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Abstract Grammar formalisms are one of the key representation structures in

Computer Science. So it is not surprising that they have also become important as a

method for formalizing constraints in Genetic Programming (GP). Practical gram-

mar-based GP systems first appeared in the mid 1990s, and have subsequently

become an important strand in GP research and applications. We trace their sub-

sequent rise, surveying the various grammar-based formalisms that have been used

in GP and discussing the contributions they have made to the progress of GP. We

illustrate these contributions with a range of applications of grammar-based GP,

showing how grammar formalisms contributed to the solutions of these problems.

We briefly discuss the likely future development of grammar-based GP systems, and

conclude with a brief summary of the field.
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1 Introduction

Various algorithms that might loosely be called Genetic Programming (GP) were

described in the 1980s and even earlier (the closest to modern GP being the work of

Cramer [10] and of Hicklin [32]). However it was the research of Koza [47] which

clearly defined the field and established it as an important sub-field of evolutionary

computation. In the remainder of this paper, we refer to this archetypical—and still

widely used—form of GP as ‘‘standard’’ GP.

Grammars are core representation structures in Computer Science. They are

widely used to represent restrictions on general domains, limiting the expressions

that may be used. They can be used to define the legal expressions of a computer

language, to impose type restrictions, or to describe constraints on interactions

within systems. So it is not surprising that grammars have played an important role

in the development of GP. They have been used in GP almost from its inception.

Indeed the idea was implicit in Ch. 19 of Koza’s first book [47]. At first, grammar-

based approaches formed a small segment of the GP world, but their role has

expanded to the point where Grammatical Evolution (GE [67, 68]) is now one of the

most widely applied GP methods.

We aim to give a flavour of the history and applications of grammar-based GP,

from the emergence of the first fully-fledged systems in the mid 1990s (throughout

the paper, to speak generically of the field, we will use the term Grammar Guided

Genetic Programming—GGGP). We then examine the pros and cons of GGGP to

try to understand why it has become so influential, and delineate some of the issues

we think will be important in the future. The field continues to develop, so we have

arbitrarily limited the survey up to the end of 2008, as a practical dividing line.

In Sect. 2 we introduce the most straightforward version, tree-structured

Chomsky grammar GP. In Sect. 3, we examine some linearised versions based on

these grammars. We follow this, in Sect. 4, with some alternative approaches that

use different or extended grammar models. Section 5 concludes the historical

review with a consideration of other population-based stochastic algorithms using

grammars to represent GP problem spaces. Having considered the different forms of

grammar-based GP, we then look, in Sect. 6, at the range of areas in which GGGP

techniques have been applied. We explain the role of GGGP in Sect. 7, and examine

its advantages (and disadvantages) relative to other GP methods in Sect. 8. We

attempt, in Sect. 9, to forecast the important future directions of the field, and

present our conclusions in Sect. 10.

1.1 Terminology

In the following sections the term genotype refers to the structure operated on by

genetic operators such as crossover and mutation. Hence for tree based GGGP the

genotype is a derivation tree in the language defined by a grammar, while for a

linear representation such as GE the genotype is a linear string which is then

decoded into a derivation tree. The term phenotype refers to the structure that is

directly executed to produce the behaviour of an individual. Hence for both tree

based GGGP and GE, the phenotype refers to the expression tree (GP-style tree)
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which is directly evaluated. The grammar defines the interpretation of the genotype

space, and in tree-based systems directly defines the set of valid derivation trees (i.e.

genotypes). In some representations, such as GE and TAG (described below), the

genotype is first decoded to a context-free derivation tree, before further

transformation to an expression tree. In these cases, we refer to this intermediate

stage as an ‘‘intermediate state’’.

2 Tree based grammar guided Genetic Programming

The first fully-fledged GGGP systems were independently implemented at about the

same time by three different research groups. Whigham [102] proposed the CFG-GP

system, in which a context-free grammar (CFG) was used to generate the

population, consisting of derivation trees of the CFG. Geyer-Schulz [22] derived his

very similar GGGP system for learning knowledge rules for expert systems; it

differs mainly in the algorithm used to initialise the population [3]. Wong and

Leung [108] proposed the LOGENPRO system, which uses PROLOG Definite

Clause Grammars (DCGs) to generate (logic) programs to learn first order relations.

DCGs are somewhat more expressive than CFGs, being able to generate some

context-sensitive languages, which can be important for some applications. This is

the primary difference between the systems; in other respects, LOGENPRO and

CFG-GP are very similar.

GGGP example We illustrate GGGP using a generalisation of Dawkins’ example

[14] for explaining evolution: hidden string matching. We use CFG-GP, but very

little change would be needed for LOGENPRO or Geyer-Schulz’s system. In

Genetic Algorithm string matching, the requirement is to match a hidden string, and

the (minimising) fitness function is the number of mismatches. In our example, the

requirement is to match a hidden sentence—perhaps ‘‘the cat sat on the mat’’. The

(minimising) fitness function is the number of edit operations required to match the

words of the sentences, and the GGGP system is only permitted to evaluate

syntactically valid sentences. This would be a difficult problem to encode in

standard GP.

The five basic components of a GGGP system are as follows:

1. Program representation Each program is a derivation tree generated by a

grammar G; the grammar defines a language L whose terms are expressions

corresponding to those used in ‘‘standard’’ GP. In our example, G is the

fragment of English grammar shown in Table 1.1

2. Population initialisation Whigham [102] proposed a simple algorithm to

generate random derivation trees up to a depth bound, based on a procedure for

labeling the production rules with the minimum tree depth required to produce a

string of terminals. Bohm and Geyer-Schulz [3] derived an algorithm for

initialising the population based on the derivation-step-uniform distribution. The

1 Reproduced under the Creative Commons Licence; available from https://sc.snu.ac.kr/sclab/doku.

php?id=commons.
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initialisation procedure for LOGENPRO was based on Prolog grammar

generation. In our example, we might initially generate parse trees for sentences

such as ‘‘the cat sat under a mat’’ or ‘‘the big red dog stood on the floor’’, as in

Fig. 1.

3. Fitness evaluation Fitness evaluation is carried out on the individuals by

reading the expression tree from the leaves of the grammar derivation tree, then

evaluating it as in standard GP. In our example, using edit distance, the distance

from the first sentence in Fig. 1 to the target is 2 (replacing ‘‘under’’ with ‘‘on’’

and ‘‘a’’ with ‘‘the’’), and from the second it is 5 (deleting ‘‘big’’ and ‘‘red’’,

substituting ‘‘dog’’ with ‘‘cat’’, ‘‘stood’’ with ‘‘sat’’ and ‘‘floor’’ with ‘‘mat’’).

4. Parameters As in standard GP—population size, number of generations,

maximal tree depth, and operator probabilities.

5. Genetic operators The genetic operators are the selection mechanism,

reproduction, crossover, and mutation. Selection and reproduction are as in

standard GP. Crossover and mutation are slight variants of those used in

standard GP, as explained below.

Crossover Internal nodes of the two derivation trees, labelled with the same

nonterminal symbol of the grammar, are chosen at random and the two sub-

derivation trees underneath them exchanged. In other words, the crossover acts the

same as standard GP subtree crossover, with the additional constraint that

crossover points are required to have the same grammar label. For example, we

might select the leftmost NP of the left tree and the rightmost of the right tree as

crossover points, as seen in Fig. 2.1 The results of crossover are the child sentences

Table 1 English grammar fragment

Sent! Sub Pred PP! Prep NP Prep! ‘‘on’’j‘‘under’’

Sub! NP Adjs! Adj Adjs Noun! ‘‘cat’’j‘‘dog’’

Pred! Verb PP Adjs! Adj |‘‘floor’’ |‘‘mat’’

NP! Det Noun Verb! ‘‘sat’’j‘‘stood’’ Adj! ‘‘big’’j‘‘small’’

NP! Det Adjs Noun Det! ‘‘a’’j‘‘the’’ |‘‘red’’ |‘‘black’’

Fig. 1 Typical parse trees from example grammar
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‘‘the floor sat under a mat’’ and ‘‘the big red dog stood on the cat’’.2

Mutation Selects an internal node at random. The subtree rooted at that node is

deleted, and replaced by a new one, randomly generated according to the

grammar, starting from the same nonterminal. For example, we might select the

second of the previous child subtrees for mutation, and choose the first NP node in

it as a mutation point, generating a new NP at this point, such as ‘‘the cat stood on

the cat’’. This process is illustrated in Fig. 3.1

Subsequent to these systems, there have been a number of similar GGGP systems

using derivation trees from a grammar as the representation for individuals. Gruau

[25] presented some strong arguments for using context-free grammars to set

language bias on individuals. His system is very similar to Whigham’s CFG-GP,

with differences mainly lying in some additional constraints imposed on using the

grammar. The initial maximum individual size is constrained by an upper bound on

recursive grammar applications. He introduces two additional data structures, lists

and sets. The two structures support different crossover operators. These extensions,

Fig. 2 Subtree crossover restricted by example grammar

2 Recombinations in biological systems are usually homologous—the genetic materials are not

exchanged completely randomly, but between genes with similar function [81]. By analogy, we term

crossovers exchanging subtrees rooted at the same symbols ‘‘homologous crossovers’’.
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introduced to allow specific restrictions in the language bias, complicated the model

and may have been more readily introduced via a more expressive grammar.

