A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

A Brief Introduction to
Common Lisp

Sunil Mishra (smishra@cc.gatech.edu)
What is Lisp?

Lisp is a family of programming languages. The
first Lisp was the work of John McCarthy in the
late 1950's. It has existed in many forms and
dialects since. The most widely used dialects
today are Common Lisp and Scheme. In this
class we shall work with Common Lisp.

There are many gross characteristics of
Common Lisp that make it significantly different
from other common languages. Lisp is generally
thought of as functional, and for the most part
we shall adapt that view in this class. There are
many aspects of Lisp that we shall barely touch
upon, so the material you will see will contain
many gross simplifications, and perhaps a few
white lies. This can run you into trouble, and we
the TA's shall be around to help you if this
should happen.

Common Lisp is Functional

Lisp as it was originally conceived of was a pure

1 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

functional language, but that is not necessarily
the case any more. Common Lisp offers a variety
of programming styles. Programs written in
Common Lisp consequently tend to be a
pragmatic combination of a variety of
programming styles. These tutorials begin with
an emphasis on functional programming, and
slowly introduce examples of mixing in some
imperative programming.

I shall not comment on imperative programming
beyond saying that C is a typical example.
Functional programming implies a style of
programming where functions are first class
objects. In other words, they can be passed as
arguments, created and used very flexibly. They
are as much a data object as are integers. This
is perhaps the single most confusing aspect of
functional programming. Hopefully you will
learn to appreciate functional programming as
you gain more experience with it.

Common Lisp Variables are Untyped

Programs written in Common Lisp do not
require the programmer to declare the type of
data ahead of time. A function written in C is
often restricted in the type of argument it can
take. A function written in Lisp is not restricted
in this way. The data objects themselves
however are typed. So the burden of type

2 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

checking falls on the Common Lisp environment,
not on the programmer. This too can be
confusing at first, but there are great
advantages in being able to express the intent of
the program without having to worry about the
particulars of the data.

Common Lisp is Interactive

This is not an inherent property of the language,
but a commonly accepted means of working with
the language. The programmer interacts with
the run-time environment, directly invoking the
functions that constitute a program. A language
such as C on the other hand requires the
programmer to write a program, compile it, and
invoke the program in a non-interactive fashion.
The program (along with the functions that
comprise it) may either be interpreted or
compiled.

Common Lisp allows Symbolic
Computation

The symbol is perhaps one of the first data types
that students learning Common Lisp are taught.
The ease and flexibility with which Common Lisp
can manipulate symbols is one of the primary
reasons why the language is a mainstay of Al
research.

3 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

Common Lisp has Garbage Collection

Java made garbage collection fashionable, but
many languages had it long before. The Lisp
family is probably the first among them, and I
believe still has the best memory management
system you can expect to find. The programmer
is freed from the burden of allocating and
releasing data. It is all handled by the lisp
environment. However, allocation and
deallocation still take time. Each time a new
object is created, the environment has to spend
some processing power in allocating space, and
deallocating and reclaiming space when the
object is no longer needed.

Common Lisp is BIG

Common Lisp has a large library, comprising
over 970 standard functions. It makes the
language hard to master, but guarantees that
any programs written in Common Lisp are
portable. Much like Java.

Components of a Lisp
Environment

Common Lisp environments, in their basic form,
are quite simplistic, even boring. Most still

4 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

present the programmer with a command line as
the basic means of interaction. This command
line is called the listener. It gives the
programmer access to the current state of the
run-time environment.

This command line embodies the read-eval-print
loop. The command line reads an expression,
evaluates it, and prints out a result. Part of the
power of lisp comes from the fact that each of
these functions is accessible to the programmer.
(However, the use of eval is heavily deprecated
for a variety of reasons.)

Some modern Common Lisp environments have
a fancier graphical interface available. The
listener is however still the primary means for
interacting with the environment. The remaining
components often include editors, inspectors,
debuggers, profilers, and a host of other tools.
In over six years of working with Lisp I have
perhaps a couple of times asked for something
more than an emacs editor and the listener.

The Basic Lisp Expression

s-expressions are the primary constituent of Lisp
programs. Their syntax tends to be very simple.
s-expressions are composed entirely of atoms

5 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

and lists, where an atom is (approximately)
anything but a list. Atoms may be directly
evaluated, while lists involve function calls.

s-exp ::= atom | (symbol s-exp*)
atom ::= symbol | number | string | <other things>

In other words, an s-expression is an atom or a
list expression. Each s-expression returns a
value. The definition of an s-expression is
recursive. Arbitrarily complex expressions can
be created by composing s-expressions in this
manner. This can however lead to programs that
are hard to read, and is not advisable.

If the s-expression is a single atom, then the
action the lisp environment takes depends on
the type of atom. If it is a symbol, then the value
of the symbol is accessed. Otherwise, atoms
usually evaluate to themselves. (5, for example,
returns 5 as its value.)

