery of a suitable constant. We also suggest that new 

scientific concepts may arise from the constants provided by 

the slopes of uniform functions. 

Consider the concept of average speed. The definition 

"distance traveled per unit time" is incomplete because it 

fails to provide a method of determining the average speed 
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of an accelerated particle. The definition "distance divided 

by time," though not incorrect, is a gross oversimplification 

that fails to reveal the underlying issues. Fortunately 

there is a completely satisfactory definition, which was un­

doubtedly known to Galilee. 
Let us begin with Galilee's definition of unifornt motion 

as "one in which the distances traversed ••• during ANY equal 
intervals of time are themselves equal." (Continuity of the 

motion is tacitly intended here.) Then we isolate a constant 
in each given uniform motion by defining speed to be the dis­
tance traveled in any unit time interval. Finally, for a 

particle that moves non-unifornaly a distance d in time t, we 
define the average speed to be the speed that a particle in 

unifornt motion must have in order to travel a distance d in 
• 

time t. In our opinion, neither the simplicity nor the obvi-
ousness of the answer, d/t, justifies its use as the defini­

tion of average speed. 

The critical first step in defining average speed is the 

isolation of the constant (speed) in the phenomenon of unifornt 

motion. Similarly, the critical step in defining the •-gra­

dient is the identification of the constant (•-slope) in a 

•-uniform function. 

Wherever a scientific phenomenon (or idealized version 

thereof) is describable by a •-uniform function, one automat­
ically has a fundamental const.ant, the •-slope, which may 
prove to be useful. 

For example, in the idealized model of radioactive decay, 

the relationship of mass to time is describable by a geomet­

rically-uniform function whose geometric slope provides a 

constant that is independent of the unit of mass and equals 

1 more than the percent change of the mass over any unit time 

interval. 

In the idealized model of the behavior of a gas, the re­

lationship of pressure to volume, assuming temperature con-
• 

stant, is describable by a harn~nically-uniform function 

whose har1nonic slope is a constant that equals the harmonic 
change in pressure corresponding to a unit change in volume. 
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As a final example, consider a fixed light source radi­

ating light uniformly in all directions. Since the intensity 

of illumination is inversely proportional to the square of 

the distance from the source, the relationship of intensity 

to distance is describable by a bigeometrically-uniform func­

tion, whose biqeometric slope is independent of the units of 

distance and intensity. 



Chapter 10 

COLLATERAL ISSUES 

10.1 INTRODUCTION 

This last chapter contains, among other things, brief 

discussions of some ideas that we have entertained but not 

investigated in depth. 

As before, * is an ordered pair of arbitrarily selected 
• • • 

arithmetics, (A,+,~,~,/,<) and • • •• • • 
(B,+,~,x,/,<), having genera-

tors a and B. The isomorphism from a-arithmetic to B-arith-

metic is denoted by 1, which was discussed in Section 6.1. 

The a-absolute value of a number a in A is denoted by 
. . -1 fal and equals a( Ia <a> I>; similarly, the a-absolute value 

.. .. 1 
of a number bin B is denoted by lbl and equals B<IB- (b) J>, 
(Section 5. 3). 

The 8-square of a number b in B is bxb, which will be 
•• 

denoted by b 2 at a slight risk that it might be incorrectly 

interpreted as b to the power 8(2). For each a-nonnegative 

number t, the symbol ·vt will be used to denote 

which is the unique a-nonnegative number whose a-square equals 

t. For each number b in B, 

• • • • 

For each integer n, the symbolsn and n denote the a­

integer a(n) and the 8-integer S(n), respectively. 

Henceforth a point is a •-point, that is an ordered pair 

of numbers in A and B, in that order. The symbol Pi repre­
sents the point (a. ,b.). 

l. l. 

10.2 •-SPACE 

By •-space we mean the system consisting of all points 

and the following method of computing the •-distance, 
* d(P1 ,P2 ), between points P1 and P 2 : 

•• 
.:. a2)]2 + [bl ~ 

75 
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= a 

This •-distance fonnula gives the same results infor­

mally explained in Section 6.11 and was initially designed 

to facilitate the graphic interpretation presented there. 