Keijzer and Babovic [43] and Ratle and Sebag [77] introduced a grammar guided

Genetic Programming system similar to the preceding systems, but with a different

initialisation process, to solve some industrial problems. The resulting system was

known as dimensionally-aware Genetic Programming.

Some recent variants are very similar to the above systems, but use different

notations to represent CFGs. Tanev et al. [97] represent the CFG in Backus-Naur

Form (BNF). MacCallum [51] introduced a Perl-based system, in which Perl tree

notation is used to represent grammars equivalent to CFGs.

3 Linearised grammar guided Genetic Programming

Linear representations offer a number of seductive advantages over tree-based

representations, especially the highly constrained tree-based representations arising

from Chomsky grammars. Most obviously, linear representations permit the

application of a vast background of both theory and practice from the much wider

fields of evolutionary computation with fixed-length linear representations, notably

Genetic Algorithms (GA) and Evolution Strategies (ES). Thus linear representations

have become increasingly important in the non-grammar-based GP world, including

such approaches as linear GP [35], machine-coded GP [61], stack-based GP [94]

and Cartesian Genetic Programming [58]. Hence it is not surprising that there have

been a number of approaches to linearising the representation of programs in

GGGP. All use a genotype to phenotype mapping, where the genotype is a linear

sequence, and an intermediate state is constructed in the form of a derivation tree of

the grammar, which is then further decoded to an expression tree. The work of

Johnson and Feyock [39] prefigured these approaches by several years, but was not

widely available and so did not influence the subsequent development of the field.

Fig. 3 Subtree mutation restricted by example grammar
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In the early work of Keller and Banzhaf [46] a grammar was used during repair

of the genotype-phenotype mapping to ensure the syntactic correctness of the

phenotypic program. In this approach the genotype contained a series of codons

(represented by a predetermined number of bits) to encode a symbol of the output

language. The order of the codons determined the symbol order for the output

program. However, it was only after the grammar-based repair operation that the

syntactic correctness of the program could be guaranteed.

In Paterson and Livesey [75, 76] and Freeman [19], the genotype was a fixed

string used to encode the indices for derivation rules in grammar G. In these

methods, the translation from a genotype to an intermediate state is carried out from

left to right, and the intermediate state (G derivation tree) is built correspondingly.

At each step, if there is still an incomplete branch in the intermediate state marked

by a nonterminal A, a gene (number of bits) is read and interpreted as a key,

indicating which, among the rules in the rule set P of G having left hand side A, will

be used to extend that branch of the intermediate state. If the intermediate state is

completed while there are still unused genes in the genotype, they are ignored

(considered as introns). In the event that the translation uses all the genes, but the

intermediate state is still incomplete, some random or default sub-derivation trees

are used to complete it. Because the genotype is now a linear string, the system can

simply use any genetic operators from GAs.

The most widely used linear GGGP system is grammatical evolution (GE)

[16, 68]. It is an extension of the GGGP systems with a linear representation

described above. Three innovations were incorporated in GE: variable length

(although these had been previously considered by Johnson and Feyock [39]),

redundancy using the MOD mapping rule, and the wrapping operation. The

chromosome in GE typically has variable length rather than being fixed, although

fixed-length instances have been adopted [53, 66]. Each codon is typically an 8-bit

binary number (integer codons are also widely adopted), which is used, as in the

previous systems, to determine the rule for a nonterminal symbol when it is

expanded. However the modulo operator is now used to map the number to the

defined range of production rules from the given nonterminal. An illustration of the

mapping process is provided in Fig. 4. The wrapping operation can be used when

the translation from genotype to intermediate state has run out of genes while the

intermediate state is still incomplete. The translation process re-uses the gene from

left to right. If the number of wrappings exceeds a predetermined maximal bound,

then the translation finishes and the (invalid) individual is assigned a very poor

fitness. This introduces an upper bound on the size of any individual, since it is

possible that a finite linear genome can map to an infinite number of production

applications.

If we look again at the example grammar adopted in Fig. 4 we can immediately

appreciate the potential benefits of adopting a grammar-based form of GP. Consider

if we wanted to modify the form of the solutions generated by GE in this case. With

some simple changes to the grammar the form of expression generated can be

dramatically altered.

The example grammar provided in Table 2 would have the effect of changing the

expressions in Fig. 4 from arithmetic combinations of coefficients and variables, to
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Fig. 4 An illustration of the Grammatical Evolution mapping from a linear binary (or integer)
chromosome. The integer values are used in the mapping function to decide which production rule from
the grammar to apply to the current non-terminal symbol. This results in the generation of a derivation
sequence, which can be maintained as a derivation tree. The derivation tree is then reduced to the standard
GP syntax tree. Note that search operators can be applied to both the linear chromosome and derivation
tree

Table 2 Grammar for rational polynomials

Exp! Poly/Poly Trm! Coef * Prod Coef ! ‘‘x0’’j‘‘x1’’

Poly! Trm Prod! Var Var! ‘‘v0’’j‘‘v1’’

Poly! Trm + Poly Prod! Var * Prod
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more complex structures of rational polynomials. Recall that the original rules for

\expr[ simply generated arithmetic combinations of \coef[*\prod[.

Since it was proposed there has been a wide range of on-going research to

develop, extend, and apply GE in many ways, including studying the effect of GE

crossover on the phenotype [70], alternatives to the MOD rule in genotype-

phenotype translation [45], an alternative mapping process that evolves the order in

which nonterminals are expanded in addition to how they are expanded [65],

different search strategies [63, 64, 73], new representations based on the GE

representation aiming to reduce the effects of positional dependence [87],

implementation of GAs through GE using an attribute grammar [86], the use of a

meta-grammar with GE to improve its evolvability [69] and to implement a GA [29,

62]. Harper and Blair [27] showed how to use grammars to dynamically define

functions, obviating the need for special-purpose mechanisms such as Automati-

cally Defined Functions [48].

There are two key issues with the GE representation. Firstly, an apparently valid

genotype may code for an infeasible (i.e. not fitness calculable) phenotype. Although

the problem can be handled by assigning these individuals poor fitness values, it

introduces a source of irregularity into the search space, and constitutes an obstacle for

evolution and search on the GE representation if the proportion of genotypes coding

for infeasible phenotypes is large. As such it is common to adopt repair during the

genotype-phenotype mapping to ensure that all remaining nonterminals are mapped to

terminals. Approaches include the use of default production rules which fire after the

maximum number of wraps has been reached (originally adopted by Paterson and

Livesey [76]), or the use of a dynamic grammar, which removes all nonterminal

expanding rules from the grammar [30]. By using the equivalent of ramped-half-and-

half initialisation with derivation trees (dubbed sensible initialisation), one can ensure

the validity of at least the initial population [85].

Secondly, GE may not fulfil the locality principle of small changes in genotype

resulting in small changes in phenotype [84]. Although it is easy to define GE

operators that make small changes on the genotype, the resulting phenotype changes

may be larger. A change at one position may change the expressiveness (coding or

non-coding), or meaning (if there is more than one nonterminal in the grammar) of

genes that lie after that position. In the extreme, this may change the corresponding

phenotype from feasible to infeasible, or create a search process that is no better

than random sampling. However, the extent of this effect depends on the

relationship between the particular grammar, the genetic operators and the fitness

function, and is clearly an issue with any complex genotype-phenotype mapping.