List s-expressions are quite straightforward too.
The first component of these s-expressions is
always a symbol. Evaluating the s-expression
corresponds to executing the function
associated with this symbol. The s-expressions
following the symbol are also evaluated, and
their values are used as arguments to the
function. In the example below, the function
associated with the symbol + is accessed. The
atoms 2 and 3 are evaluated, and their return

6 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

values (themselves) are used as arguments to
the function +. The value of the s-expression is
returned as the atom 5.

> (+ 2 3)
5

Lisp, as you can see, uses prefix syntax.

Example 1 - Factorial

We shall first go over a simple example to
demonstrate lisp syntax before examining more
details of the language. Factorial has a simple
recursive mathematical definition:

fact(0)
fact(n)

1
n*fact(n-1)

Below are two methods for implementing
factorial. In general, you will find that there are
any number of ways of expressing an idea in
lisp, and some of them turn out to be better than
others.

Version 1:

(defun factorial (n)
(if (= n 0)
1
(* n (factorial (1- n)))))

This is the literal interpretation of the definition

7 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

of factorial. Remember that each expression in
Lisp returns a value, which allows for a simple
translation of a variety of mathematical and
logical constructs into equivalent programs.

The entire form is a single s-expression that
constructs a function definition. The return
value of this s-expression is the name of the
function. DEFUN is a symbol in the function slot
of the s-expression. It is not a function, but a
special form. Unlike a function invocation, it
does not necessarily evaluate all its arguments.

Like DEFUN, IF is a special form. It takes a
variable number of s-expressions (two or three)
in its argument slots. The first argument is
necessarily evaluated. It is usually a predicate (a
function that returns a boolean value). If the
predicate returns true, then the second
argument is evaluated. If false, the third
argument is evaluated. The value of the entire
IF s-expression is either the value of the second
argument or the third, depending on which one
is evaluated. If the third argument is absent,
then NIL is returned.

The remaining s-expressions are mathematical
functions that evaluate as you would expect
them to. Let us run a few tests:

> (factorial 4)
24

8 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

> (factorial 30)
265252859812191058636308480000000

Note on the last one that the result value was an
exact integer. Common Lisp is limited only by
memory in the size of the integers it can work
with. You don't have to worry about overflows
and such.

Version 2:

(defun factorial-1 (n product)
(if (= n 0)
product
(factorial-1 (1- n) (* n product))))

(defun factorial (n)
(factorial-1 n 1))

At first glance, this version of FACTORIAL seems
to be inferior to the first. It uses two functions,
while the first uses only one. Version 2 is thus
more verbose, and potentially more confusing.
But this version has a very important advantage,
for it allows a type of optimization called tail call
elimination.

Consider the stack usage of version 1:

(factorial 3)

=> (* 3 (factorial 2))

=> (* 3 (* 2 (factorial 1)))

=> (* 3 (* 2 (* 1 (factorial 0))))
== (*3 (*2(*11)))

9 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

=> (*3(*21))
=> (* 3 2)
=>6

Now let's look at version 2:

(factorial 3)

=> (factorial-1 3
=> (factorial-1 2
=> (factorial-11
=> (factorial-1 0
= 0

1)
3)
6)
6)

Version 1 requires the lisp environemnt to keep
track of the partial results of the recursive calls,
while version 2 keeps track of the partial result
as an explicit argument. This allows the lisp
environment to optimize version 2, by reusing
the stack space of the previous call. Thus,
version 2 can be easily reduced to a simple loop.

Of course, it is not always possible to reduce a
recursive function to a loop. Factorial involves
linear recursion, since a call to the function
factorial results in at most one new call to
factorial. In a tree recursive algorithm, a call to
the function can result in multiple new calls to
the function, which may make tail call
elimination difficult or impossible. We shall see
an example of tree recursion with Towers of
Hanoi, below.

10 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

Common Data Types (and
Associated Functions)

Lisp has a fairly extensive and complex type
hierarchy. Listed below are many of the major
types of data I expect you will have to work with
through the course of the quarter. Under each
type I have listed a set of useful functions. This
list is far from exhaustive, so I suggest you look
into a text to get more information.

Lists and Cons

Lists, like symbols, have a special place in the
lisp type hierarchy. They are a very convenient
default representation when exploring various
aspects of a program or problem. They are also
the underlying representation for non-atomic
s-expressions. Thus, lists provide us with the
building blocks for both data and programs. This
interchangeability of data and programs affords
a great deal of power to lisp programs.

A list in turn is composed of a series of cons
cells. A cons cell is abstractly an object made of
two slots. More concretely, it can be thought of
as a two element array. Each of the slots can
hold any kind of value, including other cons
cells. Effectively, cons cells give us the ability to
construct arbitrary tree structures.

11 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

Lists have a recursive definition.

1. () is the empty list.

2. A cons cell with its second component () is
a list of length 1.

3. The length of a list is one more than the
length of the list in its second component.

Note that:

> ()
NIL

Thus, NIL is also the empty list.
cons

Allocates a cons cell.

> (cons 1 2)
(1. 2)

The result of the above expression is called the
dotted pair representation of a cons cell.

consp

Tests if the argument is a cons cell.

> (consp (cons 1 3))
T

list

12 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

This function is the primary list constructor.

