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Abstract
Cartesian genetic programming, a well-established method of genetic programming, 
is approximately 20 years old. It represents solutions to computational problems as 
graphs. Its genetic encoding includes explicitly redundant genes which are well-
known to assist in effective evolutionary search. In this article, we review and com-
pare many of the important aspects of the method and findings discussed since its 
inception. In the process, we make many suggestions for further work which could 
improve the efficiency of the CGP for solving computational problems.

Keywords  Cartesian genetic programming · Genetic programming · Evolutionary 
algorithms

1  Introduction

The term “Cartesian genetic programming” (CGP)1 first appeared in 1999  [65]. 
Although, it was a generalisation of a method of encoding and evolving electronic 
circuits that was first described in 1997 [71]. In 2000, it became established as a new 
form of genetic programming [70]. Since that time CGP has been adopted by many 
researchers, adapted by others and applied to many applications areas. This article 
provides an extensive review of the different variants of CGP, and an analysis of 
many important aspects of CGP. It discusses numerous open issues and questions. 
The article contains many suggestions for further work which could lead to improve-
ments in the efficiency of the CGP for solving computational problems.

In contrast to tree-based genetic programming  [53, 80], CGP encodes computa-
tional structures as directed graphs. Its invention was heavily influenced by earlier 
work on creating and evolving genetic representations of circuits. These are most nat-
urally encoded as graphs and can be described using structures called netlists. CGP 
uses a netlist-inspired address-based genotype consisting of integers pointers to an 
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either an array of primitive functions or data locations. Encoding graphs, rather than 
trees has advantages in that nodes can be multiply used and graphs can have multiple 
outputs. It is a very adaptable representation as it can easily represent many types of 
computational structures, such as systems of equations, state-machines, neural net-
works, algorithms and electronic circuits. Another defining characteristic of CGP is 
that the genotype can include non-coding genes. The genotype is recursively decoded 
from program outputs to inputs and in so doing nodes can be ignored, these are non-
coding. As we shall the presence of non-coding genes has strongly influenced the 
choice of search algorithm that is most suitable for CGP (see Sect. 2).

In the article, we discuss many variants of CGP that have been proposed. We 
begin with a graph-based form of GP called parallel distributed GP (PDGP) which 
was developed by Poli prior to CGP [77, 78]. This has many similarities with CGP 
but also uses various graph-based crossover and mutation operators and restricted 
graph connectivity. Modular CGP (MCGP) is based on standard CGP but has addi-
tional mutation operators which allow CGP-encoded sub-functions (called modules) 
to be captured, re-used or modified. This was motivated by Koza’s work on auto-
matically defined functions in tree-based GP [54]. In real-valued CGP (RVCGP) all 
genes are real-valued and a decoding step translates these into standard CGP genes. 
This is attractive as it allows many methods for evolving genotypes used in evo-
lutionary algorithms work to be used to evolve programs (e.g. “flat” crossover see 
Sect. 5).

Implicit-context CGP (ICCGP) removed the positional dependence of genes in 
CGP by representing components by evolved entities called enzymes which are self-
assembled to form CGP-like phenotypes. Self-modifying CGP (SMCGP) extended 
CGP by introducing new kinds of primitive functions (self-modifying) which car-
ried out transformations of the phenotype, this allowed sequences of phenotypes to 
be evolved from a single genotype. It also required genes in CGP to use relative 
addressing (also used in PDGP). Mixed-type CGP (MTCGP) borrowed some fea-
tures from SMCGP and also allowed CGP to handle different data types (i.e. scalar 
and vector). Recurrent CGP (RCGP) is a simple extension to standard CGP which 
allowed connections between primitive functions to be both feed-forward or feed-
back (i.e. breaking acyclicity). Iterative CGP (ICGP) introduced conditional loop-
genes into CGP which allowed CGP to encode algorithms.

Differentiable CGP (DCGP) is a form of CGP in which phenotypes are differen-
tiable. Primitive functions are truncated Taylor’s series and graph connections are 
weighted. This allows gradient descent to be used to arrive at highly-tuned graphs. 
We also discuss a recently developed form of graph-based GP called evolving 
graphs by graph programming (EGGP) in which phenotypes are encoded using a 
graph description language. This allows graphs to be manipulated more freely than 
is possible in the standard form of CGP. We also discuss the recently proposed posi-
tional CGP (PCGP). This a real-valued form of CGP form in which graph nodes 
have evolvable positions, and connections are made to the nearest node.

We also discuss in depth various promising forms of crossover, mutation and 
search algorithms that have been suggested in the literature of CGP. It should be 
noted that very recently, another review of CGP has appeared. It discusses CGP and 
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its variants and focuses in detail on their representational differences and evolution-
ary operators [62].

The plan of the article is as follows. First we review CGP-encoded representations 
of programs that have been suggested in the literature (Sect. 3). We follow this with 
a discussion of work done in mutation (Sect. 4) and crossover (Sect. 5). Section 6 
discusses various search algorithms that have been investigated for CGP. In Sect. 7 
we examine ways in which CGP can be made faster by using hardware. Section 8 
discusses major applications of CGP including CGP encoded artificial neural net-
works. In Sect. 9 we discuss the relatively high comprehensibility of CGP programs. 
We give comparisons of the efficiency and human-competitiveness of CGP to other 
machine learning techniques in Sect. 10. The growing amount of publicly available 
software for CGP is reviewed in Sect. 11. We close with sections on open questions 
and suggestions for further investigation (Sect. 12) and conclusions. For reference 
and completeness we begin with a description of the standard form of CGP.

2 � Aspects of standard CGP

2.1 � Representation

In its standard form CGP programs are representations of directed acyclic graphs. 
These graphs are represented using a two-dimensional grid of computational nodes. 
Hence the term “Cartesian”.

Each node in the directed graph represents a particular function and is encoded 
by a number of integer genes. Each node has a function gene which is the address of 
the computational function of the node in a user-defined look-up table of functions. 
The remaining node genes are connection genes and say where the node gets its data 
from. These genes represent addresses in a data structure (typically an array). Nodes 
take their inputs from either the output of a node (in acyclic CGP, from a previous 
column) or from a program input. The number of connection genes a node has is 
chosen to be the maximum number of inputs that any function in the function look-
up table has. If any node function requires less inputs, the remaining connection 
genes are ignored. The program data inputs are given the absolute data addresses 0 
to ni − 1 where ni is the number of program inputs. The data outputs of nodes in the 
genotype are given addresses sequentially, column by column, starting from ni to 
ni + nn − 1 , where nn is the user-determined upper bound on the number of nodes. A 
schematic is shown in Fig. 1.