Recent advances to address this issue have focused on the development of search

operators towards the derivation trees that are produced during the genotype-

phenotype mapping process. The result of these operations of crossover and

mutation on the derivation tree (similar to those in tree-based GGGP) can be

reverse-mapped back to the underlying genotypic binary strings [26]. Since the

genotype remains the binary (or integer) string representation, these new operators

may be readily combined with string-based operators, giving the best of both worlds

in terms of available operators, though at the cost of losing some of the analytical

understanding deriving from GA theory.

Genet Program Evolvable Mach (2010) 11:365–396 373

123



4 Alternative grammar representations

A number of alternative grammar-based representations have been used, in addition

to those using Context Free Grammars. Most either extend the class of grammars

into the domain of Context Sensitive Grammars, or incorporate semantic knowledge

into the grammar representation, or both.

4.1 Semantic grammars

Hussain and Browse [37] noted that their NGAGE system for developmental

generation of neural networks could also be used as a representation for general

Genetic Programming, though it is not clear that they ever applied the system in this

way. Vanyi and Zvada [100] implemented an attribute-grammar system to augment

context-free GGGP. Their emphasis lay in the use of attributes to cache information

required for evolutionary and evaluation operators, and thus speed up those

operators; it does not appear that the system was ever used to incorporate problem-

specific semantic information, or otherwise extended beyond CFG problem

domains.

Bruhn and Geyer-Schulz [6] used CFGs with linear constraints for their

representation; the constraints are a form of semantic attribute, making this the first

use of attribute grammars to handle semantic information.

De la Cruz et al. [11] further considered evolution based on attribute grammars,

considering semantic restrictions in the context of a symbolic regression problem,

and demonstrating search speed-up when semantic constraints were incorporated.

Their representation used a GE-like transformation of the attribute grammar search

space.

Ortega et al. [72] investigated Christiansen grammars [7], which have equivalent

expressive power to attribute grammars, but provide a more condensed represen-

tation for semantic constraints, and so may offer a cleaner search. They also use a

GE-like linearisation. They demonstrated improved convergence on some artificial

Boolean problems, though further clarification of the role of semantic constraint is

needed. With Dalhoum [13], they achieved good results on location allocation

problems.

Cleary and O’Neill adopted attribute grammars with GE in their application to

knapsack problems [8]. The attribute grammars ensured that the constraints of the

problem domain were adhered to as the solutions were being generated during the

mapping process.

4.2 Logic grammars

Wong and Leung based their system, LOGENPRO [108], on logic grammars

(Definite Clause Grammars—DCGs). These extend CFGs in two ways.

1. They support logical variables in grammar productions. Thus extended, DCGs

provide limited context sensitivity. This was used in [108] to limit a search
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space of recursive solutions; any recursion the system generated could be

guaranteed to terminate.

2. They allow Prolog predicates to be intermixed with grammar productions; these

additional predicates can incorporate semantic information, and thus give

expressive power similar to (though in general greater than) attribute grammars.

Wong and Leung used them in [108] to incorporate the semantics of

Automatically Defined Functions (ADFs) into LOGENPRO.

In principle, they also permit the incorporation of semantic domain knowledge

into LOGENPRO, though we are not aware of specific instances where this has been

used. Consider, for example, the dimensionally-aware GP applications of Ratle and

Sebag [77]; to incorporate dimensional knowledge into their system, Ratle and

Sebag pre-process the domain knowledge into a huge CFG. This knowledge can be

very succinctly expressed in a DCG (see Sect. 8 for details).

Ross [83] further extended this work, replacing DCGs with Definite Clause

Translation Grammars, in which the semantics of the grammar are defined in a

parallel structure to the syntax. This offers a key advantage in re-usability: the bulk

of the problem semantics is written as annotations to the grammar, so the separate

code to implement a fitness function is typically small—often less than ten lines of

Prolog. Re-targeting to a new domain may involve very little effort—writing a

grammar for the domain, together with semantic annotations.

Keijzer et al. [44] combined logic grammars with Grammatical Evolution in their

ALP (Adaptive Logic Programming) system. ALP modifies a standard logic

programming engine with an evolutionary-driven search engine.

4.3 Tree adjoining grammar representation

The grammar representations previously mentioned are all closely related to the

Chomsky grammars of the 1950s. The differences between them relate essentially

to the sub-class of formal languages that they can represent, and the means by

which they may incorporate semantic constraints. However another form of

representation, Tree Adjoining Grammars (TAGs) has become increasingly

important in Natural Language Processing (NLP) since its introduction in the

1970s by Joshi et al. [40]. The aim of TAG representation is to more directly

represent the structure of natural languages than is possible in Chomsky languages

and, in particular, to represent the process by which natural language sentences can

be built up from a relatively small set of basic linguistic units by inclusion of

insertable sub-structures. Thus ‘‘The cat sat on the mat’’ becomes ‘‘The big black

cat sat lazily on the comfortable mat which it had commandeered’’ by insertion of

the elements ‘‘big’’, ‘‘black’’, ‘‘lazily’’, ‘‘comfortable’’, ‘‘which it had comman-

deered’’. In CFG representation, the relationship between these two sentences can

only be discerned by detailed analysis of their derivation trees; in TAG

representation, the derivation tree of the latter simply extends the frontier of the

former. To put it another way, the edit distance between the derivation trees of

these closely related sentences is much smaller in TAG representation than in CFG

representation.
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The valuable properties which TAG representation introduces into NLP are

arguably also of value in GP; in a series of papers, Nguyen has introduced two

TAG-based GGGP systems, using both linear [33], and tree-structured [34] TAG

representations.

4.4 Other extensions of GP using grammars

The typical grammar-based GP model is readily extended to test new GP ideas. For

example, Wong and Leung [107] showed how logic grammars could readily

emulate Automatically Defined Functions. McKay [54] used Ross’ similar system to

investigate partial function evaluation in GP. But Chomsky grammars are not the

only source of such progress. Nguyen et al. [60] used TAGs to investigate

biologically inspired operators in GP. McKay et al. [56] extended this to investigate

the interaction between evolution, development and lifetime evaluation, applying

evolutionary developmental systems in a form of layered learning.

In all these cases—and many others—the work could have used another GP

formalism. The grammar simply made it easy to encode the extension, where other

forms of GP would have required major re-coding to implement the same extension.

5 Alternative population-based stochastic search algorithms

GGGP is, in essence, a class of population-based stochastic search strategies

(evolutionary algorithms) applied to a class of representations (grammar-based).

Just as we may try different representations, as described in Sects. 2 to 4, so we may

also try a range of search strategies. We outline some of these approaches.

5.1 Probabilistic model-building algorithms

Of the various alternative search strategies, by far the largest research effort to date

has focused on algorithms that build a probabilistic model of the search space, then

sample from that model to generate individuals to test for fitness. The fittest models

are then used to update the probabilistic model. Algorithms falling into this class are

known under a wide range of names, the most popular being ‘‘Estimation of

Distribution Algorithms’’ (EDA) and ‘‘Ant Colony Algorithms’’ (ACO).3 For

detailed background in this area, and a survey of publications up to 2005, we refer

the interested reader to Shan et al. [89]. For the sake of convenience, we refer to the

general field as EDA-GP.

Whigham [103] built what would today be seen as a hybrid GP/EDA-GP system.

It used a stochastic CFG, in which the success of individuals gradually biased the

probabilities of productions, although the search still used mutation and crossover

operators as well. At the time, PBIL [2], the first EDA had only just been published,

3 While there may be substantial differences between EDA and ACO in general, in their application to

GP search spaces, the differences have been largely a matter of terminology.
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so the connection was not recognised. Tanev [95] used a similar strategy, based on

stochastic CSGs, to handle change in a dynamic GP system.

Ratle and Sebag [78, 80] introduced SG-GP, the first pure grammar-based EDA-

GP system, using CFGs; it was quickly followed by two others (both described as

ant systems). Abbass et al. [1, 88] introduced Ant-TAG, which used tree adjoining

grammars (TAG). Generalised Ant Programming (GAP) [42] used a stochastic CFG

in a similar way.

All these systems used simple probability structures, in which only the

probability tables are learnt, the grammar structure is not updated. This creates a

dilemma. Too simple an initial grammar may make the problem impossible to solve;

either because it does not represent important dependencies in the solution, so that it

cannot converge to a state that generates the solution with high probability; or

because it represents the wrong dependencies, so that the solution cannot be

generated at all. On the other hand, a complex initial grammar leads to a tough

parameter learning problem—the algorithm may converge too slowly to be useful.