> (list 1 2 3)
(12 3)

It automatially allocates and strings together all
the necessary cons cells. The above expression
is equivalent to

> (cons 1 (cons 2 (cons 3 ())))
(12 3)

Note that the result contains no dotted pairs.
That is because for readability the dotted pair
representation is compressed to give a compact
list representation. Generally, if the second
component of a cons cell is another cons cell or
(), the cons cell is not printed as a cons cell.

> (cons 1 (cons 2 3))
(12 . 3)

The first cons cell is not printed as a dotted pair,
while the second is.

car
This accesses the first component of a cons cell.
> (car (cons 1 2))

1

cdr

This accesses the second component of a cons

13 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

cell.

> (cdr (cons 1 2))
2

> (cdr (list 1))
NIL

caar, cadr, cdar, cddr...

These functions are abbreviations for a series of
applications of CAR and CDR. Thus,

(car (car x))
(car (cdr x))

(caar x)

<->
(cadr x) <->

While convenient, excessive reliance on CAR

and CDR can quickly make a program
unreadable.

first, second... tenth

These access the first, second... upto the tenth
element of a list.

\%

(first (list 1 2 3))
1

> (second (list 1 2 3))
2

nth

This retrieves the nth element of a list. Note that

14 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

the elements of a list are zero based, rather than
one based.

(nth 0 x) <-> (first x)
nthcdr

This function retrieves the nth cons cell of a list.
The elements are again zero based.
(car (nthcdr 0 x)) <-> (nth 0 x)

> (nthcdr 1 (list 1 2 3))
(2 3)

last

This function returns the last cons cell of a list.

> (last (list 1 2 3))
(3)

length

This function returns the length of a list (and
other objects that have a length).

listp
This function tests if the object is a list. It
returns true if the object is either a cons cell or

the empty list. CONSP on the other hand tests
only if the object is a cons cell.

15 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...
> (listp ())
T

> (consp ())
NIL

endp

This function tests if we are at the end of a list.
In other words, it tests if the object is ().

> (endp ())
T

\%

(endp nil)
T

In other words, ENDP performs precisely the
same function as NULL. There are two different
functions for the same purpose, since they
communicate different information back to the
reader. ENDP indicates that the argument is a
list, while NULL does not. Consequently, ENDP
should be used in preference to NULL when lists
are involved.

Symbols

Symbols are special objects in Common Lisp.
They are used for naming a variety of objects,
including variables and functions. They
consequently play a special role in lisp
programs.

16 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

A symbol is in fact an object with some internal
structure. Two of these slots are of consequence
to the programmer. They store the variable
value and the function value of the symbol. In
other words, a symbol can simultaneously have
distinct variable and function values. The
variable value of a symbol can be accessed by
typing in the name of the symbol at the lisp
prompt. For example,

> most-negative-single-float
-3.4028238E38

A symbol can be almost any string of characters.
For example, +, A, Al, 1A, $ and $%* are all
symbols. There are a few exceptions though,
involving characters that play a special role in
lisp syntax. Some of them are:

e A single . is not a valid symbol.

e A symbol may not begin with a #.

¢ A symbol may not contain | or ' or * or,.
e (and) cannot be in a symbol.

symbolp

This predicate tests if an object is a symbol. It
returns T if the object is a symbol, and NIL
otherwise. Look below for more information
about T and NIL.

> (symbolp nil)

17 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

T

> (symbolp 4)
NIL

T/NIL

These are probably the most overloaded and
confusing symbols in lisp. Both of them are
special in similar ways, so they are listed
together.

As I have noted above, symbols can have
variable values. T and NIL are special, in that
they are constant objects that have themselves
as variable values. In other words

> nil
NIL

> t
T

One of their many functions is to act as
booleans. NIL means false, and T means true.
However, true is in actuality a lot more fuzzy,
since anything not NIL is also true. This can be
very handy, but can get rather confusing as
additional meanings of NIL are introduced.

null

Tests if an object is nil. If so, returns T,

18 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

otherwise NIL.

Exercise: What is (null (null t))?
Atoms

Atoms are anything that are not cons cells. The
rest of the types listed below (including strings)
are thus classified as atoms.

atom

This predicate tests if an object is an atom. It
can quite literally be defined in terms of consp.

(atom x) <=> (not (consp x))

> (atom 1)
T

> (atom (list 1))
NIL

> (atom nil)
T

Numbers
We are all familiar with numbers. We know of
integers, rationals, reals, complex numbers, etc.

Lisp provides a rich vocabulary of numbers. We
shall only discuss integers for now.

19 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

As noted under the factorial example, numbers
in lisp are not limited by the underlying machine
architecture. They can be of arbitrary size, only
limited by the available memory. All arithmetic
operators function as one would expect on these
numbers.

arithmetic operators (+, -, *, /, 1+, 1-)

The function + without any arguments returns
0. With one argument it returns the number it
was given. With more than one argument it
returns the sum of all of its arguments.

The function - requires at least one argument. If
given only one argument, the return value is the
argument's negation. If given more than one
argument, the return value is the first argument
minus the sum of the remaining arguments.

The function * without any arguments returns 1.
With one argument the result is the argument
itself. With more than one argument the product
of all the arguments is returned.