If the problem requires no program outputs, the genotype is augmented with a 
number of output genes ( Oi = no ). Each of these is an address of a node where the 
program output data is taken from. Nodes in columns cannot be connected to each 
other. In its standard form the graph in CGP is directed and feed-forward; this means 
that a node may only have its inputs connected to either input data or the output 
of a node in a previous column. However, as we will see in Sects. 3.7 and 3.8, this 
restriction can be relaxed to allow recurrent or cyclic graphs. A schematic of the 
genotype is shown in Fig. 1.
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CGP has three user-selectable graph parameters that define the dimensional-
ity and connectivity of the encoded graphs. These are the number of columns, 
the number of rows and levels-back. These are denoted by nc , nr and l, respec-
tively. The product of the first two parameters determine the maximum number 
of computational nodes allowed: nn = ncnr . The parameter l, called levels-back, 
controls the connectivity of the graph encoded. Levels-back constrains which col-
umns a node can get its inputs from. If l = 1 , a node can get its inputs only from 
a node in the column on its immediate left or from a primary input. If l = 2 , a 
node can have its inputs connected to the outputs of any nodes in the immedi-
ate left two columns of nodes or a primary input. If one wishes to allow nodes 
to connect to any nodes on their left, then l = nc . Varying these parameters can 
result in various kinds of graph topology. An important special case of these three 
parameters occurs when the number of rows is chosen to be one and levels-back 
is set to be the number of columns (one dimensional topology). In this case the 
genotype can represent any bounded directed graph where the upper bound is 
determined by the number of columns. The length of a CGP genotype is given by 
Lcgp = nn(a + 1) + no.

2.2 � Search algorithm

Standard CGP uses a search algorithm (Algorithm 1) that is inspired by the 1 + � 
evolutionary strategy [83] in which a single parent genotype is mutated to create � 
offspring. An offspring that has a fitness better or equal to the parent becomes the 
new parent for the next generation. This is still the most widely used search algo-
rithm for CGP. We discuss work suggesting other search algorithms in Sect. 6.

(1)Lcgp = nn(a + 1) + no

Fig. 1   Standard form of CGP representation. It is a grid of nodes whose functions are chosen from a set 
of primitive functions. The grid has nc columns and nr rows. The number of program inputs n = ni and 
the number of program outputs m = no . Each node is assumed to take as many inputs as the maximum 
function arity a. Every data input and node output is labeled consecutively (starting at 0), which gives it 
a unique data address which specifies where the input data or node output value can be accessed (shown 
in the figure on the outputs of inputs and nodes)
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Algorithm 1 CGP search algorithm

1: for all i such that 0 ≤ i < 1 + λ do
2: Randomly generate individual i
3: end for
4: Select the fittest individual, which is promoted as the parent
5: while Solution is not found or the generation limit is not reached do
6: for all i such that 0 ≤ i < λ do
7: Mutate the parent to generate offspring i
8: end for
9: Generate the new parent using the following rules:
10: if A single offspring has a better fitness than any other member of the population then
11: The offspring is chosen as parent
12: else if One or more offspring have an equal fitness to the parent then
13: Randomly choose one of these as parent
14: else
15: The parent chromosome remains the same as before
16: end if
17: end while

2.3 � Non‑coding genes

The reason that such a simple search strategy operating on such a small population 
is effective is strongly connected with the presence of non-coding genes in the geno-
type. Non-coding genes arise in CGP when the outputs of nodes are not referenced 
in the flow of data from program inputs to program outputs. It is this which leads to 
both variable length phenotypes and evolutionary neutral drift in the genotype. It 
should be noted that the genotype-phenotype mapping process in CGP incurs very 
little computational overhead as it is only carried out once per genotype. The 1 + �

-inspired algorithm promotes neutral drift since often mutational offspring differ 
only in inactive genes and so have equal fitness to their parent [69, 110, 119, 128, 
129]. Such identical offspring can be detected before fitness evaluation so incur-
ring no fitness calculation. Thus, even when it appears that the algorithm is stuck 
on a local optimum fitness value the search algorithm is exploring many possible 
different solutions by mutating different genotypes. The maximum allowed size of 
the genotype is highly influential here and Turner et  al. investigated the relation-
ship between it and performance on a suite of hard benchmarks [110]. They found 
that the relationship was approximately quadratic with a clear optimum value for 
nn . Often the optimum number of nodes was quite large (hundreds or thousands of 
nodes).

2.4 � Absence of bloat

CGP does not suffer from a phenomenon called bloat  [105], in which over 
evolutionary time, programs become larger  [91]. Bloat has been described as 
“program growth without (significant) return in terms of fitness”  [80]. It was 
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thought that the lack of bloat in CGP was caused by either neutral genetic drift 
(NGD) [66] or length bias (LB) [18]. The former argued that since NGD is bene-
ficial to search, it is beneficial to maintain a large number of inactive genes. This 
provides a pressure to limit the number of active genes. LB argues that the lack 
of bloat is a consequence of the genotype representation which has the property 
that nodes closer to the program inputs are much more likely to be active since 
they can be connected to by many nodes on their right. This causes a strong bias 
towards small program sizes. Interestingly, both these hypotheses for the lack of 
bloat in CGP have been disproved [105] where it was shown that when NGD is 
disallowed in CGP bloat still does not occur. LB cannot be the reason why there 
is no bloat since Recurrent CGP (see Sect. 3.7) has no length bias and yet it too 
does not exhibit bloat. Thus the cause of lack of bloat in CGP is still an open 
question.

3 � Alternative genotype representations

3.1 � Parallel distributed genetic programming

For completeness, and because of later discussion, we include a brief discus-
sion of a form of graph-based genetic programming that has a representation 
that is similar to CGP. It is called parallel distributed GP. Poli proposed this in 
1996  [77, 79]. Like CGP, PDGP represented graphs using a Cartesian grid of 
nodes. Connection to nodes were restricted to the previous layer (i.e. in CGP 
terms, with levels-back equal to 1) and the connection genes were relative (as 
in SMCGP see Sect. 3.5) and counted back from a node position to the source 
of node input. A pass-through (or wire) function was allowed so that nodes 
could be connected to deeper layers. Poli devised various crossover operators. 
They are all based around the idea of swapping sub-graphs defined by selecting 
random crossover points in the parents to create offspring. One can choose the 
first crossover point at random and the other must respect the limitation that the 
graphs have a maximum depth (in CGP terms, a maximum number of columns). 
By choosing crossover points either in either active or inactive nodes or both, he 
described a number of types of crossover. He also discussed two forms of muta-
tion, one he called global in which a random sub-graph is generated and replaces 
an existing sub-graph. Actually, he states that global mutation was implemented 
by crossing over an individual with a randomly generated new individual  [79]. 
The second mutation operator he called link which is the same as point muta-
tion in CGP. Using an evolutionary algorithm with population sizes of around 
1000 and tournament selection with crossover and both types of mutation Poli 
showed that PDGP was markedly more efficient at solving problems than stand-
ard tree-based GP (even with ADFs) and often the evolutionary algorithm was 
most efficient with small grid sizes. PDGP was also used to evolve artificial neu-
ral networks [81].
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3.2 � Modular

Koza demonstrated the usefulness of automatically-defined functions (ADFs) in 
tree-based GP [54]. Walker and Miller introduced an equivalent to ADFs for CGP 
called modules [122, 123]. In modular CGP sub-functions or modules can be cap-
tured or destroyed by mutation operators. Capture or acquisition happens via two 
random positions in the genotype. The genotype is extracted and placed in a mod-
ule list and the removal site replaced by a module containing the re-labelled sub-
genotype so that the meaning of the genotype is identical to the original genotype 
before module acquisition. Empirical comparisons of results with and without 
ADFs were made on a number of benchmarks and appeared to show that CGP 
with module acquisition and evolution obtained solutions in much fewer num-
bers of evaluations that standard CGP, particularly on hard problems. However, 
it should be noted that the comparisons with CGP were unfair in the sense that 
the total size of allowed genotype in nodes with modules was much greater than 
the number allowed in standard CGP. Thus, it still remains an open question as to 
whether module acquisition is beneficial.