Thus many of the more recent systems incorporate some form of grammar

learning. Program Evolution with Explicit Learning (PEEL) [90] inferred both

grammar structure and probabilities, though in a very limited way. Bosman and de

Jong [4] introduced a system with similar structure-learning capabilities. Both use

simple heuristics to update the grammar.

Grammar Model-based Program Evolution (GMPE) [91] takes a more systematic

approach, using grammar learning methods from Natural Language Processing

(NLP) to learn CFG structure. Hasegawa and Iba’s PAGE (Programming with

Annotated Grammar Estimation) [28] also uses NLP methods, but in this case, to

learn grammars with latent annotations—a form of semantic grammar.

Research in these areas has been relatively successful, with authors demonstrat-

ing substantial improvements over evolutionary algorithms in terms of the number

of fitness evaluations required to find a solution. However the computational

complexity of the learning algorithms involved—especially in the more complex

structure-learning algorithms—means that the running time of these algorithms are

often long compared to a GP system. In the current state of the art, they are thus

best-suited to problem domains with very expensive fitness evaluation, or in

machine learning, to problems where the primary constraint is data availability

rather than computation time.

5.2 Evolutionary developmental systems

EDS have seen an explosion of growth in recent years. In biology, Lindenmayer

systems (a form of CFG) remain the almost universal mechanism for abstractly

representing developmental processes, and have been widely used also in artificial

EDS. In the field of complex adaptive systems, bracketed grammars (a restricted

form of CFG) have been used to generate and study the evolution and dynamics of

such systems with the analogy of chemical in the form of function [18].

In a different direction, McKay et al. [56] combined evolutionary/developmental

search and layered learning in an algorithm (DTAG3P) that was successful on some

difficult problems. However the integration of layered learning in this system means
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that its performance is not directly comparable with that of GP and other similar

systems. This may be viewed either as a disadvantage (DTAG3P requires more

information than standard GP) or as an advantage (DTAG3P is able to use this

additional structured information when it is available, whereas GP is not).

5.3 Other search strategies

The linear representation of Grammatical Evolution lends itself to ready adoption of

search strategies from combinatorial optimisation. A wide range have been tried,

with mixed success. O’Sullivan and Ryan [73] compared simulated annealing, hill

climbing, and random and genetic search; genetic search performed substantially

better overall, suggesting that its trade-off of exploration and exploitation is far

better suited to GP search spaces than either the highly exploitative methods of

simulated annealing and hill climbing, or the pure exploration of random search.

O’Neill and Brabazon [63] didn’t fare much better with differential evolution,

though the performance of particle swarm algorithms [64] was closer to that of

evolutionary algorithms. Taken together, though, these results suggest that it is not

easy to improve on the performance of evolutionary search for the problem spaces

that arise in grammar-based GP.

5.4 Meta-evolution

Hyperheuristics is now an important sub-area of evolutionary computing. It has

received limited attention in GP, but three of the systems described here may be

seen as learning hyperheuristics. Meta-GE uses a meta-grammar [69], which learns

a grammar to describe solutions to an optimisation problem. GMPE [91] not only

learns solutions to a problem, but also learns a grammar describing the solution

space. Similarly, DTAG3P learns a grammar controlling the development of a series

of solutions to problems of different sizes. All three systems exhibit an important

characteristic: unlike most learning algorithms (which learn a solution to a specific

problem), they learn a general method, allowing them to rapidly generate solutions

to a new problem.

6 Applications

Grammatical approaches to GP have yielded a large and varied range of real-world

applications. We present some highlights, in an eclectic mix from Ecological

Modelling and Medicine to Finance and Design.

Evolutionary computation has demonstrated huge potential in design, creating

solutions competing with, or even improving, those of human experts, and resulting

in patentable inventions [50]. Coupling an evolutionary algorithm to a grammar

representation is a particularly powerful departure for evolutionary design [36], with

a wide range of applications including architecture [31], circuits [41, 52] and neural

networks [24]. They feature a variety of grammars, including variants of

Lindenmayer systems [31], Graph Grammars [17], and Shape Grammars [21, 71].
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Wong and Leung [109] demonstrated the flexibility of their LOGENPRO engine

on two medical datasets, mining production rules describing fracture admissions

into a Hong Kong hospital, and diagnostic rules concerning scoliosis (curvature of

the spine).

Computational finance presents significant real-world challenges to machine

learning, arising from complexity, noise and constant change. Grammatical GP

methods have proven particularly successful in financial modelling. For example,

Brabazon and O’Neill have applied GE to develop rules for trading systems, and in

more traditional classification problems such as credit rating and predicting

corporate failure [5]. Tsakonas et al. [98] applied neural logic networks created by

grammar-guided GP to bankruptcy prediction.

Ecological modelling uses spatial, temporal and spatio-temporal models, at a

variety of scales. They are often expressed as partial differential or difference

equations, symbolic rules, process models or finite-state machines. Early examples

exploiting the language bias of GGGP modelled species distribution spatially

[55, 105] and spatio-temporally [93]. Other work has modelled the time-series

rainfall-runoff relationship for a number of catchments [106]. More recently,

methods incorporating difference equations and the evolution of an equation

component (such as the grazing term of a phytoplankton model) have been

demonstrated [101]. These methods have been used to explore the quality of

interpolated ecological time-series data [57].

Further illustrating the diversity of application, grammatical forms of GP have

been applied in Bioinformatics (e.g., evolving regular expressions [49]), software

cost estimation [92], robot control [96], music [9, 15], Logic Programming [44],

fuzzy control [74] and solving differential equations [99].

7 The role of grammar-based GP

Grammars bring a number of benefits to GP. Undoubtedly the most important is a

flexible means of search space restriction. Right from the early days of GP, Koza

[47] emphasised the importance of closure: that every individual that could be

created by the genetic operations must be capable of evaluation if expensive repair

strategies are to be avoided. That is, the semantic restrictions of the search space

must map onto syntactic restrictions. Of course, the simplest way to ensure this is to

have no semantic restrictions: to guarantee that every feasible combinations of

symbols can be interpreted. This was the original, and still a common, solution. But

it is burdensome. It means that semantics must be provided for syntactic

combinations such as 1 ? FALSE. This is generally manageable for relatively

simple problems, but it can rapidly become unwieldy.

One option—commonly used in other areas of evolutionary computation—uses

repair operators. Uninterpretable combinations are repaired so they can be

evaluated. This works well for simple restrictions, but has rarely been attempted

in GP, probably because of its complexity. One notable exception, partially

grammar-based, is the linear GP of Keller and Banzhaf [46], which adopted a repair

strategy to ensure the syntactic correctness of the programs generated by the system.
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The alternative, providing a flexible mechanism to impose restrictions on the

search space, was rapidly adopted—first, in the form of Strongly Typed Genetic

Programming (STGP) [59], and subsequently and more flexibly, in a widening range

of grammar representations. The genetic operators only need to be designed

consistently with the syntactic requirements, so closure can be guaranteed without a

need for repair. The complexity of possible restrictions depends on the form of

grammar. For many problem domains, CFGs are sufficient. For example, CFGs are

commonly used to define typing restrictions on languages—i.e. they implement

STGP. However they are also used to represent more complex restrictions. One

common use is through a form of incremental learning, where users gradually

modify their grammars (typically via specialisation) as they increase their

understanding of the problem domain.

We illustrate the value of this approach, encoding domain knowledge to reduce

the search space to a feasible complexity, through an example, based on Ratle and

Sebag’s work on dimensionally-correct GP [79]. They use an idea from physics—

that valid physical formulas must be dimensionally correct—to vastly prune the

search space. They do so by imposing dimensional correctness through grammatical

restrictions.4

Ratle and Sebag learnt complex physical formulas such as

uðtÞ ¼ F

K
1� e

�Kt
C2

� �
ð1Þ

uðtÞ ¼ F

K1

þ Ft

C1

þ F

K2

1� e
�Kt

C2

� �
: ð2Þ

However we will illustrate with an example based on the well-known Ideal Gas

Law, which we hope will be familiar to our readers, in the form

P ¼ RT

V
: ð3Þ

We can imagine a situation (similar to that faced by the originators of these laws

[20]), where a number of experiments have been conducted measuring the pressure

(P), volume (V) and temperature (T) of a given amount of gas, and the data is

available in tabular form. We might wish to find the form of an equation that would

predict the pressure of the gas, given the temperature and volume—i.e. a formula

such as Eq. 3. Today, we could just apply GP. In fact, almost any form of GP would

work for Eq. 3, but for most there is little prospect of success with more complex

formulae such as Eqs. 1 and 2. However we might recognise that evolving in the

space of general expressions is unnecessary. Any physically realistic equation could

be constructed as a sum of terms formed from multiplication, division and

exponentiation. This could be readily expressed by a context-free grammar such as

in Table 3.1

4 While the ideas here are due to Ratle and Sebag, we use an equivalent representation closer to the logic

grammars of Wong and Leung.
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Of course, in this case we also need a mechanism to deal with the generation of

constants from the Const nonterminal: any mechanisms that might be used in a

standard GP may also be used here.