The function / requires at least one argument.
With one argument it returns the inverse of the
argument. When more than one argument is
supplied, the result is the first argument divided
by the product of the remaining arguments.

20 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

1+ and 1- add 1 and subtract 1 from their
arguments, respectively.

integerp
Tests if the argument is an integer.
oddp/evenp

Tests if the argument is odd or even,
respectively.

Functions

Functions, as has been noted, are first class
objects in Common Lisp. We can construct them,
pass them around, invoke them, and test for
them.

function

This is a special form, not a function. It returns
the function value of the symbol supplied, and
an error if none exists.

> (function +)
#<Function +>

The special form FUNCTION is hardly ever
used. Special syntax provided in Common Lisp
gives us a handy short cut.

21 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

> #'+
#<Function +>

functionp

This predicate tests if the supplied argument is
a function.

> (functionp #'+)
T

funcall

This function invokes the function supplied as its
first argument on the arguments supplied.

> (funcall #'+ 1 2 3)
6

Thus, the above function call is equivalent to (+
1 2 3). It is useful when a function has been
passed as an argument, and cannot be executed
in the usual manner.

apply

APPLY is like FUNCALL, in that it executes a
function. However, it takes arguments in a
different format. The last argument to APPLY is
interpreted as a list of arguments to be given to
the function in the first argument's place.

> (apply #'+ (list 1 2 3))

22 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

6

> (apply #'+ 4 (list 1 2 3))
10

All arguments other than the last are
interpreted as individual arguments for the
indicated function.

Strings

Strings are vectors of characters. Literal strings
are indicated by double quotes surrounding a
series of characters, and evaluate to themselves.

> "fOO“
||.':00||

stringp

This function returns T if its argument is a
string.

length
This function returns the length of the string.

(You may recall that this function also returns
the length of a list.)

Booleans and Predicates

23 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

eql

EQL tests if two objects are the same. Integers
are usually EQL if they are the same number.
Symbols are always EQL to each other. Complex
objects that involve allocation may or may not
be EQL. A cons cell is always EQL to itself, but
never EQL to another cons cell that merely has
identical contents.

> (eql t t)
T

> (eql nil t)
NIL

> (eql 'a 'a)
T

> (eql 4 4)
T

> (eql (cons 1 2) (cons 1 2))
NIL

> (let ((x (cons 1 2)))

(eql x x))
T

equal
EQUAL, unlike EQ, ignores the issue of cons cell

identity. It simply requires that the two objects
have the same content. In other words, it is

24 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

more general than EQL in its application.

> (equal (cons 1 2) (cons 1 2))
T

The = predicate is intended specifically for
comparing numbers. Giving it non-numeric
arguments will result in an error. It can take
multiple arguments, in which case it will test if
all the arguments have the same numerical
value.

\

(=6 (+24) (*23))
T

typep

As has been stated earlier, data rather than
variables in Common Lisp are typed. TYPEP is a
predicate intended to check the type of the data.

> (typep 5 'number)
T

> (typep nil 'list)
T

> (typep nil 'cons)
NIL

Control Structures

25 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

In addition to functions, Common Lisp has a
variety of special forms. A call to a function
results in all the arguments being evaluated
before the function is executed. Special forms
are different, in that their arguments are
selectively evaluated. They may also produce a
variety of other effects that functions cannot.
Thus, special forms are an essential component
for controlling the path along which a
computation proceeds. All special forms in
Common Lisp, like functions, have a return
value.

defun

This form is responsible for constructing
globally accessible functions. It returns the
name of the function as its value. The full syntax
is:

(defun <function-name> <argument-list>
<forml>
<form2>

<formN>)
<function-name> has to be a valid symbol.
(There are some exceptions that you should not
concern yourself with just yet.) This symbol is
returned as a result of the DEFUN expression.

The <argument-list>, properly called the
lambda list, is in its simplest form a list of

26 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

symbols to which the arguments will be bound.
When the function is executed, a new lexical
context is created within which these bindings
exist. It is in this context that <form1> through
<formn> are evaluated, and the return value of
the function is the result of the evaluation of
<formn>.

We have already seen the FACTORIAL example
and a sample use of a DEFUN expression.

lambda

DEFUN is limited in that it can only construct
globally accessible functions that are named.
For taking advantage of functional programming
paradigms, it is necessary to be able to create
functions at run-time. The LAMBDA form
provides this functionality. It creates an
anonymous (unnamed) function that is otherwise
identical to regular functions. The syntax of the
LAMBDA expression is also identical to the
syntax of a regular function definition. For
example,

> (funcall #'(lambda (x) (if (oddp x) (1+ x) x)) 5)
6

As has been stated earlier, functions in Common
Lisp are simply objects. We have seen two
methods of creating functions so far. One is
through DEFUN, which creates a named

27 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

function, and the second is through LAMBDA,
which creates an anonymous function. The main
difference is that the symbol that names a
function can be at the head of a complex
s-expression, while an anonymous function must
be invoked using FUNCALL or APPLY.