Noting that in modular CGP modules were acquired or destroyed randomly 
(i.e. via mutation), Kaufmann and Platzner introduced some new techniques for 
creating modules: age-based and cone-based [38]. The age-based module creation 
operator identifies primitives nodes that have remained unchanged for a number 
of generations and places these into modules (only primitive nodes can reside 
in a module). The module is given an age that is the average of the ages of the 
primitive nodes within it. Two candidates are generated using this operator and 
the one that is older is chosen. In contrast to standard or age-based module crea-
tion, cone-based module acquisition (MA) aggregates only primitive nodes that 
are within a structure called cone (see [38] for details). Cones are a widely-used 
concept in circuit synthesis. They compare the computational effort (as defined 
in  [53]) of the original modular CGP with versions that allow either age-based 
or cone-based MA on circuit synthesis and classification problems. They found 
that in almost all cases the age-based technique was superior to the original MA. 
However, cone-based MA largely proved superior only on circuit problems.

3.3 � Real‑valued

Clegg et  al. devised a genotype representation for CGP in which all genes are 
floating point numbers in the interval [0.0, 1.0]  [10]. We refer to this as a real-
valued CGP representation (RVCGP). The motivation for devising this represen-
tation was that crossover in CGP might be more effective using a real-valued rep-
resentation. We will discuss this in more detail in Sect. 5. Real-valued CGP has 
an additional decoding step in which a standard CGP genotype is obtained from 
the real-valued genotype. The real-valued genotype still has genes grouped by 
nodes consisting of a function gene and a number of connection genes.
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Assume that the node function look-up table has nf  functions. Standard CGP 
node function integer genes, igf  are obtained from the floating point gene, rgf  , by 
examining which of nf  segments of the interval [0.0, 1.0], rgf  lies within. This is 
accomplished with Eq. 2.

For instance assume there are four node functions. Then if rgf  is less than 0.25 
then igf = 0 while if rgf  is greater than 0.25 and less than 0.5, igf = 1 , and so on.

Real-valued connection genes, rgc corresponding to node address, np are decoded 
to standard integer connection genes, igc by dividing the unit interval into np seg-
ments. The equation that accomplishes this given in Eq. 3.

For instance, suppose that np = 6 , and there are two program inputs and four 
nodes. Then the unit interval is divided into as many segments as the node address 
(i.e. 6). If rgc is between 0 and 1/6 then igc = 0 , so that the first input to node 6 is 
the first program input (whose address is 0), if rgc is between 5/6 and 1 then igc = 5 
and the first input of node 6 is connected to the output of node 5 (the previous node). 
Output genes are decoded in the same way as the connection genes corresponding to 
node address of one more than the highest node address.

Using floating point values as genes for CGP has the potential to make the geno-
type more evolvable since when small changes are made to the genes the gene can 
move gradually to a value which will result in genotype change (assuming Gaussian 
mutation), whereas in standard CGP random mutations either abruptly moves a node 
input connection to an entirely different node, or changes the function of the node. 
Also, another motivation was to transform the discrete nature of CGP genotypes to 
smooth functions of n variables [10]. Finally, it allowed the prospect that much of 
the research into the optimization of real-valued vectors using evolutionary algo-
rithms could be applied to CGP and hence the evolution of programs or other com-
putational structures. Indeed, Clegg (see Sect. 5) used a form of crossover showing 
it appeared to be beneficial for symbolic regression problems. However, in his mas-
ter’s thesis, Turner [101] examined RVCGP on three additional classes of computa-
tional problems, digital circuit synthesis, function optimisation and agent-based wall 
avoidance. On these problems, it was found that RVCGP together with the crossover 
operation performed worse than standard CGP. However, he found that implement-
ing the RVCGP representation but with the same selection and mutation methods as 
CGP gave equivalent performance to CGP.

Meier et al. interpreted the RVCGP genes as mean values in a multivariate Gauss-
ian distribution  [63]. From these distributions new genotypes can be sampled. They 
defined an operator called forking which decides whether a genotype should be inter-
preted either as a point or as a distribution in genotype space. The decision to fork uses 
population statistics based on an analysis of phenotypes (called fingerprints). Early 
in evolution an individual’s phenotype is likely to be rare in the population, in which 
case the forking operator is more likely to interpret the individual as a point. As evo-
lution progresses, individuals focus on fewer regions so that the current individual’s 
phenotype may be shared by other individuals. In this case, its phenotype fingerprint 

(2)igf = floor(rgf nf )

(3)igc = floor(rgcnp)
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frequency increases and the forking operator will be more likely to interpret the current 
individual as a distribution, so that sampling happens more frequently. They evaluated 
their approach on four symbolic regression problems and found the forking operator 
reduced the number of generations to converge to high fitness and the computation time 
per run, as compared with standard RVCGP.

Walker et al. modified the RVCGP representation to encode transistor circuits [121]. 
Six floating point genes were used to specify each CGP node. Four genes defined the 
transistor characteristics while two specify the node inputs. A three-stage genotype to 
phenotype mapping was employed to obtain a valid circuit simulator netlists that could 
be simulated using the SPICE simulator.

Wilson et  al. used a recursive variant of the real-valued representation to evolve 
highly effective Atari game playing agents in [125]. In addition, each node also had a 
parameter gene which used used by some node functions and was also used to weight 
the node output (as used in [52]).

3.4 � Implicit context

In the Sect. 2 we saw that in CGP all nodes and inputs have an address which expresses 
where they are positioned in the genotype. Lones created a form of GP called enzyme 
GP in which the structure of a program is not given explicitly (as in most forms of 
GP) but is derived from connection choices made by each component of the program 
in a bottom-up fashion. He argued that in biological genomes the location of genes is 
relatively unimportant and criticized GP systems for being positionally dependent [60]. 
However, this point of view is at best debatable since some biological studies indicate 
that genes are located in positional neighbourhoods [12]. Furthermore, it has been dis-
covered that a gene’s location in a chromosome does play a significant role in shaping 
how an organism’s traits vary and evolve [84].

Smith et al. [95] adopted many aspects of Enzyme GP and proposed a new represen-
tation of CGP called implicit context CGP (ICCGP). In enzyme GP and ICCGP pro-
gram nodes are called enzymes. Each enzyme has a type (referred as ‘activity’), a num-
ber of binding vectors ( b1 , b2 ), an output vector called a shape, s and a function gene 
(see Fig. 2). The elements of the vectors are integers in the range 0 to 255 (though in 
some implementations real numbers between 0 and 1 are used). Type merely indicates 
whether the enzyme is a program input, computational node or a program output. The 
number of elements that a binding or shape vector have is given by the sum of the num-
ber of external program inputs, ni and the number of possible computational functions 
in the function look-up table, nf .