Again, this grammar readily finds the Ideal Gas Law; but as before, this

restriction is inadequate to solve Ratle and Sebag’s examples. But one may apply

more semantic knowledge about physics: that valid formulae must be dimensionally

correct. Since P—i.e. force per unit area—has dimensionality mst-2

9 s-2 = ms-1t-2, we may infer that the right hand side has the same dimension-

ality. V—the volume—has dimensionality s3, and T—the temperature—has

dimensionality ms2t-2. This imposes a very strong semantic restriction. It can’t

be converted in a general way to an equivalent context-free restriction, but it is

readily represented in a context sensitive language such as the logic grammar shown

in Table 4.1 We represent the dimensionality of an expression by a vector

d = (m, s, t), where each of m, s, t is the dimensionality of the corresponding

physical quantity; � represents vector addition. This grammar would be called with

the nonterminal Exp(1, -1, -2), representing an expression restricted to dimen-

sionality ms2t-2. With restrictions such as these,5 Ratle and Sebag were able to

solve problems such as equations 1 and 2—problems which are far into the

infeasible region for knowledge-free applications of GP.

It is worth pointing out the simplicity and generality of this solution, requiring only

nine lines of very simple grammar productions. Note that, once coded, this grammar

may be used to impose a similar dimensional constraint on any other physical problem;

only the nonterminal with which it is called—here exp(1, -1, -2)—needs to be

changed for a different problem. To impose a similar restriction in a non-grammar

GP system would require many pages of complex code—if it could be written at all.

The most similar work we are aware of, using a non-grammar GP, is the series of

papers of Rodriguez-Vazquez and Fleming, culminating in [82], where they evolve

a model from a class known as ‘‘rational models’’, i.e. of the form shown in Eq. 4

yðkÞ ¼
Pnum

i¼1 Pni
ðkÞhniPden

j¼1 Pdj
ðkÞhdj

ð4Þ

where each Pm is itself a polynomial of degree m in the arguments. This constraint,

while much less complex than the dimensional constraint of Ratle and Sebag, must

have required substantial coding, and at the time was seen as an important part of

Table 3 Context free grammar for ideal gas law

Exp! Trm Trm! Trm Mul Trm Add! ‘‘+’’j‘‘� ’’

Exp! Trm Add Trm Trm! Var Mul! ‘‘�’’j‘‘/’’
Trm! Const Var! ‘‘T’’j‘‘V’’

5 Actually, Ratle and Sebag also impose reasonable bounds on the allowable dimensionality of sub-

expressions—also readily expressible in logic grammars—but these are distractions to our illustrative

purposes here.
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the contribution of these papers. An equivalent grammar requires only a few lines of

productions, as seen in Table 2.

It is important to note the user perspective here. The only additional complexity

in using GGGP for these problems is the requirement to provide the grammar. The

semantic interpretation of the symbols is provided in the same way as in a standard

GP system (in the case of Ross’ DCTG-GP, it is substantially simpler than for a

standard GP system).

8 Characteristics, assumptions and limitations of grammars in evolutionary
computation

The important place of grammars in modern Evolutionary Computation suggests

that grammars bring some valuable advantages; however there are also associated

costs. Here, we delineate these benefits and costs, and the assumptions that underly

the marriage of grammars and evolutionary computation methods.

8.1 Characteristics of grammar systems in evolutionary computation

We consider, first, the use of grammars as representation languages for GP in

general, looking at their general characteristics; then we look more specifically at

the characteristics of specific grammar representations.

8.1.1 General characteristics: grammar as GP representation

Benefits

1. Declarative search space restriction Perhaps the most obvious consequence

of using grammars in GP is the ability it provides to restrict the search space.

This has been the primary justification for the use of GGGP almost from the

start. The main benefit of restricting the search space is to reduce the search cost

to the minimum necessary to find a solution, but it comes with the concomitant

risk that the solution may not be within the search space defined by the

grammar, or perhaps more insidious, that the solution may be isolated by the

grammar constraints and may be difficult to reach.

One common use has been to impose type restrictions; when used in this way, it

is equivalent to Strongly Typed Genetic Programming (STGP) [59]. Another is

to exclude solutions of a particular form—for some problems, solutions of

Table 4 Logic grammar for ideal gas law

ExpðdÞ ! TrmðdÞ Trmðd1 � d2Þ ! Trmðd1Þ Mul Trmðd2Þ
ExpðdÞ ! TrmðdÞAdd TrmðdÞ TrmðdÞ ! VarðdÞ

Trm(0)! Const

Add! ‘‘+’’j‘‘� ’’ Mul! ‘‘�’’j‘‘/’’
Varð1; 2;�2Þ ! ‘‘T’’ Varð0; 2; 0Þ ! ‘‘V’’
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particular forms may have high fitness but low usefulness, so the simplest way

to ensure that they do not confuse the search is to exclude them from the search

space entirely.

In most GGGP systems, the grammar is one of the inputs to the system—

provided in Backus-Naur Form or a similar formalism. Thus the search space is

readily altered, simply by changing the grammar used. A common mode of

operation with GGGP systems is to start with a very general grammar, and then

to iteratively refine the grammar to narrow the search space as the results of

earlier searches are obtained. This interactive style of use permits the user to

influence the search process to a greater degree than is possible with many other

forms of GP.

While narrowing of the search space—i.e. controlling the language bias—is the

commonest mode of operation for these purposes, it is worth noting that the

same search space (language) may be defined by a number of different

grammars. Hence it is also possible to change the search space structure—its

connectivity and overall fitness landscape—without changing the space itself.

Thus it is possible to use change of grammar to alter the search bias, not only

the language bias.

2. Problem structure A number of GP problem domains are themselves directly

grammar-related. For example, protein motifs are essentially regular expres-

sions delineating (with some level of reliability) a family of proteins. It is not

surprising that grammar-based GP systems have figured prominently in motif

discovery research.

3. Homologous operators To the extent that a grammar reflects the semantic

structure of the domain, the homologous operators provided by GGGP replace

one component of a solution with another having similar function. This

homology reduces the likelihood of generating semantically meaningless code

segments, and hence improves the search.

4. Flexible extension Many proposed extensions to GP can be readily imple-

mented as grammar constraints. Practically, this makes GGGP systems

powerful research tools for studying GP mechanisms, since proposed innova-

tions can often be simply incorporated in a grammar and tested, where adding

the same innovation to a classical GP system might require extensive recoding.

Costs These benefits of grammar-based approaches carry with them some costs,

which we discuss below.

1. Feasibility constraints As with standard GP, grammar guided genetic program-

ming is still far from resembling GA in its representational flexibility, despite

some significant efforts in this direction. In tree-based GGGP systems using

Chomsky grammars, it is even more difficult than in GP to design new operators,

especially those making small local changes to the genotype. In these systems, any

new operator has to meet not only the general requirements of tree consistency,

but also any additional constraints imposed by the grammar. Thus subtree

mutation and subtree crossover remain largely unchallenged in these areas.

Some more recent representations alleviate this problem. TAG-based GP systems

are an exception in this area (because of reduced constraint on allowable
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operators), and a wide range of new operators have been defined for them. This is

also the case for linear GGGP systems (including, we believe, the recent

extensions of GE)—it is easy to design new operators, including local operators,

in the genotype space.

2. Repair mechanisms When the genetic operators generate infeasible individ-

uals, there are a number of possible options. Simply discarding the infeasible

solutions is an acceptable approach if the level of infeasibility is low, or the cost

of generating new individuals is small compared to the evaluation cost.

However this isn’t always the case in GP. A better alternative is repair, the

method adopted in some versions of GE. It carries with it the potential risk of

reducing the homology of crossover and mutation.

In Chomsky-grammar tree-based systems, repair may be very difficult, and we

are not aware of any systems using it. Repair is generally avoided by

guaranteeing feasibility by severely restricting the genetic operators.