(When a = B = I, •-distance is obviously the usual Euclid-
* ean distance.) Observe that d(P1 ,P2 ) is in B, as are the 

values of all the operators of the •-calculus. Of course, 

one could easily redefine •-distance so that it is in A, 

but that would be less useful for our purposes. * .. .. 
If a1 = a 2 , then d(P1 ,P2) = lb1 ~ b 2 l1 and if b1 = b 2 , 
* . . . . . . 

then d(P1 ,P2) =I 1(a1 ~ a 2) I = 1(la1 ~ a 2 1>· 

* Although d is not a metric in the usual sense, it is a 

•-metric in the sense that the following proposition is true 

For any points P1 , P2, and P 3 , 

* • • • • 
d(P1 ,P2 ) > 0, -
* •• 
d(P1 ,P2 ) - 0 if and only if pl - P2, - -
* * d(P1 ,P2) - d(P2 ,P1 ), -
* •• * •• * d(P1 ,P2) + d(P 2 ,P 3 ) > d(P1 ,P3). -

The points P1 , P2 , and P3 are •-collinear provided that 

at least one of the following holds: 

* •• * * d(P2 ,P1 ) + d(P1 ,P3 ) - d(P 2 ,P3), -

* •• * * d(P1 ,P2 ) + d(P2 ,P3 ) - d(Pl,PJ) I -
* •• * * d(P1 ,P3 ) + d(P 3 ,P2 ) - d(P1 ,P2 ). -

If a1 = a 2 = a 3 or b 1 = b 2 = b 3 , then P1 , P 2 , and P 3 are 

•-collinear, but those are not the only circumstances that 

engender •-collinearity, as we shall see shortly. 

A •-line (or •-geodesic) is a set L of at least two dis­

tinct points such that for any distinct points P1 and P2 in 
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L, a point P3 is in L if and only if P1 , P2 , and P3 are •­
collinear. A •-line is vertical provided all its points 

have the same first member. 
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When a = B = I, the •-lines are the straight lines of 

Euclidean analytic geometry in two dimensions. If a = I 

and B(x) = x2, for example, then each nonvertical •-line is 

the union of two parabolic parts. (The parabolic family of 
calculi is defined in Note 6.) 

Theorem 

The class of nonvertical •-lines is identical 
with the class of •-uniform functions. 

Two •-lines are •-parallel provided they are identical 

or have no common point. It turns out that two nonvertical 

•-lines are •-pasallel if and only if they have the same •­
slope. 

A •-line L1 is •-perpendicular to a •-line L2 provided 
they have a common point P and for any points P1 on L1 and 

* .. * 
P2 on L2 , distinct from P, d(P1 ,P) < d(P1 ,P2). If L1 and L2 
are •-perpendicular, then for any points P1 on L1 and P2 on 

L2' 
•• •• * 2 •• * 2 [d(P,P1 ) 1 + [d(P,P2 ) 1 

Furtherntore, two nonvertical •-lines are •-perpendicular if 
•• 

and only if the S-product of their •-slopes is -1, that is, 

B(-1). 

The •-arc length of a suitably behaved arc can be de­

fined in an obvious way by partitioning the arc and using the 
•-distance between the successive points. If f has a •-con-

• • • • 
tinuous •-derivative on [r,s1, the •-arc length off on [r,s] 

turns out to be 

* s 

As expected, the •-distance between two points P1 and P 2 is 

equal to the •-arc length of the •-segment connecting P1 and 

P2. 
With the •-metric one can define all the •-conics, the 

study of which may be facilitated by using the •-vectors de-
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fined in the next section. (It would be interesting to know 
whether one can select a and 8 so that every •-circle is an 

ellipse.) 

Since •-space is, in fact, a model of plane Euclidean 

geometry, all the theorems of the latter have counterparts 

in the former. Nevertheless, we believe that it is just as 

profitable to distinguish these spaces as it is to distin­

guish the calculi. 

Clearly the foregoing developments can be extended to 

n dimensions. 

In Note 7 we show how to convert the set of all points 

into a system of •-complex numbers. 

10.3 •-VECTORS 

For any numbers a in A and 

that maps each point (x,y) into 
* is here denoted by v[a;b]. The 

* . .. 
v[a+c, b+d]. 

Theorem 

b in B, the transformation 
• •• (x+a, y+b) is a •-vector and 

* * sum of v[a;b] and v[c;d] is 

* For any point (x,y) and •-vector v[a;b], the 
• •• point (x,y) , its image (x+a, y+b), and the 

• • • • • • latter's image (x+a+a, y+b+b), are •-collinear. 

* We say that the vector v[a;b] is rectilinear provided 
• • • 

that for EVERY point (x,y), the points (xly) 1 (x+al y+b) 1 

• • • • • • and (x+a+a, y+b+b) are classically collinear; otherwise the 

vector is curvilinear. 

If a = B = I, then all •-vectors are rectilinear. But, 

for instance, if a = I and B = exp1 then most •-vectors are 
* curvilinear; e.g., v[7,2] is curvilinear since it maps (1,3) 

into (8,6), which is mapped into (15,12), three •-collinear 

points that are not classically collinear. 