It is important to note the commonalities and
differences between the two forms as well. The
structure of the function definition is identical in
both cases. A function definition requires the
programmer to give a lambda (argument) list
followed by a series of forms to evaluate. Both
DEFUN and LAMBDA proceed to create function
objects that behave identically when invoked. In
fact, there are other special forms that create
function objects. We shall not discuss them in
the course of this tutorial.

quote

The QUOTE special form instructs lisp to take
the argument literally. That is,

> (quote x)
X

Without the QUOTE, Common Lisp would
attempt to access the variable value of the
symbol. This form is used very often, to the point
that it has a syntactic short-cut, the single
quote.

28 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

> 'x
X

Symbols are not the only objects that may be
quoted.

> (car '(1 . 2))

IF is one of the many conditional evaluation
forms in Common Lisp. Its syntax is:

(if <test>
<then-form>
<else-form>)

On evaluation, the IF form first evaluates the
<test> expression. If the value is non-NIL, the
IF form returns the result of evaluating the
<then-form>. Otherwise, the <else-form> is
evaluated.

We have seen an example of the IF expression in
FACTORIAL.

cond

29 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

COND can be thought of as a series of IF
expressions. The full syntax is:

(cond (<testl> <formll> <forml2> ... <formlK>)
(<test2> form21l> ... <form2L>)
(<testN> <formN1> <formN2> ... <formNM>))

The evaluation of a COND begins with the
environment evaluating <testl>. If the test
returns non-nil, then the forms following
<testl> are evaluated, and COND returns the
value of the last form under the test. If <testl>
returns NIL, the environment proceeds to the
next test. If all the tests are exhausted, then NIL
is the return value of the COND.

A COND expression may have its last test
(<testN> above) be T. This then is the default
clause, whose forms are evaluated if all the
other tests fail.

> (let ((x 50))
(cond ((oddp x) (1+ x))
((> x 10) (/ x 2))

(t x)))
25

when/unless

WHEN and UNLESS share a common syntax:

(when/unless <test>
<forml> ... <formN>)

30 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

For a WHEN expression, the <test> is
evaluated. If it returns non-NIL, <form1>
through <formN> are evaluated, and the return
value of the WHEN expression is the return
value of <formN>. UNLESS differs from WHEN
in that it evaluates <form1>... <formN> when
<test> returns NIL.

> (when t 5)
5

> (when nil 5)
NIL

> (unless t 5)
NIL

> (unless nil 5)
5

let/let*

LET creates a new lexical scope along with the
specified bindings, and evaluates a series of
forms. The full syntax of LET is

(let (<bindingl>... <bindingN>)
<forml>... <formN>)

where each binding has the form

(<symbol> <value-expression>)

The return value of the LET expression is the
result of evaluating <formN>. It is instructive to

31 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

compare LET with DEFUN. The symbols that
LET binds are loosely equivalents of the
arguments specified in a function definition.
Like the arguments of a function, the values of
the bindings are all evaluated in parallel. Then
the forms that follow are evaluated, and the last
form's value is returned.

LET* is different from LET in that it evaluates its
bindings sequentially, so that the variable in
<bindingl> is available when the <value-
expression> for <binding2>... <bindingN> are
evaluated.

> (let ((x 2)
(y 3))
(+ xy))

5

> (let ((x 2)
(y (* x 2)))
(+ xy))
ERROR x is unbound ...

> (let* ((x 2)
(y (* x 2)))
(+ x y))
6
> (let ((x 2))
(let ((x 4)
(y (* x 2)))
(+ xy)))
8

32 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

> (let ((x 2))
(let* ((x 4)
(y (* x 2)))
(+ xy)))
12
or

OR takes multiple arguments. It evaluates its
arguments until it finds one that is non-NIL. This
value is its return value.

> (or nil 5 t)
5

and

AND, like OR, takes multiple arguments. It
evalutes its arguments until it finds one that is
NIL. If one is found, the return value of the AND
expression is NIL, otherwise it is the value of
the last argument evaluated.

> (and nil 5 t)
NIL

> (and 5 t 'x)
X

not

NOT takes a single argument. If the argument is
NIL, it returns T, otherwise it returns NIL.

33 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

> (not 'x)
NIL

> (not nil)
T

defvar

DEFVAR defines a global variable. It returns the
name of the variable as its value.

> (defvar *foo* 5)
FOO

The circumstances in which global variables are
used are few, and excessive use can make
programs difficult to read and debug. Use them
sparingly.

setq

SETQ destructively modifies the variable value
of a symbol. It's full syntax is:

(setq <symboll> <valuel>
<symbol2> <value2>

<symbolN> <valueN>)

It does not establish a new lexical scope, but
simply modifies the value of a variable within
the current scope. It should be used as sparingly
as possible. The return value of SETQ is the
result of evaluating <valueN>.

34 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

> (let ((x 5))
(setg x (1+ x))
X)

6

setf

SETF destructively modifies the value in a place.
A place is an abstract concept. A symbol's
variable value is an example of a place, so SETF
is more general than SETQ in its scope.