TAG grammar systems avoid the problem in another way: feasibility is

relatively easy to guarantee without much restriction on the GP operators, so

repair is unnecessary.

3. Limited flexibility While GGGP systems are very useful for exploring new

ideas when they can be incorporated into a grammar, the situation may

sometimes be reversed when the extension is too complex to be encoded in this

way. Then, it may be necessary to build the extension, not only into the

underlying system, but also into any grammar that uses the extension.

4. Turing incompleteness The Turing completeness of a GGGP system depends

upon the semantics of the grammar used, so that GGGP may deal with both

Turing-complete and Turing-incomplete problems. Because of their general-

purpose orientation, GGGP systems typically do not intrinsically offer any

additional support for specific computational paradigms (recursion, iteration

etc) such as is provided in some other GP systems. In a sense, this is just an

instance of the preceding point.

8.1.2 Characteristics of specific grammar representations

1. Incorporating semantics A number of GGGP systems—Ross’ DCTG-based

system [83] and attribute-grammar systems [38, 110]—incorporate semantics

along with the syntax of the grammar. As a result, these systems are highly

retargetable. Applying them to a new problem requires only specification of the

new grammar and semantics, and definition of the fitness function. Since the

semantics may incorporate much of the complexity of the fitness function, and

the latter is the only component requiring programming, the programming cost

of targetting a new problem is generally small—in the case of DCTG-GP, quite

typically ten or twenty lines of code. In incremental learning, where the

grammar and semantics may be altered by the user to guide search, it is often

the case that no re-programming is required at all.

2. Operators As discussed above, defining new operators—including local search

operators and biologically motivated operators—is extremely difficult in
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Chomsky-grammar tree GGGP systems because of the constrained search

space, so most tree-based GGGP systems rely solely on subtree mutation and

crossover. The linearization transformation of GE and like systems makes it

easy to define such new operators, and to control their effect in the genotype

space, but the relatively uncontrolled re-scaling resulting from the linearization

transformation means that the effects in the phenotype space may be very

different. The importance of this effect varies from grammar to grammar.

One of the key advantages claimed for TAG-based grammar systems [34] is the

ease with which new operators may be defined. This, combined with the lack of

disruption of the genotype-phenotype transformation, means that many of the

advantages of the GA representation can be recaptured for GP.

3. Long-distance dependencies One of the key benefits of grammar-based GP is

the homology of the operators, which can be viewed as providing less disruptive,

and more meaningful, transformation of building blocks. In standard GGGP, the

building blocks are connected sub-graphs of the derivation tree. While

connectedness is clearly an important aspect of building blocks, it is arguable

that many of the important structures in human-generated programs are not

locally connected, and require long-distance dependencies just like those in

natural language. The TAG transformation permits local dependencies in the

genotype space (ie the TAG derivation tree) to map to long-distance

dependencies in the intermediate phenotype space (CFG derivation trees) in a

controlled way, corresponding to the structure of the grammar. For example, in

TAG representation, the number dependence between ‘‘cat’’ and ‘‘sits’’ in ‘‘The

cat which has just had a very filling lunch sits on the mat’’ is a local dependence,

whereas it is long-distance in the corresponding CFG representation.

4. Solution models Grammars can define not only the very general search spaces

required to describe the problem domain, but also more restricted spaces, even

down to a single solution. Hence grammars, in common with some other

representations, provide a mechanism to delineate the gradually narrowing set

of potential solutions. However grammars were specifically designed as a way

to represent constrained contextual relationships within families of trees, so it is

not surprising that they have shown strengths in this area, providing the ability

to incrementally learn the structure of problem solution spaces.

5. Opportunities for search space transformation Since the publication of the

messy GA [23], search space transformation has been a core area of GA

research. Outside grammar-based GP, it appears to have been less studied in the

GP literature, perhaps because the constraints imposed by GP tree structure

limit the available transformations. On the other hand, a wide range of

transformations have been proposed for grammar-based representations,

transforming the grammar derivation trees to linear strings. They rely on the

restrictions imposed by the grammar rules, by imposing a numbering system on

the productions of the grammar. These transformations offer the advantages of

a linear genotype—ability to apply the wide range of tools and methods

developed for GAs, and reduced constraint allowing much more flexible genetic

operators. They also appear to offer parsimony advantages, with less bloat than

is observed in tree-based GP systems.
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However these advantages may come at a cost. For one thing, the operators may

no longer be homologous after the linearization transformations. An alteration

early in the genotype may change the interpretation of the subsequent genotype,

so that (depending on the grammar) the proportion of highly disruptive

operators may be higher than in the underlying tree-based representation; this in

turn alters the exploration/exploitation balance of the algorithm, increasing the

exploratory behaviour, potentially at the expense of fine-grained search later in

the process.

8.2 Assumptions and limitations

The assumptions about the search space underlying all evolutionary applications

include:

– That there is sufficient correlation between fitness and semantics, so that non-

random search is useful

– That there is sufficient correlation between distance in the genotype and

phenotype (semantic) spaces that evolutionary search is able to take advantage

of the first correlation

– That these relationships are nevertheless sufficiently uneven (that is, the fitness

landscape is sufficiently rough) that deterministic search methods do not

perform well

Of course, these assumptions carry over to grammar-related applications: grammar-

based GP systems will only perform well if the languages to be learnt satisfy these

requirements.

Grammar-based GP systems impose further assumptions. All known to us rely on

expression-tree semantics (i.e. the same representation as standard GP) for fitness

evaluation. So they embody an assumption that the mapping between grammar

space and expression trees also generates a correlation between the distance metrics.

Since this mapping depends not only on the representation, but also on the specific

grammar, there is considerable room for variation: one method may perform better

than another with a specific grammar, yet may perform worse for the same problem

if the grammar is changed, even if the language defined by the grammar remains

fixed.

A concern is sometimes expressed, that grammar-based GP is weaker than GP, in

that it can only be used for problems that can be represented by a grammar. This is

almost entirely a misconception: grammar-guided GP is a direct generalisation of

expression-tree GP; as Whigham showed [104], for any expression tree domain,

there is a grammar in which crossover and mutation directly map to those in the

expression-tree representation, so that the course of evolution in each will be

identical. Only minute differences remain: the grammar-based and expression tree

initialisations may be slightly different (though it would not be difficult to build an

exact replica of expression tree representation); and for fitness functions defined

directly on the expression-tree shape (usually, GP test problems rather than real

problems), it is slightly more complex to define the fitness function.
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The ability to encode knowledge about the problem remains one of the strongest

justifications for the use of grammar-based GP. Perhaps the clearest demonstration

of this remains Ratle and Sebag’s work described in Sect. 7, in which the grammar

constraint reduces the search space size by many orders of magnitude, turning a

clearly infeasible problem into a feasible one. It is worth emphasising that this is not

merely a matter of computational complexity, but also of data complexity. The

grammar constraint not only reduces the search space size, it also reduces the VC

dimensionality of the corresponding solution. Without the constraints imposed by

the grammar, even if a search algorithm such as standard GP were able to find a

solution of the complexity found by Ratle and Sebag’s system, it would not be

justified in accepting it: the data size required to justify acceptance of a formula of

such complexity would be simply astronomical, without the grammar constraints.

Thus the representational strength of the language is important: most GGGP

systems can accept at least context-free grammar languages; this is enough to encode

a great deal of meta-knowledge about the solution space. Nevertheless, there remains

an important place for representation languages (such as TAG and logic grammars)

which can extend into the context-sensitive domain, and others (such as DCTG and

attribute grammars) which can encode semantic knowledge. There is, as yet, no

general consensus on the appropriate language power for real-world problems.

However this ability to reduce the search space through syntactic (and/or

semantic) constraints comes with some concomitant risk. There is the obvious risk

that the constraints may render the solution inaccessible: if the grammar is wrongly

chosen, the solution may not even lie within the search space defined by the

grammar. But there are more subtle risks as well. The constrained nature of the

search space can render search more difficult. The grammar space is generally

sparser than the corresponding expression-tree search space. Thus neighbourhoods

may be sparser, and they may be less connected (that is, not only may there be fewer

nodes in the search graph, but there may be proportionately even fewer links). Thus

reachability of the solution may be an issue. This has already been shown by Daida

[12] to be an important issue in expression-tree GP. While it has been little explored

in grammar-based GP, it seems clear that the same issue can arise, but to an even

greater degree, in grammar-based GP systems.