Various types of scalar multiplications and norms can 

be defined for •-vectors. 

10.4 THE •-METHOD OF LEAST SQUARES 

The •-method of least squares is the same kind of exten­

sion of the classical method of least squares as the •-calcu­

lus is of the classical calculus. 
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Let f be a discrete function with arguments a 1 , ... ,an 

in A and values in B, and let S be a set of functions whose 

values are in B and whose arguments are in A and include 

al, • .. 'an. 

If there exists a member g of S such that for every mem­

ber h of S distinct from g, 

•• •• 
•• 2 •• • • •• f(a )] 2 [g (al) - f(a1 )] + + [g (an) -• • • n 

•• •• 
•• •• 2 •• • • •• 2 < [h ( a 1 ) - f(a1 )] + + [h (an) - f (an) ] , • • • 

then g, which is obviously unique, is said to be the member 

of S that is best fitted to f by the •-method and is denoted 
* by L (S; f) • 

When a = B = I, the •-method is identical with the clas­

sical method and the notation L(S;f) will be used instead of 
* L(S;f). Please note that L(S;f) is not necessarily a linear 

function. 

For each function e with arguments in A and values in B, 
-let e be the function consisting of all ordered pairs 

(a-1 (x), B-1 (y)) for which (x,y) is in a. LetS be the set 
- * of all functions e for which e is in s. Then L(S;f) and --L(S;f) coexist, and if they do exist, 

* - -L(S;f) = S{L(S;f)}. 

The pattern of that relationship is already quite familiar 

in view of the results given in Section 6.8. 

* Thus, if L(S;f) exists, it can be found by using the 
- -classical method to select the member of S that best fits f 

and then applying B to the result. 

Any statistical justification for the classical method 

can probably be converted into a justification for the *­
method. 

If S is the set of all •-uniform functions, then we have 

the following results. 

* 1. L(S;f) exists (and is unique). 

2. 1 £L(s;f) 1 (a1 ) ~ f(a1 >J + ... 
+ 1 [L(s;f) 1 (an) ~ f(an)} 

•• 
= 0. 
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* 3. L(S;f) contains the •-centroid of £, which we 

define to be the point whose members are the 

a-average of the ai and the a-average of the 

f(a.), in that order. 
l. 

* In this situation, the •-slope of L(S;f) may be useful for 

indicating the "overall •-direction" of the discrete func­
tion f. 

Consider now the problem of fitting a function of the 

form exp(mx +c) to a positive discrete function f:{(a1 ,b1), 

••. ,(an,bn)}. Since the classical method is extremely diffi­

cult to apply here, scientists use the following "lineari­

zation" technique. 

First f is transformed into {(ay1n(b1)) , ••• ,(an,1n(bn))} 
and the functions exp(mx + c) are transformed into ln[exp(mx+ 

c)], that is, into the linear functions mx +c. Then the 
classical method is used to fit a linear function to the 

transformation of f, and finally exp is applied to that lin­
ear function. The result, which we have not seen explained 

heretofore, is identical with that provided by the •-method 

for which a = I and S = exp. 
The idea for the •-method arose from the following ana­

logue of a well-known theorem concerning the arithmetic aver­

age. 

If b is the S-average of n numbers b1 , ••• ,bn in B, 

then 

(b ~ b1 ) + ... + (b ~ bn) = 0, 

and for any number x in B distinct from b, 

• • • 
•• + (b 

•• 
< ( .. 

X -

•• 
:.: b )2 

n 
•• 

b )2 + 
1 

•• 

• • • 
•• •. b ) 2 + (x - n • 

Perhaps other statistical concepts can be developed in 

the context of •-calculus. For example, since the •-graph 
(Section 6.11) of the function a{exp[-(a-1 (x)) 2)} is a nor­

mal distribution curve, we may call that function •-norutal. 
If a function is not classically norntal, it may be •-normal 
for suitable choices of a and B, in which case the tools of 

the •-calculus would be available for analytic purposes. 
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10.5 TRENDS 

Although least squares methods provide interesting ways 

of deterutining various "overall directions" of a discrete 
function, there are other methods that are easier to calcu­
late and may prove to be more useful. For simplicity we be­
gin with functions defined on (closed) intervals, rather than 
with discrete functions. 

By a trend of a function on an interval we mean an aver­

age of a derivative of the function on the interval. (It may 

be helpful to conceive of a trend as a kind of global deriva­
tive.) 