> (let ((x (cons 1 2)))
(setf (car x) 4)
X)

(4 . 2)

Lexical Scopes and Closures

As has been noted, a number of Common Lisp
forms produce variable bindings. Such bindings
are called lexical bindings, since they are
determined at load/compile time. Their extent is
dependent upon the structure of the program,
rather than the nature of the execution of the
program. For example, consider

(let ((x 1)
(y 2))
(+ x y))

The LET form defines a lexical scope, within
which variables X and Y are bound to 1 and 2,

35 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

respectively. The expression (+ X Y) within this
lexical scope accesses these bindings when it is
evaluated. A lexical scope is roughly equivalent
to a block in C.

Closures are one of the trickier topics for
students new to lisp. A closure is simply a lexical
environment within which a function has been
defined. A closure then preserves all the
bindings of the lexical environment for the
function to use as needed. Consider the
following:

> (let ((x 5))
(defun foo ()

X))
FOO

> (foo)
5

The value of the binding X is now completely
inaccessible. It cannot be modified or accessed
in any way, except by calling the function FOO.
We have just constructed a lexical closure
around FOO. Closures are rarely useful in this
form, but there are a variety of other situations
where they can be very powerful. Consider:

(defun make-foo-predicate (arg)
(let ((processed-arg (some-complicated-processor arg)).
#' (lambda (x)
(foo-same-p x processed-arg))))

36 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

This paradigm represents a method for
constructing a closure that specifies the context
for a customized predicate. This style of
abstraction is often useful for providing
abstractions otherwise difficult to provide.

Programming Style

Be Expressive

Use descriptive names. Spending a little time
here can save a lot of time down the line
debugging and documenting code. If done right,
code becomes essentially self-documenting. This
is one of Lisp's strengths.

Doing this right can be difficult. The ability to
arbitrarily compose expressions is confusing to
some, but is ultimately a great benefit when
authoring a program.

Also, use the most specific possible function
when you have a choice of forms to use. This is
useful in many ways. It provides a form of self
documenting code, in that the particular
function used can tell the reader what data you
had expected. When testing for end of list, it is
better to use ENDP than NULL for this reason.
NOT is preferable to NULL when you are
expecting a boolean value. The other advantage

37 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

is that you can catch errors at the right point, if
you use a more restrictive function. For that
reason it is better to use NTH than ELT if you
want to refer to a particular element of a list.

Finally, you should start wondering about your
abstractions if you find yourself using a lot of
CAR and CDR and other list destructuring
operations while accessing data.

Use Appropriate Formatting

Lisp has an extensive set of programming rules
that have developed over time. The structure of
a program is generally expressed through
appropriately indenting lisp code. Use emacs
(xemacs), for they can generally do a good job of
appropriately indenting your code.

Never use excessive whitespace. Compare:

(defun factorial-1 (n product)
(if (= n 0)
product
(factorial-1 (1- n) (* n product))))

with

(defun factorial-1 (n product)
(if (=no0)
product
(factorial-1 (1- n) (* n product))
) ; end if
) ; end defun

38 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

The latter for an experienced lisp programmer is
really hard to read. The extra whitespace is
confusing. The parentheses on lines by
themselves even more so. In the first version, all
you have to do is look at the indenting, and you
can correctly identify the extent of each
expression. In the second version, this process
becomes very difficult.

Comments and Documentation

Use comments sparingly, only to point out things
that cannot be directly and explicitly
demonstrated in the code itself. Excessive
comments are a sign that the code you are
writing is not well structured. Consider
rewriting parts of it.

A comment begins with a ; and extends for the
remainder of the line. There are three generally
accepted levels of comments. A single ; is an in-
line comment, generally indicating a minor point
relevant to a single line of code. Two ;; are used
for comments inserted between lines of a
function, and are for describing higher level
issues within a function. Three ;;; are for
comments between functions, and are for
describing high level aspects of the program.

Finally, block comments are indicated by #| ...
|# pairs. They are equivalent to /* ... ¥/ in how

39 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

they work, with one major advantage--they can
be nested.

Each function is allowed a documentation string.
For example,

(defun factorial-1 (n product)
"Helper function for calculating the factorial of a nur
(if (= n 0)
product
(factorial-1 (1- n) (* n product))))

This documentation string immediately follows
the function lambda list, and should concisely
describe the function. For major top-level
functions the documentation string is often
much more elaborate.

cond/if/when/unless

These special forms are intended to control the
flow of a program, and each should be used in
particular circumstances.

WHEN and UNLESS indicate that you only care
about the consequent case, and not the
alternate. IF on the other hand indicates that
you care about both the consequent and the
alternate cases. IF however is restricted to a
single expression for the alternate and the
consequent. A programmer that requires either
of these to be multiple lines, or requires to

40 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

specify else-if cases, should consider using
COND.

let/let*

LET and LET* are useful for introducing
intermediate bindings. LET introduces bindings
in parallel, while LET* introduces them
sequentially. By default, you should use LET. If
you find yourself in a situation where you are
writing code like this:

(let ((x ...)

(y ...))
(let ((z (f x)))
ced))

Consider switching to LET* in this situation.
Your code would then reduce to

(let* ((x ...)