As with CGP, the number of bindings (inputs) an enzyme has, is defined by the the 
arity of the enzyme function. Enzyme’s of type 0 have only a shape as these represent 
external inputs and enzyme’s of type 2 only have a single binding vector as these repre-
sent external outputs. An enzyme’s shape is defined as:

where f  is a vector of the same length as the binding vectors, but whose only non-
zero element is 255 at position ni + f  where f is the enzyme’s function gene. The 

(4)s = 0.25 ∗ b1 + 0.25 ∗ b1 + 0.5 ∗ f
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multiplying constants ensure that the elements of the shape vector are in the range 0 
to 255. The idea behind shape is that it represents the affinity that a component has 
to form connections with other components.

Genes are initialised randomly. An assembly process creates the phenotype. It 
starts at the type 2 enzymes (i.e. outputs). These bind to other enzymes (types 0 or 
1). Binding is how connections between computational nodes occur. The binding 
vectors define whether and how strongly an enzyme can bind to another enzyme’s 
shape. This is determined by the degree of matching between the binding of one 
enzyme with the shape of another. Input enzymes have a shape, outputs a single 
input binding. Connections between enzymes, inputs and outputs are determined 
by which bindings form the strongest match with shapes. The smallest difference 
between the elements of the binding vector and shape indicates the strongest match. 
Construction of the phenotype is similar to standard CGP. It begins with outputs 
binding to component or input shapes. Then these components bind and so on, until 
all enzyme’s are bound. At this point a CGP-like phenotype can be obtained. The 
genotype has Liccgp = (ni + nn + no)(ni + nf ) elements. Genotypes are mutated via 
point mutation and bindings and enzyme functions can be mutated at different rates.

The length of the genotype representation in ICCGP is much greater than in CGP 
as each enzyme has (ni + nf ) elements compared with na + 1 in CGP. For instance, 
suppose we choose 100 nodes or enzymes (a modest figure in CGP). Assume also 
that the problems we are trying to solve have many inputs (e.g. Boolean circuits with 
say 50 inputs and five outputs) and there are many possible node functions (say 16) 
then the genotype length would be (50 + 100 + 5)(50 + 16) = 10,230 genes com-
pared with 305 in standard GP! As a consequence, ICCGP has only been applied 
with a very modest numbers of enzymes.

To date, as far as the author is aware, there has been only a single comparison 
of the computational efficiency of ICCGP with CGP and this was in the very lim-
ited context of the three input parity function over a range of rectangular topology 
parameters [8]. Thus, it remains unclear whether ICCGP offers any computational 
benefits. Despite this ICCGP has been extensively and successfully applied to vari-
ous problems in medical diagnostics [56, 58, 59, 93, 94, 96–98].

3.5 � Self‑modifying

Self-modifying CGP introduced another type of node, a self-modifying (SM) 
node, one that refers to the code itself [26, 28, 29]. Such nodes modify the phe-
notype. For instance, a node may be a deletion operation, which deletes CGP 
nodes between two positions in the phenotype. Such operations imply that the 
phenotype is iterated in something akin to a developmental process. The process 
is as follows. The genotype is first duplicated to create the first phenotype. So 
here phenotypes mean genotype-like strings of numbers in the same format as 
CGP. The active self-modification nodes in the phenotype are applied one after 
the other to produce a new phenotype. This process defines one iteration. This is 
repeated until either there are no SM nodes in a phenotype or until a user-defined 
limit on the number of iterations is reached.
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The presence of SM nodes makes it more appropriate to replace absolute node 
addressing as in standard CGP with relative addressing. The latter is where con-
nection genes count back from the node position. In addition, functions were 
introduced that provided external inputs (via a circular register) or wrote calcula-
tions to external outputs. This was done so that SM operations could change the 
number of inputs and outputs. SM nodes also require parameters which dictate 
where they operate in the phenotype (i.e. copy nodes between n and m and insert 
them at position p).

SMCGP can produce a sequence of phenotypes, each of which could solve 
a different computational problem (e.g. produce a series of parity functions of 
increasing number of inputs). This allows SMCGP to be applied to classes of 
problems that non-developmental encodings can not solve. Indeed, it has been 
shown that SMCGP could find provably general solutions to certain classes of 
problems: parity, binary addition [26], computation of � and e [27]

Fig. 2   In ICCGP nodes are called enzymes. An enzyme has two binding vectors and a shape vector. Each 
binding or shape vector has a number of elements equal to the sum of the number of program inputs and 
the number of possible node functions. The shape vector is a function of the binding vectors and a vector 
representing the enzyme function (Eq. 4). The binding and shape vectors determine how enzymes will 
bind to other enzymes, and hence, assemble the CGP graph. The computational inputs are X and Y and 
the enzyme has one computational output. In this example, the enzyme function is a simple if statement
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It is interesting to note that even without the presence of SM nodes, SMCGP 
introduced a possible modification of the standard CGP genotype representation 
(relative addressing and input/output functions). This was actually used in place of 
CGP in a number of papers [23, 24, 55]. However, to date, there has been no quanti-
tative comparative studies of the two CGP representations and their efficacy.

3.6 � Mixed‑type

Harding et al. [23] introduced a form of CGP called mixed-type CGP (MTCGP) in 
which the data which flowed through the CGP graphs could have different types. In 
MTCGP node functions inspect the types of the input values being passed to it, and 
determine the most suitable operation to perform. This in turn determines the output 
type of the function. Node functions return a default value in cases where there is no 
suitable operation for the types being passed to the function. In MTCGP inputs can 
be variable length vectors of reals or individual values. Since MTCGP can handle 
multiple and mixed data types it allows a much wider range of node functions to be 
used. They used relative addressing and input gathering and output producing func-
tions (as in SMCGP).

MTCGP was applied to a number of classification tasks in the UCI Machine 
learning repository: Wisconsin breast cancer, phoneme, diabetes, and heart datasets. 
For each of the classification tasks, the inputs presented to the program were both 
the entire attribute vector as well as the individual attribute values of the vector. 
They used a large set of primitive functions ranging over list processing, mathemat-
ical and statistical and compared results with a suite of well-known classification 
methods producing highly respectable results. Often also, the evolved CGP pro-
grams were very small and readable.

Wilson et  al. in their work on evolving human-readable Atari game playing 
programs, extended multiple data types handling node functions to include also a 
matrix type [125].

3.7 � Recurrent

CGP is usually described as a representation of acyclic graphs. However, it is 
straightforward to extend it to recurrent or cyclic graphs [108, 109]. To do this, the 
restriction that connection genes of a node must have values less than its position is 
lifted, so that it can connect to itself and any other node. The genotype is decoded in 
a very similar way to standard CGP to produce a list of active nodes. First the active 
nodes need to be determined. This can be done recursively from output to inputs in 
the usual way for CGP except that one only adds new nodes to the active list, not 
ones already present (this breaks cycles). After this the following steps are carried 
out

1.	 set all active nodes to output zero
2.	 apply the next set of program inputs
3.	 update all active nodes once from program inputs to program outputs



141

1 3

Genetic Programming and Evolvable Machines (2020) 21:129–168	

4.	 read the program outputs
5.	 repeat from 2 until all program input sets have been applied.