For example, one could compute the quadratic average of 

the classical derivative of g on [r,s]: 

1 rs -= 
}_ (Dg) 2 

s - r r 
• 

Or one could compute the biquadratic average of the anageo­

metric derivative of q on a positive interval. 
Trends that do not depend on all the points of the func­

tion are trivial. For example, the arithmetic average of Dq 
on [r,s] is a trivial trend, since it equals 

[g(s) - g(r) ]/(s - r), 

which depends solely on the points (r,g(r)) and (s,g(s)). 
* . . 

Similarly, the •-average of Dg on [r,s] is a trivial trend. 

Nontrivial trends are obtained only by applying an average 
from one calculus to a derivative from another calculus. 

One can compute trends of a discrete function f by aver­
aging the slopes of the uniform functions joining successive 
points of f, assuming, of course, that the arguments of f are 

equispaced relative to the arithmetic used for the arguments. 

For instance, one could compute the quadratic average of the 

classical slopes of the linear functions connecting the suc­
cessive points. (The resulting trend is related to the root­

mean-square-successive-difference used by some statisticians. 
We would like to know whether there is a trend operator 

that assigns to each discrete function with equispaced argu­
ments the classical slope of the linear function that can be 

fitted to f by the classical method of least squares. 
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10.6 CALCULUS IN BANACH SPACES 

Each arithmetic can be converted into a Banach space. 

For example, a-arithmetic is so converted by defining the 

norm of each number u in A to be la-1 (u) I and by defining 
• the scalar product of a number r and u to be a(r) x u. 

Shortly after completing our development of the non­

Newtonian calculi in August of 1970, we had occasion to con­

sult the first edition of Jean Dieudonne's Foundations of 

Modern Analysis. There we found a definition of the deriva­

tive of a function with arguments in a Banach space and val­

ues in a Banach space. If those Banach spaces are taken to 

be converted a-arithmetic and converted a-arithmetic, re­

spectively, then that derivative is the •-derivative. For 

the integral, Dieudonne apparently restricted his attention 

to functions with arguments in R and values in a Banach space 

If the Banach space is taken to be converted 8-arithmetic, 

then that integral is the special •-integral for which a = I. 

However, since we have nowhere seen a discussion of even 

one specific non-Newtonian calculus, and since we have not 

found a notion that encompasses the •-average, we are in­

clined to the view that the non-Newtonian calculi have not 

been known and recognized heretofore. But only the mathemat­

ical community can decide that. 

10.7 CONCLUSION 

We trust that the basic ideas of the non-Newtonian cal­

culi have been presented in sufficient detail to enable in­

terested persons to develop the theory in various directions. 

For example, one could study •-differential equations, inves­

tigate Taylor series in the context of •-calculus, or con­

struct non-Newtonian calculi of functions of two or more real 

variables by choosing an arithmetic for each axis. It might 

even be profitable to seek deeper connections among the cor­

responding operators of the calculi. One well-known theorem 

about averages comes to mind: 
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Let a = I. For each positive integer n, let 

xn if x > 0 -
I 

X if X < 0 

and let * be (a-arithmetic, B -arithmetic). Then n n 

for any positive continuous function f on [r,s], 

If the corresponding propositions for * -derivatives and 
n 

integrals were true, then one could say that the geometric 

calculus is the "limit" of an infinite sequence of calculi. 

But, alas, those propositions are false. Nevertheless, it 

is not unreasonable to speculate that there are nontrivial 

sequences of calculi which do converge in some well-defined 

sense. 

Some years ago we encountered a remark by N.J. Lennes 

that has become for us a constant reminder of the hazards of 

premature judgment: 

"Christiaan Huygens, one of the world's great 

mathematicians and physicists, ••• never became en­

thusiastic about the calculus, and urged to the end 

of his life that all problems solved by means of it 

could be solved equally well by the older methods." 

* * * 
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Note 1 (to page 12) 

Those who prefer percents to ratios may find the follow­

ing concepts more appealing than the corresponding concepts 

of the geometric calculus. However, the relative derivative 

is not a non-Newtonian derivative according to our use of the 

term and there is no integral that is the 'inverse' of the 

relative derivative. It should also be mentioned that the 

relative derivative is not the so-called logarithmic deriva­

tive, which also fails to be a non-Newtonian derivative. 

The relative change of a positive function f over [r,s] 

is [f(s) - f(r)]/f(r), which equals 1 less than the geometric 

change of f over [r,s]. The relative slope of a geometrical­

ly-uniform function is its relative change over any interval 

of classical extent 1. The relative gradient of a positive 

function f over [r,s] is the relative slope of the geometri­

cally-uniform function containing (r,f(r)) and (s,f(s)), and 

turns out to be 

1 
f(s) s-r 

- 1, 
f(r) 

or 1 less than the geometric gradient off over [r,s]. 