(z (f x)))
o)

Global Variables

In short, avoid them like the plague. They make
programs difficult to debug and follow. And they
are generally unnecessary, especially in LISP. If
you do have to use them, make the really
obvious. The accepted convention is to surround
a global variable with *. For example, *foo*

41 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

would indicate a global variable, while foo would
be a local binding.

Example 2 - Towers of Hanoi

The Towers of Hanoi is a relatively simple
problem that turns out to be very difficult to
solve. To recap, the problem involves moving
rings from a start peg to a destination peg,
using a third peg as spare space. The only
constraints are that only one peg at a time may
be moved, and a larger peg may never be on top
of a smaller peg.

The problem is conceptually fairly simple to
solve. To move n rings from the start to the
destination, move n-1 from the start to the
spare, then move the nth ring from the start to
the destination. Finally, move the n-1 rings on
the spare to the destination, using the start peg
as the spare. Our task is to write a function that
tells us what moves to make to get all n rings
from the start peg to the destination peg. From
this description alone, it is possible to deduce
that the most natural way of expressing the
solution is as a recursive function, and that the
recursion will be tree recursion rather than
linear recursion.

In typical lisp style, we want to write a function

42 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

TOWERS-OF-HANOI which takes one argument,
the number of rings on the start peg. Our return
value should be a list of moves. Given the nature
of the problem, a very simple system suffices for
describing the move. We can only move one
ring, the top one, at a time, so it is sufficient to
state the source peg and the destination peg to
fully describe a move. A cons cell is ideally
suited for storing such a pair. We thus have a
data input and output specification in lisp terms,
and a conceptually straight-forward algorithm.
This yields the following implementation:

(defun toh (height start-peg-name extra-peg-name end-peg:
(cond ((= height 0) nil)
((= height 1) (list (cons start-peg-name end-peg:
(t (append (toh (1- height) start-peg-name end-p¢
extra-peg-name)
(toh 1 start-peg-name extra-peg-name ¢
(toh (1- height) extra-peg-name start
end-peg-name)))))

(defun towers-of-hanoi (height)
(toh height 'start-peg 'extra-peg 'end-peg))

There are only a handful of issues to point out
here. Note the use of COND rather than nested
IF statements. COND is preferentially used
when such nesting is necessary. The other is the
consistent application of the choice of
representation. Every return value that TOH can
possibly return is a list, so it is trivial to apply
the APPEND operator to the results of the

43 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

different recursive steps. As you might guess,
APPEND sticks together the contents of all its
argument lists into a single list. It allocates new
cons cells as necessary.

Exercise: Try writing a definition for APPEND.

Sample runs (formatted for neatness):

> (tower-of-hanoi 3)

((START-PEG . END-PEG) (START-PEG . EXTRA-PEG) (END-PEG
(START-PEG . END-PEG) (EXTRA-PEG . START-PEG) (EXTRA-PE(
(START-PEG . END-PEG))

> (tower-of-hanoi 4)
((START-PEG . EXTRA-PEG
(START-PEG . EXTRA-PEG

) (START-PEG . END-PEG) (EXTRA-PE(

)
(START-PEG . EXTRA-PEG)

)

)

((

(END-PEG . START-PEG) (END-PEG

(START-PEG . END-PEG) (EXTRA-PE(
(EXTRA-PEG . START-PEG) ((
(START-PEG . EXTRA-PEG) ((

END-PEG . START-PEG) (EXTRA-PE(
START-PEG . END-PEG) (EXTRA-PE(

Note the exponential growth of the size of the
solution. I had read once that Vietnamese
tradition had it that the world would end when a
puzzle of 64 rings, each made of stone, was
solved. My apologies if this is a bit of urban
legend I happened to pick up. The analysis that
followed demonstrated that such a feat would
take an impossibly long time. Something like
half the age of the universe if a ring was moved
every second.

Example 3 - Matrix

44 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

Transpose

This is a relatively simple problem that
nevertheless demonstrates many different
aspects of solving problems in Lisp.

We shall use the tools we have picked up so far
for the task. The only data structure we have to
represent a sequence of objects is a list, so our
choice is rather limited. (I would not recommend
that anyone use lists to represent matrices
though. Lisp has multi-dimensional arrays.) We
will use a row-major representation, thus:

Empty matrix => nil

m by n matrix => ((x11 x12 ... x1n)
(x21 x22 ... x2n)
(xml xm2 ... xmn))

The transpose problem can be viewed as
follows:

1. Turn the row into a column.
2. Add it to the transpose of the rest of the
matrix.

For the first step, we may assume that rows and
columns have the same representation - a list.

So The first step is a non-issue. The second step
is a little more complex. There are two cases we

45 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

must consider--add a column to the empty
matrix, and add a column to an existing matrix.
Both of these problems are ideally suited for the
functional approach.

First, consider adding a column to an empty
matrix. The following transformation can serve
as an example:

(add-column (list 1 2) nil) => ((1) (2))

Each row has exactly one element, and the
number of rows is the same as the length of the
column. Looking at this operation from the
perspective of list operations, we have simply
enclosed each element of the column in its own
list. This is called a mapping operation, where
the same transformation is applied to all the
elements of a collection. The functional style
provides convenient abstractions for performing
such mappings, through the function MAPCAR.