Of course, in step 3 one could choose to update active nodes more than once 
and use some function of the output values (i.e. the average). However, there would 
always be the issue of when to stop.

To control the numbers of recurrent versus non-recurrent connections, Turner 
et  al. introduced a additional parameter called recurrent connection probability 
which controlled the likelihood of recurrent and non-recurrent connections. The 
performance of RCGP was compared with CGP on a number of benchmarks [108], 
the Artificial Ant, Sunspot prediction and a number of integer sequences [109]. In 
all cases RCGP outperformed CGP significantly. In addition RCGP outperformed 
various published methods for the Fibonacci sequence. RCGP should be regarded as 
“standard” CGP in that when the recurrent connection probability is zero it becomes 
the original form of CGP.

3.8 � Iterative

In iterative CGP (ICGP) conditional cyclic loops can be represented [86]. To accom-
plish this a linear CGP geometry is assumed (i.e. one row and multiple columns) 
with levels-back set to be the number of columns. All nodes have four genes. The 
first gene is a node function gene, the next two are connection genes and the last 
gene represents a Boolean condition which determines whether a loop should be 
continued or terminated. The first connection of a node always refers to a node pre-
vious to the node (i.e. a standard feed-forward CGP connection). The second con-
nection gene is either ignored or represents a cycle. The gene is ignored if it refers 
to a previous node or input. However, it may refer to a subsequent node (or itself) 
in which case it defines a loop. The nodes between the position of the calling node 
and the forward connection are then in a cycle. The condition gene is an address in 
a look-up table of possible loop exit conditions. If it exits then the next instruction 
is decided by the node immediately after the end of the loop, if it does not exit it 
executes the instruction in the next node on the right. There is a single output gene 
( OA ) which points to the last executed node (10). An example genotype is shown in 
Fig. 3.

In the example, the nodes are executed in the following order: 1, 2, 3, 6, 7, 2, 8, 
1, 9, 10. We have assumed that on the second call of node 2, condition 1 is met, so 
execution passes to the next node after the loop (node 8) and thence to 1. We also 
have assumed in this example that loop condition of node 1 (2) is also met thus caus-
ing program execution to move to the next node (9) after the loop terminates at node 
(8). There are some rules required to enforce valid loops:

1.	 For any nodes inside an existing loop, branching genes can only connect to either 
any previous node or input (acyclic) or a node with a higher index that is inside 
the current loop (cyclic). For instance, in Fig. 3, the branching gene of nodes 3–6 
can be valid if its value is lower than 7. However, any branching genes greater 
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than the node label would create loops within the already existing loop starting 
at node 2 and ending at node 7.

2.	 For any nodes outside an existing loop, their branching genes can only connect 
to a node that is outside any existing loops. For instance, because the nodes 2–7 
are already in a loop, the branching gene of node 1 can only point to either the 
input or nodes 8, 9, or 10.

Ryser-Welch applied iterative CGP to three classes of problems: travelling salesman, 
mimicry and nurse-rostering  [85, 86]. For these problems, the node operations were 
very sophisticated and applied existing heuristic algorithms rather than merely a math-
ematical function of input data. In this way it was shown that new human-readable, 
standalone problem-solving algorithms could be produced.

3.9 � Differentiable CGP

Genetic programming is normally considered as a derivative-free method, however in 
an impressive paper Izzo et al. [33] show how it is possible to obtain a complete repre-
sentation of the differential properties of a program encoded by a genetic programming 
expression. They applied this to CGP creating a new form of it called called differenti-
able CGP (dCGP). In dCGP all connections have weights (like artificial neural net-
works) and node functions are represented as truncated Taylor expansions of a given 
order. They show that this allows arithmetic operators +, −, *, / to be extended to oper-
ate on truncated Taylor expansions. For instance, using this idea they show that a CGP 
encoded function O0 = sigmoid(yz + 1)∕x can be written also as second order Taylor 
expansion of differentials,

The dCGP approach means that not only can the output function of a CGP pro-
gram be computed at a given point but also all its derivatives up to a given order. 

(5)
O0 = 0.881 − 0.881dx + 0.105dy + 0.105dz + 0.881dx2

− 0.0400dy2 − 0.0400dz2 − 0.105dxdz + 0.025dydz − 0.105dxdy

Fig. 3   An example of an iterative CGP genotype. There are ten nodes each with four genes. The node 
function is shown underlined. The second gene represents a feed-forward connection. The third gene can 
either refer to a previous node (in which case it is ignored) or refers to a subsequent node in which case 
it represents a cycle or loop. The fourth node gene (in italics) is the address of a Boolean loop exit condi-
tion. It is shown on the cycles. In this example there are two nodes that are not referred to so are ignored 
(shown dashed)
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Their approach makes it possible to apply concepts such a back propagation to CGP 
encoded programs.

They evaluate the dCGP technique on a suite of varied symbolic regression prob-
lems in which � and e appear. Newton’s method was used to back-propagate the 
errors on ephemeral constants in evolved expressions to determine the constants in 
the Taylor expansions. The fitness is the final error. They showed that they could 
evolve the target formulae exactly (with all weights set to 1). However, they note a 
drawback to this method: the number of ephemeral constants used as additional ter-
minals needs to be pre-determined. However, by associating weights to every edge 
of the graph, the differential properties of the error with respect to weights can be 
determined. This allows symbolic regression to be carried out with no extra terminal 
inputs but the values for all the weights has to be determined. Since there can be 
many weights, the dCGP method selects random weights and then iteratively back-
propagates the errors. They used a 1 + 4 evolutionary strategy to evolve the dCGP 
expression and interestingly, each offspring, i = 1 to 4 received i mutations. They 
also showed that dCGP could be applied to solve partial, ordinary differential equa-
tions and to search for expressions that are prime integrals of sets of differential 
equations

3.10 � Graph programming

Recently, an interesting new method of evolving graphs has been proposed. It is 
called evolving graphs by graph programming (EGGP)  [7]. This method evolves 
graphs directly rather than using linear or grid-based genotypes. Using a probabil-
istic extension to the graph programming language, GP2, Atkinson et al. are able to 
evolve graphs. They show firstly that any CGP individual can be represented as an 
EGGP individual, whereas the converse may not always hold when the number of 
rows in a CGP individual is greater than one. Secondly they note that some feed-for-
ward preserving mutations in EGGP are not possible in the standard form of CGP. 
Figure 4 shows how an allowable mutation in EGGP is not allowed in CGP. The 

Fig. 4   Example of illegal CGP mutation but allowable graph transformation of a Boolean function. An 
EGGP mutation which changes a connection (red) from node 2 to node 1 is replaced with a connection 
(blue) directed to node 3. This mutation produces a valid circuit but is impossible in standard CGP as 
mutations have values less than the node position (to guarantee having a feedforward) property Taken 
from [7] (Color figure online)
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EGGP approach is shown to significantly out-perform CGP on a collection of circuit 
benchmarks (particularly the harder benchmarks).