In securities analysis and other applications the rela­

tive gradient is often called the comP9und growth rate. For 

example, suppose that one paid $64 for a share of stock. 

Three years later the price of the share is $216. The com­

pound (annual) growth rate of the price over the time inter­

val [0,3] is given by 

[216/64]l/(J-O) - 1, 

which equals 0.5 or SO%. The significance of that figure 

stems from the fact that if an original investment of $64 

increased 50% in each of three successive years, the final 

value would be $216. 

The relative derivative of a positive function f at an 

argument a is the following limit, if it exists and is great­

er than -1: 

84 
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1 
f(x) x-a 

x-e f (a) 

The relative derivative of f at a coexists with, and equals 

1 less than, the geometric derivative of f at a. 

Note 2 (to pa9e 13) 

We shall explain here how a simple algebraic identity 

led us to construct the geometric calculus. First we re­
express the discrete analogue of the Basic Theorem of Classi­

cal Calculus(p.6) in a slightly different manner. 

Consider any n points (a1 ,v1 ), •.• , (an,vn), where a 1 < 

a 2 < ••• <an and a 2 - a 1 = a 3 - a 2 = ••• =an- an-l• Let k 

be the common value of the a. - a. 1 , so that k(n-1) = a -a1 • 
1 1- n 

Connect the n points by line segments, of which there are 

n - 1. Then the arithmetic average of their classical slopes 
equals the classical slope of the line segment containing the 

endpoints (a1 ,v1 ) and (an,vn); that is 

+ + ••• + 
k k k 

-- • 

n - 1 

Now assume that the vi are positive. Then the following 
identity is obvious: 

1 1 1 1 
n-1 - - -

v2 k v3 k vn k 
• • •• --

1 
v a- a n n 1 

vl v2 v n-1 vl 

The left side of that equation is the geometric average of 

the n-1 numbers (v./v. 1>1/k, which, we imagined, must be 
1 1.-

slopes of a new kind. We conjectured that the preceding 

equation must be the discrete analogue of the Basic Theorem 
of a new system of calculus, the geometric calculus. 

Note 3 (to page 19) 

Here we explain why, in the definition of anageometric 

slope, we use positive intervals of geometric extent equal to 

e, rather than to some other number greater than 1. (Geomet-
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ric extent is necessarily greater than 1.) 

Let w > 1, and assume we had defined the anageometric 

slope of an anageometrically-uniform function to be its clas­

sical change over any positive interval of geometric extent 

w. Then the anageometric slope of ln(cxm), the typical ana­

geometrically-uniform function, would equal rn•ln(w). Accord­

ingly, it is convenient to stipulate that ln(w) = 1, or w = 
e. The choice of w = e is no more arbitrary here than the 

choice of intervals of classical extent 1 in the definition 

of classical slope (Section 1.2). In Section 6.10 we make 

another comment on the choice w = e. 

Note 4 (to page 49) 

Many 'growth' calculi can be constructed by taking a = 

I and choosing S from the growth curves, which include or 

are related to the logistic curves, cumulative normal curves, 

and the sigmoidal curves that occur in the study of popula­

tion and biological growth. 

For example, let o(x) = (ex - 1)/(ex + 1). {Note that 

a(2x) = tanh(x) .} The function a is of the sigmoid type (S­

shaped) and generates sigmoi~al arithmetic, whose realm con­

sists of all numbers strictly between -1 and 1. The sigmoid­

al sum and difference of numbers u and v in the realm turn 

out to be (u + v)/(1 + uv) and (u - v)/(1 - uv), respectively. 

The si9moidal calculus is the •-calculus for which a = I and 

B = a. By choosing a = a and B = I we get the anasignaoidal 

calculus; for a = B = a we obtain the bisigmoidal calculus. 

It is entertaining to extend sigmoidal arithmetic by 

appending -1 and 1 to the realm and defining the sum of num-

bers u and v to be • 

u ~ v = 
(u + v)/(1 + uv) if uv ~ -1 

• 
0 if uv = -1 

Then 1 ~ (-1) = 0; if u ~ -1, then u ~ 1 = 1; and if u ~ 1, 

then u ~ (-1) = -1. Thus, -1 and 1 behave as negative and 

positive infinity in the extended sigmoidal system. 

If units are chosen so that the speed of light is 1, 

then the extended sigmoidal sum of two speeds equals the 

relativistic composition of the speeds, even if one or both 
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of the speeds is 1. 

Note 5 (to pages 53 and 60) 

In this Note we show how to generate the infinitely­

many power arithmetics, of which the quadratic and harmonic 

arithmetics are special instances. Let p be an arbitrary 
--

nonzero number. The pth-power function is the function that 

assigns to each number x the number 

when x is negative. 