Two approaches perhaps alleviate this: linear and TAG-based grammar methods

can claim some greater degree of connectivity. There has been some investigation

[34, 84], but further study of these representational issues is clearly desirable.

9 Future directions

There is an expectation of review papers, that they will point the way to the future

and outline what research directions will be important. These predictions are almost

guaranteed to be wrong. The most important contributions of the future will be the

innovative ideas that no-one foresees today. Thus cautioned, we here outline our

vision of the medium-term future of grammar-based GP—say five to ten years.

Of course, we anticipate that grammar-based GP will share in much of the

general future of the GP field. Progress in general understanding of GP behaviour,
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and advances in GP technology, will generally translate directly into grammar-

based GP (just as they have in the past). Since others are addressing these issues

elsewhere in this volume, we concentrate on those aspects which are specific to

grammar-based GP. In our view, they fall into three main areas: problem

representation, algorithms and applications.

9.1 Grammars and problem representation

Research on different kinds of grammar will undoubtedly be important. We have

already seen the basic CFG model extended to various CSGs; to stochastic

grammars; and to a variety of semantic grammars. We don’t expect this process to

stop, and we do anticipate that some of these new grammars will have important

properties for GP. Having chosen a grammar, one may represent its parse trees in

various ways, either directly, or in a linearised form as in GE. We expect that

alternative transformations for CFGs will continue to be explored, while transfor-

mations and linearisations for CSGs and semantic grammars are wide open for

research.

Incorporating problem semantics into search is currently an active area of

research in GP—both in representation of prior semantic knowledge, and

incorporating that representation into the definition of the problem space, and in

semantically-aware operators that either incorporate prior knowledge or that adapt

to the semantics of the problem space as it is explored. In all of these areas,

grammar representations offer the opportunity to directly represent the semantics,

and to tie it to the syntax of the problem domain. We expect grammar-based GP to

figure solidly in work in these areas.

There has been limited work so far on the fitness landscapes of various GGGP

representations. We expect work in this area to expand substantially. In GGGP, it is

a relatively trivial matter to rapidly change the problem representation; while there

is a lot of practical experience in choosing grammars that work well, it would be

desirable to have a much better theoretical understanding of the fitness-landscape

effects of changing grammar representation.

Grammar representations entail a complex genotype-phenotype mapping; its

continuity (causality) is important to the effectiveness of GP—a discontinuous

mapping may represent a smooth phenotype landscape by a rough genotype

landscape. There is plenty of room for increased understanding in this area to

supplement the limited existing work, and to inform our choice of grammar

representations and operators.

GGGP users typically experiment with grammar representations to find the most

appropriate one for the problem domain. While experienced practitioners of each

representation form have some tacit understanding of how to choose grammars,

there is little explicit knowledge. More explicit knowledge may lead to more

structured methodologies (and interactive software support) to incrementally find

good representations for new problem domains, and even to partial or complete

automation of the process.

GGGP has seen only limited application to Turing-complete problem domains. In

some ways, this is surprising. A key difficulty in these domains is the need to evolve
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two interlinked structures in parallel—in recursion, the epistasis between recursion

and termination steps; in iteration, epistasis between increment and termination

condition. Such dependencies are also common in human languages (for example,

number- or gender-agreement in English), so many context-sensitive grammars

provide mechanisms to support them, representing the common aspect by a single

value. But this potential has seen only limited exploration so far.

9.2 Alternative population-based stochastic algorithms

The wider field of evolutionary algorithms has seen a huge increase in alternatives

to the classical evolutionary algorithms in the past decade. This ferment is gradually

spilling over into GP, with a range of non-classical algorithms being proposed. One

key reason is the same as for GA: a desire to handle local and non-local

dependencies between different components of the genome. Grammars offer

substantial advantages. Non-local dependencies in an expression tree representation

may become local in a suitably chosen grammar. Thus we expect GGGP to be

relatively more important in application of non-classical algorithms than in the

overall field of GP. We have already seen this in EDA-GP, where grammar models

now form the bulk of new work. We anticipate a substantial flowering of work on

the application of other search strategies to grammar models.

9.2.1 Evolutionary developmental systems

We anticipate that grammar-based systems will increase in importance in EDS. This

is particularly likely to manifest itself in evolution of semantic grammars to control

development. A key issue in biological development, largely unrealised in current

EDS, is the interaction of the developmental process with the environment. This is

important both for exogenous influence on development (e.g. the sex-determination

of crocodile embryos by temperature) and for feedback mechanisms outside the

control of genetics (e.g. the feedback-tuned co-development of lens and eye shape in

higher animals). We believe semantic grammars have a role to play in this. A

second potential area of application lies in the area of artificial chemistry, in

extending the work of [18] to make use of more complex grammars, in particular

stochastic grammars.

9.3 Applications

9.3.1 Real-world applications

While GGGP methods have been widely applied by practitioners and experts in the

field, they are less known in the wider domains of engineering and science. There is

thus a need to make these methods better known outside the relatively small GGGP

community. One important factor is the required level of user knowledge. GAs have

become widely known because they are so easy to implement, and require little

knowledge to use reasonably competently. GP has had more limited exposure,

perhaps because of the general need to program a fitness function—but some

Genet Program Evolvable Mach (2010) 11:365–396 389

123



applications, such as symbolic regression, can be used off-the-shelf, and in any case

programming to this level is becoming a fairly widely-distributed skill, so that GP

applications by non-experts are becoming more common. GGGP use, on the other

hand, requires some familiarity with writing grammars. While this skill is

widespread among computer scientists and linguists, it is not so common in other

areas. Thus interactive mechanisms to support grammar development may be

necessary if GGGP is to reach its full potential audience.

Grammars offer particular advantages for design problems, because they can

directly represent many of the design constraints. We expect to see substantial work

in this area, both in learning solutions to problem spaces described by grammars

(i.e. continuing past directions), and in learning the grammars themselves (i.e.

learning to describe particular classes of solutions).

9.3.2 Dynamic environments

Dynamic optimisation is currently one of the hottest areas in evolutionary

computation. But optimisation problems aren’t the only problems that change. In

many real-world applications of GP, the objective also changes over time. Unlike

optimisation problems, however, GP problems may vary in both their parameteri-

sation and in their structure. Representations that can directly represent—and

therefore explicitly change—the problem structure may be useful here. So we

anticipate a flowering of research on GGGP application to dynamic problems. We

also expect an important focus will lie in methods to adapt the grammar as the

problem changes.

10 Summary and conclusions

Grammars offer many advantages in GP, resulting in their wide use. The most

obvious lies in delineating the search space clearly, and avoiding unproductive

search in infeasible regions. Yet this may be only scratching the surface.

Homologous crossover and mutation seem important in supporting productive

search, while grammar-based methods are yielding fruit in understanding the

relationship between genetic operators and representations and in the traversal of

different classes of fitness landscape. It also seems clear that much future work is

required to gain a better understanding of the different effects of different grammar

representations of the same problem domain. For example, the many-to-one mapping

provided by grammar genotype-phenotype mappings may contribute substantially to

the success of GGGP systems, but at present this relationship is not well understood.

Grammar-based methods also offer important advantages in research, because of the

ease with which they may be tailored to explore specific hypotheses.

A wide variety of grammar representations have been applied, using a number of

different search strategies, to a great array of problems. We have only scratched the

surface in this paper. We expect this to increase in the future, particularly if more

human-engineered systems, supporting the users in developing suitable problem

grammars, become available.
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The field is still developing rapidly, with many important directions currently being

explored. Perhaps the key areas are in representation and in search. In representation,

there is important current work on alternative linearisation transformations, and on

alternative grammar representations. In alternative search algorithms (especially EDA

and ant-based algorithms), grammar representations offer clear advantages, and as a

result grammar-based systems form one of the main threads. We look forward to

substantial further progress in these areas over the coming decade.

Acknowledgments The authors thank Kwong Sak Leung, Man Leung Wong and Brian Ross for

insightful discussions that helped to form their perspectives on grammar-based GP, Kee Siong Ng for his

suggestions at the final stage of editing. Thanks are also due to the anonymous referees, who helped us to

shape the discussion more comprehensibly. Seoul National University Institute for Computer Technology

provided some of the research facilities for this study, which was also supported by a Korea Research

Foundation Grant funded by the Korean Government (KRF-2008-313-D00943). MO’N thanks Science

Foundation Ireland for support under Grant No. 08\IN.1\I1868. NXH was partly funded by the Vietnam

National Foundation for Science and Technology Development (NAFOSTED) under grant number

102.01.14.09 for this work.