However, it should be noted that since recurrent CGP allows both feedforward 
and feedback connections the mutations which are illegal in standard CGP but pos-
sible in EGGP are also legal in recurrent GP. It may also be possible to introduce a 
new mutation operator to make these currently illegal mutations possible in standard 
CGP.

3.11 � Positional CGP

Positional CGP  [126] is an interesting new real-valued representation of CGP in 
which inputs, and nodes have evolvable positions. All node genes are floating point 
numbers in range [0, 1], which correspond to the connections of each node n, xn and 
yn , the node function fn , and a parameter gene cn which can be used to weight the 
output of nodes or act as a parameter of a function. In addition, every node has a 
position gene pn which determines the position of the node. Connections are formed 
by converting the connection genes xn and yn to coordinates by multiplying the 
genes by the node position, pn and then “snapping” these connections to the nearest 
node. Inputs also have evolvable position genes, in but are constrained to the interval 
[−1, 0] . Output genes do not have positions and take values in the interval [0, 1]. A 
small example of the PCGP representation is shown in Fig. 5.

Since node positions are evolved, it is highly unlikely that two will occupy the 
same position, even between different genotypes. Furthermore, over evolution, 
nodes which are connected can have positional genes and connection genes which 
are highly related. Finally, a node’s connection positions depend only on its position, 
which is in its genes, rather than the node’s placement in the genotype. This allows 
node genes to be exportable; the same genes in a different individual will form con-
nections in the same place. If multiple genes are exported together, entire sections 
of the graph can be migrated between individuals. In PCGP, nodes can be added or 

Fig. 5   Example of PCGP genotype. A PCGP genome (a), including input in and positional pn genes. 
These are translated to input and node positions (b) and connection positions “snap” to the nearest node. 
As in CGP, a resultant graph (c) and output program (d) are then extracted. Taken from [126]
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removed from a genome without disturbing the existing connection scheme, unlike 
in CGP, where a node addition and deletion causes a shift in all downstream node 
positions. Experiments were carried out comparing PCGP with CGP on nine bench-
marks (three each of classification, symbolic regression and reinforcement learning). 
Results showed PCGP to be superior to RVCGP on classification and regression 
benchmarks but inferior on reinforcement problems.

3.12 � Genotype‑phenotype complexity

It is important to realise that translating a CGP genotype to a phenotype is done 
once per genotype. Evaluating the fitness of a genotype is expected to far outweigh 
this decoding time. However, on problems where fitness evaluation is very fast, the 
decoding time for different CGP variants may be significant.

The decoding of genotype to phenotype in standard and PDGP is straightforward. 
One begins at the output nodes and recursively activates nodes that are required 
until inputs are encountered. Along the way, a list of active nodes and their connec-
tions are stored for later use (i.e. the phenotype). This decoding step only needs to 
be carried out once per genotype. Data is only presented and fitness calculated using 
the stored phenotype. In modular CGP, the decoding is more complex as the pheno-
type is a collection of CGP programs consisting of the main program and the CGP 
code of all the modules. When modules are captured, the captured code is re-written 
so that module code refers to its inputs in the same way as standard CGP refers 
to program inputs. Also when modules are destroyed, the modular code has to be 
translated back into standard CGP format. This “book-keeping” increases the time 
complexity of the decoding step. A large number of modules would increase the 
time taken for the decoding step. However, it is expected that for problems where 
modules are beneficial the evolution time would be shortened. The decoding step 
of RVCGP is little different from standard CGP, one merely requires an initial pass 
to convert the real-valued representation into standard CGP. In positional CGP one 
also needs to identify which nodes are located closest to the positions of the inputs 
to the nodes, this is an extra step so will increase genotype-phenotype decoding 
time. Self-modifying CGP requires self-modifying operations to be applied to the 
old phenotype to generate the new one. This obviously adds to the genotype-pheno-
type decoding time. However, by using a limited list of self-modifying operations 
one can control this complexity to acceptable limits. The decoding step in recurrent 
and mixed-type CGP is little different to standard CGP unless in the former case 
one recurses over the genotype multiple times (which is not done in practice, see 
Sect. 3.7). The complexity of the genotype-phenotype mapping in iterative CGP is 
slightly more complex due to branching conditions. Differentiable CGP has a geno-
type phenotype decoding that is little different from CGP, however gradient descent 
of weights would certainly increase the time required for fitness evaluation. Implicit 
context CGP as we have seen requires much larger genotype sizes and also under-
goes matching operations to find out which components bind to each other, so geno-
type-phenotype mapping time would be longer than standard CGP.
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4 � Mutation

In standard CGP mutation either point or probabilistic mutation can be used. 
In the former, the user decides the percentage of the total number of genes of a 
parent genotype to be mutated to create an offspring. In probabilistic mutation 
every gene is considered for mutation according to a user-defined probability. 
Point mutation is easier to implement and more efficient than using a probabil-
istic mutation as one does not need to linearly walk through the genes to decide 
which ones to mutate. However, choosing a discrete number of genes to mutate 
means that only certain mutation rates can be chosen. Probabilistic mutation is 
continuous and very low mutation probabilities can be chosen and investigated. 
It is also sometimes useful to use different mutation rates for different classes of 
genes (connection, function, output). However, the utility of this has not been 
investigated in detail.

One of the very interesting aspects of the CGP representation is that a large 
variety of phenotypes can be found by applying mutation. Since many genes in 
CGP are redundant, often mutations occur only in the redundant regions, which 
means that the mutated genotype has the same phenotype as its parent. In such 
cases one does not need to carry out a fitness evaluation (see below). However, 
other mutations might change an output gene. In this case the program output 
comes from a formerly redundant node, which in turn may connect to previously 
redundant genes. This can cause large changes in the phenotype.

Goldman and Punch compared several mutation strategies on a range of circuit 
benchmarks [19]: Normal, Skip, Accumulate and Single. Normal is just standard 
mutation (probabilistic) with no check for offspring having identical genotypes to 
their parent. Skip checks offspring to see if the phenotype is identical to the par-
ent (by comparing active genes) and if so returns the fitness of the parent. Accu-
mulate continues to mutate an offspring until some of its active genes are differ-
ent from the parent. Single mutates the offspring until one active gene is changed. 
They found that the performance of Skip and Accumulate were fairly insensitive 
to mutation rate whereas Normal’s performance was very sensitive to mutation 
probability. Overall, the performance of Single which has no mutation parameter 
was close to the best performance of the other strategies.

There is a considerable length bias in standard CGP in favour of small pheno-
types [18]. In addition there is a strong positional bias in CGP in that it is much 
more likely that nodes on the left side of the genotype (i.e. close to the inputs) 
will be active. This is simply because the inputs of any node on the right of a 
given node are allowed to connect to it. For instance the first node can be con-
nected to by the input of any node on its right. While the penultimate node on the 
right can only be connected to by either the last node or an external output. These 
biases mean that the location of inactive nodes in the genotype are not distributed 
evenly and nodes toward the right (towards the outputs) are likely to have many 
inactive nodes between them.