For any numbers y and z, 
-- = --

(yz)P = yP.zP, and 

<YP>1/p = Y = <Y1/p>P. 

and negative 

If p = 1/2, the Pth-power function is the function x112 , 
which generates the quadratic arithmetic (Section 7.1); if 

p = -1, the pth-power function is the function l#x, which 

generates the harmonic arithmetic (Section 8.1); if p = 2, 
--the pth-power function is the function 

the parabolic arithmetic (Note 6). 

2 
X ' which generates 

The Pth-power function is one-to-one, is on R and onto 

R, has the 1/pth-power function as its inverse, and gener­

ates the Pth-power arithmetic. In that arithmetic the nat-

ural average of n numbers u1 , ••• ,un turns out to be 

{ (u11/p + • • • + un 1/p) /n} p' 

which reduces to the well-known pth-power average when the 

u. are positive. 
l. 

Note 6 (to page 77) 

The function p(x) 
2 = x generates the 2arabolic arithme-

tic, which is one of the power arithmetics discussed in Note 

5 above. The realm of parabolic arithmetic is R. The para­

bolic calculus is the *-calculus for which a = I and S = p; 
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the parabolic!lly-uniforua functions are expressible in the 

form {mx + c) 2 • By choosing a = p and B = I we get the 

anaparabolic calculus; for a = B = p we obtain the bipara­

bolic calculus. 

Note 7 (to page 78) 

The system of •-complex numbers consists of all •­

points and two operations defined thus: the sum of (a1 ,b1) 
• •• and (a2 ,b2 ) is (a1 + a 2 , b1 + b 2 ) and their product is 

(a{a1a2 - b1b2l, a{a1b2 + b1a2l), 

- -1 - -1 - -1 -where a1 = a (a1 ), a 2 = a (a2), b1 = 8 (b1 ), and b 2 = 
-1 B (b 2). 

For this system, which is a field, one can define sub­

traction and division that are 'inverses' of addition and 

multiplication. Furthermore, a-arithmetic (and hence every 

arithmetic) is embedded in the system. 
• •• • •• 

Since the product of (0,1) with itself equals (-1,0), 
* . .. 

we may define ito be (0,1). Of course, the product of 
• •• • •• (0,-1) with itself also.equals (-1,0). 

Various types of moduli can be defined for the •-complex 

numbers. 
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• • • • 
Single-dotted notations, such as +, <, and [r,s], 

pertain to a-arithmetic; double-dotted notations 

pertain to a-arithmetic. 

-A, 32,38; A, 45 
-B, 38; B, 45 

""' """' * D, 4; D, 11-12; o, 19-20; D, 26; D, 40; ,__. ,.., 
0 0 a 0 
D, 53; D, 55; D, 57; D, 61; 0, 63; D, 

0 0 0 0 -~ ~ * * G, 16; G, 16; G, 24; G, 31; G, 45; G, 46 ,..., ,..., 

I, 1 

* L(S;f), 79; L(S;f), 79 -~ """' * * M, 5; M, 13; M, 20; M, 27; M, 41; M, 46 

pl' p2' p3' 75 

R, 1; R+ I 1 

a, 33-34, 38 

a-1 is the inverse of a. (Page 1) 

B, 38 

6-1 is the inverse of 6. (Page 1) 

\ 1 39 

* v, 78 

• • 
[r,s], 1; [r,s], 35; 

e, 1 

exp, 1 

ln, 1-2 

• • • 
+, 32-J4; +, 38; <!> , 
• 32-34; •• 38; e - -, , , 
• •• 
x, 32-34; x, 38 

• •• ;, 32-34; ;, 38 

0 0 
[r,s], 59 

52; [±), 59 

52; EJ, 59 

89 

-* D, 46; 

64 
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• • • 
~, <, 32-34; <, 38; 59 

• •• 
0, 33, 34; 0, 39, 75 
• •• 
1, 33, 34; 1, 39, 75 

• 34; •• 39, 75 n, n, 
• • • • • • 
I X I I 34, 75; I X f, 75 

-*, 38; *I 45 

-•-lim, 38; •-lim, 46 

* d(P1 ,P2 ), 49, 
= 2 52 X I 

1/2 
X I 52 

1 
- 1 1#xl 59 
X 

•• 

b 2 
1 75 

·r, 75 

75-76 

"" f,?; [.14-15; f22; f29; 

f. 56; 
0 

~ 

0 

fsa: 
0 
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Most items are listed according to their qualifying 
prefixes (a,S,•) or qualifying adjectives (anageo­
metric, anaharmonic, anaquadratic, bigeometric, bi­
harmonic, biquadratic, classical, geometric, harmon­
ic, quadratic). 