Adding a column to an existing matrix is
similarly easy. Conceptually, we want to add
each element of the column to the
corresponding row in the matrix. That is, we
want a mapping from the column and existing
matrix to a new matrix that combines the two.

Here is the final implementation:

(defun empty-matrix-p (m)

46 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

(null m))

(defun add-column (column m)
(if (empty-matrix-p m)
(mapcar #'list column)
(mapcar #'cons column m)))

(defun matrix-transpose (m)
(if (empty-matrix-p m)
m
(add-column (car m) (matrix-transpose (cdr m)))))

Note the definition of EMPTY-MATRIX-P. It
simply checks if its argument is NIL. It is
generally inadvisable to write functions that do
so little, unless it is for providing an appropriate
abstraction. The advantage in creating such
abstractions is that the underlying
representation can be modified, without having
to worry very much about the effect on the
remainder of the program. This level of
abstraction has not been used uniformally in
MATRIX-TRANSPOSE, which is a potential
problem.

Some examples, again formatted for legibility:

> (matrix-transpose nil)
NIL

> (matrix-transpose (list (list 1 2) (list 3 4)))
((1 3)
(2 4))

47 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

Example 4 - mapcar

The MATRIX-TRANSPOSE example introduced
the notion of mapping operations. I have
included this example to demonstrate that there
is little magic behind this kind of a mapping
function. MAPCAR can be implemented entirely
in Common Lisp, using facilities common to any
programmer. It is a fairly tricky function to
understand, so I shall first demonstrate a special
case which maps the items in one list. I shall
then construct a more general implementation
of MAPCAR that can map the elements of
multiple lists to constuct one resulting list.

Single list argument

The single list case is quite simple. It takes two
arguments. The first is a function that maps
individual elements. The second is a list of
elements to map. What we want is a function
that attaches the result of mapping the first
element of the list to the result of mapping the
remaining elements.

Below is the implementation of this simple linear
recursive function:

(defun my-mapcar (fn list)

(if (endp list)
nil

48 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

(cons (funcall fn (car list))
(my-mapcar fn (cdr list)))))

Multiple list arguments

There are quite a few new issues that appear
when we try to implement the general case,
where the mapping is from the elements of
multiple lists. The algorithm is still linear
recursive, even though the implementation
appears to be tree recursive. We ask the same
questions that we would when writing any
recursive producdure:

What is the base case?

The answer turns out to be surprisingly tricky.
Given a single list, the base case is when the list
is empty. There are no more elements left to
map. With multiple lists, it is possible that some
of the input lists are longer than others. The
simplest solution is to terminate mapping as
soon as any of the lists is exhausted. This also
makes intuitive sense, since exhausting even
one list makes collecting the arguments for the
mapping function.

What is the recursive step?

We want to attach the result of applying the
function to the first element of every list, to the

49 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

result of mapping the rest of every list. This is
directly analogous to the recursive step of the
single list case.

The implementation

(defun my-mapcar (fn first-1 &rest rest-1)
(if (or (endp first-1) (some #'endp rest-1))
nil
(cons (apply fn (car first-1) (my-mapcar #'car res-
(apply #'my-mapcar fn (cdr first-1) (my-mapc:

This is the first function we have written that
takes multiple arguments, so it deserves special
attention. Note the &REST in the lambda list of
MY-MAPCAR. &REST is a special keyword that
instructs the environment to collect the
remaining arguments supplied to a function into
a list, which is bound to the supplied name. A
simpler example is given below:

> (defun my-list (&rest 1)
1)
MY-LIST

> (my-list 1 2 3)
(12 3)

This function replicates the functionality of the
function LIST, though this is not the
recommended implementation. Note that
individual items supplied to MY-LIST are
collected into a list.

50 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

Let us return now to MY-MAPCAR. Note that we
require at least one list to be given as an
argument, so we have both a regular list
argument and an &REST argument.

The next step is to implement the predicate for
the base case. Testing for the end of a single list
is the same as it was for the single list case. The
predicate ENDP gives us what we need. We use
the function SOME to test for the end of a list of
lists. SOME is a specialized mapping function,
that tests if the predicate returns non-NIL for
some element of the argument list. (It too can
take multiple lists as arguments.)

Exercise: Look up the definition of SOME. Try
to implement it.

The recursive test is again complicated by the
existence of multiple lists. Now that we have
established that none of the lists is empty, we
want to obtain the result of calling the function
with the first element of each of the lists. The
first element of a single list can be trivially
obtained through CAR. Obtaining the first
element of a collection of lists is again a
mapping operation, for which we again use MY-
MAPCAR, where we fetch the CAR of each
element in the collection of lists. We then invoke
the mapping function using APPLY, since it can
take a list of values as arguments to apply, while

51 of 52 30/06/2020, 11:37

A Brief Introduction to Commo... https://web.cs.ucdavis.edu/~...

FUNCALL cannot.

The recursive call to MY-MAPCAR again involves
a similar set of collection functions. Make sure
you understand how it works.

Last modified: Tue Apr 6 16:59:40 EDT 1999

52 of 52 30/06/2020, 11:37