In a comprehensive and detailed study of CGP, Goldman and Punch investi-
gated two strategies for compensating for positional bias [20]: Reorder and DAG. 
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In the former, prior to mutation of a parent, the position of nodes in the parent are 
shuffled without changing the semantics of the phenotype. Reorder is used once 
each generation to shuffle the nodes of the parent’s genome. As the shuffling does 
not semantically change the parent, it does not require re-evaluation. Reorder 
causes active nodes to be, on average, more likely to be located halfway between 
the input and output ends of the genotype. The DAG strategy allows connections 
to be feedforward or feedback (as long as no cycle is created) and removes the 
positional bias in CGP. In an extensive series of experiments they concluded that 
Reorder had the best performance overall. Of course, this should also be com-
bined with Skip. Further, when Reorder (or DAG) was not used, the number of 
nodes never used during evolution was between 43% or higher (depending on 
benchmark problem)! They also found that large numbers of nodes compute a 
constant value irrespective of the program input. They suggested also that the 
advantage of large amounts of inactive nodes is purely that they provide mutation 
with random nodes for exploratory purposes (i.e. useful previously found sub-
structures are not stored in inactive code). This accords with the author’s unpub-
lished finding that randomising inactive genes prior to mutation appears not to 
cause any performance impact. It would be interesting to reduce the rate at which 
inactive nodes were randomised by mutation to see if allowing memory of past 
useful structures in inactive code gives some advantages.

It would also be interesting to investigate how mutation could be defined so 
that the chance of any node being connected would be equal for all nodes. This 
would require mutation to be dependent on position so that the connection gene 
is much more likely to be changed to connect to nodes that are nearer to it. A 
simple way to achieve this would be to record the number of mutations that have 
occurred so far at each node location during an entire evolutionary run. A new 
mutation could be restricted to choosing to mutate only the least mutated node. 
This would ensure that any node was equally likely to be connected to.

Kalkreuth  [34] introduced an interesting new pair of mutation operators into 
standard CGP: inactive node activation and active node deactivation. He referred 
to these as “insertion” and “deletion” respectively. An insertion mutation chooses 
an inactive node and changes one or more connection genes in the genotype 
to make it active. Conversely, deletion alters connections to an active node so 
that the node becomes inactive. He examined the impact of the new mutation 
operators (operating together with the standard point mutation) on three Boolean 
benchmarks and a suite of symbolic regression problems. On all problems, the 
two operators gave improved performance. More detailed studies are required to 
confirm and strengthen these findings.

Vašíček and Sekanina made a breakthrough in the optimisation of digital cir-
cuits by showing how circuits with many inputs could be optimised using CGP by 
starting with a state-of-the-art logically correct reference circuit and employing 
a SAT solver algorithm to decide if an evolved circuit was logically correct. If 
it is incorrect it receives a fitness of zero, if correct the fitness is the difference 
between the genotype size in nodes and the number of gates utilised. This tech-
nique has allowed the optimisation of industrial-sized digital circuits [120].
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In this technique, Vašíček  [120] discovered the surprising result that there is 
no need to utilise inactive nodes in CGP when optimising fully functional digital 
circuits! He defined a “zero neutrality” search process by ensuring that mutation 
respects the following conditions: (a) inactive gates are unchanged (b) active gates 
(or primary output) can not connect to an inactive gates and finally, (c) the second 
input connection of single-input gates are not mutated. He compared the perfor-
mance of this mutation against standard CGP on a suite of 100 industrial-sized cir-
cuits and found that the performance of the two were statistically indistinguishable. 
This needs more investigation on a wider set of problems.

The genotypes in the initial population were exactly the size of the circuits syn-
thesised by the ABC algorithm.2 In other words there was no redundancy in the ini-
tial circuits and redundancy could only arise by some gates not being required (i.e. 
by successful optimisation). It would be interesting to see what the results would 
have if the initial genotype had been larger than that produced by ABC by adding 
inactive gates. Vassilev et  al.  [118] found that smaller three-bit multipliers were 
found by encoding a working multiplier with a small amount of redundancy. This 
is also supported in the work of Gajda and Sekanina  [16] who discovered while 
optimising digital circuits that in long evolutionary runs strictly selecting circuits 
which had fewer gates did not produce as small circuits as merely choosing circuits 
that were functionally correct (that is with lower fitness). They showed that the fre-
quency of occurrence of correct circuits was greater using the weaker fitness crite-
rion. This highlights the importance of neutral drift for exploration and the impor-
tance of maintaining redundancy.

5 � Crossover

In standard CGP crossover is not used. In his original paper on CGP [65], Miller 
found that crossover appeared to have little effect on the efficiency of CGP and for 
the most part, subsequent work ignored crossover.

In real-valued CGP Clegg et al. [10] used a simple method of real-valued geno-
type crossover called “flat” crossover  [82] which generated two offspring, oi from 
two parent genotypes, pi using Eq. 6, where 0 < ri < 1 is randomly generated and 
i = 0, 1

Kalkreuth et al. [36] investigated RVCGP using adaptive crossover, mutation and 
selection. Adaptation of these operators is based on maximising the diversity of phe-
notypes in the population. They compared their technique with Clegg’s RVCGP on 
a number of symbolic regression problems showing that the new approach improved 
performance.

(6)oi = (1 − ri)p1 + rip2

2  Berkley Logic Synthesis and Verification Group: ABC: A System for Sequential Synthesis and verifi-
cation. http://www.eecs.berke​ley.edu/*alanm​i/abc/.

http://www.eecs.berkeley.edu/%2aalanmi/abc/


149

1 3

Genetic Programming and Evolvable Machines (2020) 21:129–168	

Walker et al. devised a multi-chromosome representation which could be applied 
to special classes of problems  [124]. They looked at seven multiple output digital 
circuit problems and instead of allocating as many output genes as circuit outputs 
they divided the genotype into as many chromosomes as the number of outputs. For 
the problems chosen (all digital circuits) the fitness of each chromosomes could be 
assessed independently. The parent genotype in the 1 + � EA was constructed by 
choosing each of the fittest chromosomes. For all benchmarks this produced spec-
tacularly better results than the one chromosome version. Indeed for one problem it 
was possible to evolve a solution approximately 392 faster than using a single chro-
mosome with the same total number of nodes.

However, most computational problems do not have the property that multiple 
outputs can be evaluated for fitness independently. It would be interesting to inves-
tigate a multi-chromosome form of CGP in such cases. One way this could be done 
would be to allow multiple chromosomes each providing a single output and also 
having an additional “coordinator”chromosome which uses the outputs of the other 
chromosomes as inputs. Fitness would be determined from the coordinator chromo-
some only. This would allow parent genotypes to produce offspring by crossover of 
non-coordinator chromosomes. Indeed, the coordinator chromosome would be free 
to utilise any or all of the non-coordinator chromosomes.