a-Absolute value, 34,75 
a-Arithmetic,33-34 

Banach space,82 
a-Average,35,70-71,80 
a-Convergence,36 
a-Extent,35 
a-Integers,34 
a-Interior,35 
a-Intervals,35 
a-Limit,36 
a-Negative numbers,34 
a-One,34 
a-Partitions,35 
a-Positive numbers,34 
a-Progressions,35 
a-Similitudes,67-68 
a-Translations,67-68 
a-Zero,34 

Additive,4 
Anageometric average,20 

characterization,21 
Anageometric calculus,l8-24, 

47-48 
Anageometric derivative,l9 
Anageometric gradient,l9 
Anageometric integral,22 

characterization,23 
Anageometric slope,lS-19, 

48, 85-86 
Anageometrically-uniform 

functions,l8 
Anaharmonic average,63 
Anaharmonic calculus,62-63 
AnahaLittonic derivative, 63 
Anaharmonic gradient,62 
Anaharmonic integral,63 
Anaharmonic slope,62 
Anaharmonically-uniform 

functions,62 
Anaparabolic calculus,SS 
Anaquadratic average,56 
Anaquadratic calculus,SS-57 
An·aquadratic derivative,35 
Anaquadratic gradient,SS 
Anaquadratic integral,56 
Anaquadratic slope,SS 
Anaquadratically-uniform 

functions,SS 
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Anasigmoidal calculus,86 
Arguments,! 
Arithmetic,32-33 
Arithmetic average,5,70-72 

characterization,S-6 
Arithmetic partition,S 

(For 6-items not listed here, 
see like entries under a. 
Also see comment on p.38.) 

a-Absolute value,75 
S-Additive,40 
B-Arithmetic,38 
a-change,39 
6-Homogeneous,40 
8-Similitudes,67-68 
a-square,75 
a-square root,75 
S-Translations,67-68 

Basic Problem: 
Anageometric Calculus,22 
Bigeometric Calculus,29 
Classical Calculus,7 
Geometric Calculus,l4 
•-Calculus,43 

Basic Theorem: 
Anageometric Calculus,21 
Anaharmonic Calculus,63 
Anaquadratic Calculus,S6 
Bigeometric Calculus,29 
Biharmonic Calculus,65 
Biquadratic Calculus,58 
Classical Calculus,6 
Geometric Calculus,lJ-14 
Harmonic Calculus,62 
Quadratic Calculus,54 
•-Calculus,42 

Bigeometric average,27-28 
characterization,28 

Bigeometric calculus,25-31, 
47-48 

Bigeometric derivative,26,48 
Bigeometric gradient,25-26,66 
Bigeometric integral,29-30 

characterization,30 
Bigeometric slope,25,48,74 
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Bigeometrically-uniform 
functions,25,74 

Biharmonic average,64-65 
BihaJ:tuonic calculus ,64-65 
Biharn~nic derivative 64 

• I 
B1harmonic gradient,64 
Biharmonic integral,65 
Biharmonic slope,64 
Biharmonically-uniform 

functions,64 
Biparabolic calculus,88 
Biquadratic average,S8 
Biquadratic calculus,57-58 
Biquadratic derivative,57 
Biquadratic gradient,57 
Biquadratic integral,SS 
Biquadratic slope,57 
Biquadratically-uniform 

functions,S7 
Bisigmoidal calculus,86 

Calculus in Banach spaces,82 
Campbell, N.R.,33 
Cartesian paper,Sl 
C-graphs,Sl 
Classical arithmetic,33 
Classical calculus,J-8,47 
Classical change,3 
Classical derivative,4 
Classical extent,! 
Classical gradient,3,66,67 

• • 1.nvar1ance,68 
Classical integral,7,69 

characterization,& 
Classical method of least 

squares,79 
Classical slope,3 
Classical tangents,4-5 
Classically tangent func-

tions,S 
Classically-uniform func-

tions,3 
Complete ordered field,32 
Compound growth rate,84 

Dieudonne, J., 82 
Discrete analogue,6 
Discrete function,! 
Domain,l 

Ellis, B. , 71 
Exp, 1 

First Fundamental Theorem: 
Anageometric Calculus,23 
Anaharmonic Calculus,63 
Anaquadratic Calculus,56 
Bigeometric Calculus,30 

Biharmonic Calculus,65 
Biquadratic Calculus,SS 
Classical Calculus,S 
Geometric Calculus,l6 
Harmonic Calculus,62 
Quadratic Calculus,SS 
•-Calculus,44 

Function,! 