References

1. H.A. Abbass, N.X. Hoai, R.I. McKay, AntTAG: a new method to compose computer programs

using colonies of ants. in The IEEE Congress on Evolutionary Computation (2002), pp. 1654–1659

2. S. Baluja, Population-Based Incremental Learning: A Method For Integrating Genetic Search
Based Function Optimization and Competitive Learning. Tech. Rep. CMU-CS-94-163, (Carnegie

Mellon University, 1994)

3. W. Bohm, A. Geyer-Schulz, Exact uniform initialization for genetic programming. in Foundations
of Genetic Algorithms IV, ed. by R.K. Belew, M. Vose (Morgan Kaufmann, University of San

Diego, CA, USA, 1996), pp. 379–407

4. P.A.N. Bosman, E.D. de Jong, Grammar transformations in an EDA for genetic programming, in

Special Session: OBUPM—Optimization by Building and Using Probabilistic Models (GECCO.,

Seattle, Washington, USA, 2004)

5. A. Brabazon, M. O’Neill, Biologically Inspired Algorithms for Financial Modelling. Natural
Computing Series (Springer, Berlin, 2006)

6. P. Bruhn, A. Geyer-Schulz, Genetic programming over context-free languages with linear con-

straints for the knapsack problem: first results. Evol. Comput. 10(1), 51–74 (2002)

7. H. Christiansen, A survey of adaptable grammars. SIGPLAN Not. 25(11), 35–44 (1990)

8. R. Cleary, M. O’Neill, An attribute grammar decoder for the 01 multiconstrained knapsack prob-

lem. in Evolutionary Computation in Combinatorial Optimization—EvoCOP 2005, LNCS, vol.

3448, ed. by G.R. Raidl, J. Gottlieb (Springer, Lausanne, Switzerland, 2005), pp. 34–45

9. D. Costelloe, C. Ryan, Towards models of user preferences in interactive musical evolution. in

GECCO ’07: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation,

vol. 2, ed. by D. Thierens, H.G. Beyer, J. Bongard, J. Branke, J.A. Clark, D. Cliff, C.B. Congdon, K.

Deb, B. Doerr, T. Kovacs, S. Kumar, J.F. Miller, J. Moore, F. Neumann, M. Pelikan, R. Poli, K. Sastry,

K.O. Stanley, T. Stutzle, R.A. Watson, I. Wegener (ACM Press, London, 2007), pp. 2254–2254

10. N.L. Cramer, A representation for the adaptive generation of simple sequential programs. in Pro-
ceedings of an International Conference on Genetic Algorithms and the Applications, ed. by J.J.

Grefenstette (Carnegie Mellon University, Pittsburgh, PA, 1985), pp. 183–187

11. M. de la Cruz Echeandı́a, A.O. de la Puente, M. Alfonseca, Attribute grammar evolution. in

Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired Approach, Lecture

Notes in Computer Science, vol. 3562 (Springer, Berlin, 2005), pp. 182–191

12. J.M. Daida, H. Li, R. Tang, A.M. Hilss, What makes a problem GP-hard? validating a hypothesis of

structural causes. in Genetic and Evolutionary Computation—GECCO-2003, LNCS, vol. 2724, ed.
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Kovacs, S. Kumar, C.F. Lima, X. Llorà, F. Lobo, L.D. Merkle, J. Miller, J.H. Moore, M. O’Neill,

M. Pelikan, T.P. Riopka, M.D. Ritchie, K. Sastry, S.L. Smith, H. Stringer, K. Takadama, M.

Toussaint, S.C. Upton, A.H. Wright (ACM Press, Washington, DC, 2005), pp. 394–397

42. C. Keber, M.G. Schuster, Option valuation with generalized ant programming. in Proceedings of
the Genetic and Evolutionary Computation Conference (Morgan Kaufmann Publishers Inc., Los

Altos, 2002), pp. 74–81

43. M. Keijzer, V. Babovic, Dimensionally aware genetic programming. in Proceedings of the Genetic
and Evolutionary Computation Conference, vol. 2, ed. by W. Banzhaf, J. Daida, A.E. Eiben, M.H.

Garzon, V. Honavar, M. Jakiela, R.E. Smith (Morgan Kaufmann, Orlando, Florida, 1999), pp.

1069–1076

44. Keijzer, M., Babovic, V., Ryan, C., O’Neill, M., Cattolico, M.: Adaptive logic programming. in

Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001), ed. by L.

Spector, E.D. Goodman, A. Wu, W.B. Langdon, H.M. Voigt, M. Gen, S. Sen, M. Dorigo, S.

Pezeshk, M.H. Garzon, E. Burke (Morgan Kaufmann, San Francisco, California, 2001), pp. 42–49

45. M. Keijzer, M. O’Neill, C. Ryan, M. Cattolico, Grammatical evolution rules: The mod and the

bucket rule. in Genetic Programming, Proceedings of the 5th European Conference, EuroGP 2002,

LNCS, vol. 2278, ed. by J.A. Foster, E. Lutton, J. Miller, C. Ryan, A.G.B. Tettamanzi (Springer,

Kinsale, Ireland, 2002), pp. 123–130

46. R.E. Keller, W. Banzhaf, Genetic programming using genotype-phenotype mapping from linear

genomes into linear phenotypes. in Genetic Programming 1996: Proceedings of the First Annual
Conference, ed. by J.R. Koza, D.E. Goldberg, D.B. Fogel, R.L. Riolo (MIT Press, Stanford Uni-

versity, CA, USA, 1996), pp. 116–122

47. J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural
Selection (MIT Press, Cambridge, 1992)

48. J.R. Koza, Genetic Programming II: Automatic Discovery of Reusable Programs (MIT Press,

Cambridge, Massachusetts, 1994)

49. J.R. Koza, D. Andre, F.H. Bennett III, M. Keane, Genetic Programming 3: Darwinian Invention
and Problem Solving (Morgan Kaufmann, Los Altos, 1999)

50. J.R. Koza, M.A. Keane, M.J. Streeter, W. Mydlowec, J. Yu, G. Lanza Genetic Programming IV:

Routine Human-Competitive Machine Intelligence (Kluwer Academic Publishers, Dordrecht, 2003)

51. R.M. MacCallum, Introducing a Perl genetic programming system: and can meta-evolution solve

the bloat problem? in Genetic Programming, Proceedings of EuroGP’2003, LNCS, vol. 2610, ed.

by C. Ryan, T. Soule, M. Keijzer, E. Tsang, R. Poli, E. Costa (Springer, Essex, 2003), pp. 364–373

52. T. McConaghy, G. Gielen, Canonical form functions as a simple means for genetic programming to

evolve human-interpretable functions. in GECCO 2006: Proceedings of the 8th Annual Conference
on Genetic and Evolutionary Computation, vol. 1, ed. by M. Keijzer, M. Cattolico, D. Arnold, V.

Babovic, C. Blum, P. Bosman, M.V. Butz, C. Coello Coello, D. Dasgupta, S.G. Ficici, J. Foster, A.

Hernandez-Aguirre, G. Hornby, H. Lipson, P. McMinn, J. Moore, G. Raidl, F. Rothlauf, C. Ryan,

D. Thierens (ACM Press, Seattle, 2006), pp. 855–862

Genet Program Evolvable Mach (2010) 11:365–396 393

123



53. R. McGee, M. O’Neill, A. Brabazon, The syntax of stock selection: grammatical evolution of a

stock picking model. in IEEE World Congress on Computational Intelligence WCCI 2010 (IEEE

Press, Barcelona, 2010)

54. B. McKay, Partial functions in fitness-shared genetic programming. in Proceedings of the 2000
Congress on Evolutionary Computation CEC00 (IEEE Press, La Jolla Marriott Hotel La Jolla,

California, 2000), pp. 349–356

55. R.I. McKay, Variants of genetic programming for species distribution modelling—fitness sharing,

partial functions, population evaluation. Ecol. Model. 146(1–3), 231–241 (2001)

56. R.I. McKay, T.H. Hoang, D.L. Essam, X.H. Nguyen, Developmental evaluation in genetic pro-

gramming: the preliminary results. in Proceedings of the 9th European Conference on Genetic
Programming, Lecture Notes in Computer Science, vol. 3905, ed. by P. Collet, M. Tomassini, M.
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