Galilee, G., 9,18,73 
'Generates,' 34 
Generator,33 
Geometric arithmetic,36-37 

applications,47-49 
Geometric average,l2-13,71,83 

characterization,l3 
Geometric calculus,9-17 47-48 85 I I 

Geometric change,lO 
Geometric derivative,ll,48 
Geometric extent,l8 
Geometric qradient,ll,66 67 

• ' I J.nvarl.ance,68 
Geometric integral,l4-15,70 

characterization,lS 
Geometric partition,20 
Geometric slope,ll,73 
Geometrically-uniform 

functions, 10,73 
'Gradient,' 3 
Graphical interpretations 

of •-calculus,49-51 
Graphs 

c-, s1 
·- 1 49 

Harmonic arithmetic,59-60,87 
Harmonic average,60,61,71 
Harmonic calculus,60-62 
Harmonic derivative,61 
Harmonic gradient,60-61,67 
Harmonic integral,61 
Harmonic progressions,60 
Harmonic slope,60,73 
Harmonically-uniform 

functions,60,73 
Heuristics,66-74 

averages,70-72 
constants and scientific 

concepts,72-74 
qradients and derivatives 

66-68 , 
integrals,68-70 

Homogeneous,4 
Huygens, C. , 83 

1 (iota), 39 
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Identity function,! 
Invariance,68,71 
Inverse of a function,! 
Interior,! 
Interval,! 
Isomorphism (\), 39 

Least squares methods,78-80 
Lennes, N.J., 83 
Linear function, 1,3 
'Linear operator,' 4 
Ln, 1 
Logarithmic derivative,l2 

Mean value theorem 
of geometric calculus,l7 
of •-calculus,47 

Measurement,33,66,71 

Natural avera9e,JS 
Natural progression,35 
Newton, I., 18,67 
n-Fold,S,20,35 
Non-Newtonian calculi, 

see •-calculus 
Number,! 

'On, ' 1 
One-to-one,l 
• Onto, • 1 

Parabolic arithmetic,87 
Parabolic calculus,87 
Point,l 
Positive function,! 
Positive interval,l8 
Power arithmetics,87 
2th-Power average,87 
pth-Power arithmetic,87 

Quadratic arithmetic,52-53,87 
Quadratic average,S3,54 
Quadratic calculus,SJ-55 
Quadratic derivative,SJ-54 
Quadratic gradient,SJ 
Quadratic integral,S4 
Quadratic partitions,SJ 
Quadratic progressions,S3 
Quadratic slope,S3 
Quadratically-uniform 

functions,53 

Range,! 
Realm,32 
Real number system,32 

Relationships between calculi: 
anageometric to classical,24 
any two calculi,45-47 
bigeometric to classical,31 
geometric to classical,l6-17 
• to classical,44-45 

Relative change,84 
Relative derivative,84-85 
Relative gradient,84 
Relative slope,84 
Resiliency,27 
Rockland, c., 5 
Root mean square,S3,54 

* 1 ·3 8 
*-Arc lenqth,77 
*-Area,SO 
*-Average,41,70,82 

characterization,41-42 
•-calculus,JS-51 

graphical interpretations, 
49-51 

*-Centroid,SO 
*-Collinear,76 
*-Complex numbers,88 
*-Continuity,39 
*-Derivative,40,50,82 

invariance,68 
*-Differential equations, 

68-69 
*-Distance,49,51 

forntulas, 75-76 
*-Gradient,40,67-68,73 

invariance,68 
*-Graphs,49 
*-Integral,43,50-51,70,82 

characterization,43-44 
*-Limit,38 
*-Lines,76-77 
*-Method of least squares, 

78-80 
*-Metric,76 
*-Normal function,80 
*-Paper,49 
*-Parallel,77 
*-Perpendicular,77 
*-Points,49 
*-Slope,40,50,51,73,80 
*-Space,75-78 
*-Tangent,41 
*-Tangent functions,41 
*-Uniform functions,39,73,77 
*-Vectors,78 

Second Fundamental Theorem: 
Anageometric Calculus,23 
Anaharmonic Calculus,63 
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Anaquadratic Calculus,S7 
Bigeometric Calculus,Jl 
Biharmonic Calculus,65 
Biquadratic Calculus,58 
Classical Calculus,8 
Geometric Calculus,l6 
Harmonic Calculus,62 
Quadratic Calculus,SS 
•-Calculus,44 

Sigmoidal arithmetic,86 
Sigmoidal calculus,86 
Sigmoidal gradient,67 
Similitudes,67-68 
Speed,72-73 
Stevens, s.s., 66,71 
Stieltjes integral,22,43,56 

Translations,67-68 
Trends,81 

Values,! 
Vertical •-line,77 
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