Slaný and Sekanina examined how various crossover operators and standard 
mutation affected the smoothness and ruggedness of the series of fitness values of 
the best population member in each generation. They examined this in the domain 
of CGP applied to image filter design. They found that either point mutation (with 
� = 7 ) or single-point crossover where only one offspring of the crossover operation 
is mutated and included into the new population, generated the smoothest fitness 
landscape.

In their work on new techniques for acquiring modules in modular CGP (see 
Sect. 3.2), Kaufmann and Platzner also investigated a cone-based crossover operator 
to be used with a genetic algorithm (rather than 1 + �-ES). This generates a recom-
bined chromosome by transplanting a cone of a donor chromosome into a clone of a 
recipient chromosome. They investigated the utility of the crossover operator using 
various population sizes using a genetic algorithm. They found smaller population 
sizes worked best in the new approach but it only performed better than the original 
modular CGP technique on two of the six benchmark problems (two and three-bit 
multipliers).

Kalkreuth et al. have recently investigated sub-graph crossover in CGP [35]. Sub-
graph crossover is like single-point crossover except that the active nodes both sides 
of the crossover point are preserved. The crossover point is always chosen so that 
it lies between nodes. This idea of sub-graph crossover is that it should reduce the 
disruption caused by single-point crossover in standard CGP and truly recombine 
meaningful sub-graphs. If after single-point crossover active genes would change 
then the connection genes on the right of the crossover point are randomly re-gen-
erated to preserve the active genes on the left of the crossover point. They used a 
standard genetic algorithm with population size 50 and tournament selection. They 
evaluated the utility of the new crossover operator for a range of crossover rates on a 
suite of benchmark problems in circuit design, symbolic regression and image filter 
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design. Often high crossover rates were beneficial and in all cases a nonzero crosso-
ver rate performed better than without crossover. However, they did not compare 
their results with standard CGP so it still remains unclear whether crossover has util-
ity over purely mutational CGP.

Kalkreuth and Husa have recently proposed block crossover [32]. This is defined 
using the one-dimensional representation of CGP. First before carrying out block 
crossover blocks must be identified in two parent genotypes. Blocks are groups of 
nodes that meet the following criteria: (1) The block contains a desired number of 
nodes, (2) All nodes in the block are directly linked through their inputs or outputs, 
(3) All nodes in the block are part of the genotype’s active path. Block crossover 
then randomly selects one block from each genotype and swaps them. The position 
of the nodes transferred as part of the block may change inside the new genotype. 
However, their mutual links are preserved and the function performed by the block 
stays the same. After block crossover, point mutation is applied. They conducted 
parameter sweeps with standard CGP ( 1 + � ) versus genetic algorithms using block 
crossover on a suite of Boolean functions and symbolic regression problems. They 
found that there was no single set of crossover parameters that worked best over the 
problems. They also found that the best value of � varied with problem. Although it 
is possible for crossover operators to outperform the standard 1 + � strategy, if both 
methods have their parameters fine-tuned, the 1 + � strategy usually remains as the 
overall best strategy.

6 � Search algorithms

6.1 � Evolutionary strategy and hybrid algorithms

Although the most usual search algorithm used in CGP is � + � evolutionary strat-
egy with � = 1 and � = 4 , sometimes larger values of � have been chosen. For 
instance � = 14 [16] was used in digital circuit optimisation and � = 8 in the evolu-
tion of image filters [88].

Recently Milano et al. [64] examined the robustness to mutation and the evolv-
ability of CGP genotypes encoding digital circuits. Mutational robustness is capabil-
ity of a system to preserve its functionality after mutations. Evolvability is the likeli-
hood of producing adaptive heritable phenotypic variations as a result of mutation 
(we are not considering crossover). Their experiments used a 20 × 20 array of two 
input logic gates (AND, OR, NAND, NOR) and the aim was to find a functionally 
correct even-5 parity function ( a moderately difficult task).

They studied two � + � evolutionary strategies. The first uses � + 1 and the sec-
ond is 1 + � . In � + 1 each of � parent are mutated to produce a single offspring, 
then the best � individuals from the 2� genotypes are chosen as the new popula-
tion. Having 𝜇 > 1 allows the population to have a greater genetic diversity, since 
multiple mutational searches take place around the multiple parents. However, they 
observe that in this method the offspring of individuals that are more robust to muta-
tions have more chance to be selected than the offspring of individuals that are less 
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robust. They show that this drives evolution to produce small phenotypes and it has 
markedly worse performance than 1 + �.

They proposed a new algorithm which they call a Parallel Stochastic Hill Climber 
(PSHC) is a combination of � + 1 and 1 + 1 . The aim is to preserve population diver-
sity while maintaining strong selection pressure. In this algorithm each of the � 
parents, pi is adapted using a 1 + 1 evolutionary strategy for a certain number of 
steps. The best candidate solution obtained after this phase, ṕi is then used to replace 
pi and, also with a certain low probability, the worst individual of the population. 
Additionally, they allow a certain degree of stochasticity in the 1 + 1 phase by add-
ing a random variation to the fitness, however at the end of this phase the decision 
whether or not to replace pi by ṕi is on the basis of the true fitness.

They found that performance of the PSHC algorithm is statistically significantly 
better than the 1 + � algorithm.

Hybrid search algorithms have also received attention in the work of Kaufmann 
and Platzner [39]. They investigated in particular hybrids of 1 + � (as a form of local 
search) with either of the multi-objective algorithms, NSGAII [13] and SPEA [131]. 
They found that for some multi-objective benchmarks and for all digital circuit 
benchmarks the hybrid algorithms outperform NSGAII and SPEA.

6.2 � Simulated annealing and unusual � + � evolutionary strategies

Kaufmann et al. recently conducted a large and detailed empirical study of the per-
formance of CGP various � + � with a wide range of values of � and � and also 
looked at simulated annealing (SA)  [37]. They also used Iterated Race for Auto-
matic Algorithm Configuration (iRace) [61] to optimise CGP parameters, nc , nr , � , � 
and the mutation rate. They found that for harder digital circuit problems (e.g. 3-bit 
multiplier, and even-parity with higher than six inputs) SA was the best performing 
search algorithm. SA worked best with unusual topologies (e.g. 300 columns and 
10 rows, or 150 columns and 8 rows). They also examined the performance of vari-
ous � + � strategies on a suite of symbolic regression problems where they found 
that large values of � and � performed very well (e.g. � = 22 , � = 4096 ). How-
ever, unfortunately, they did not choose a fixed maximum number of nodes ( nn = k , 
where k is a constant). nn is an extremely important parameter for CGP. It is easy 
to see why. Choosing nn to be small constrains neutral drift markedly and it is well 
understood that neutral drift in CGP is an extremely important search mechanism 
(Sect. 2.3).

6.3 � Balanced CGP

Yazdani and Shanbehzadeh [127] pointed out that CGP does not have any possibil-
ity of sharing information among solutions. To achieve this they suggested incorpo-
rating features from biogeography-based optimization (BBO) [92] and opposition-
based learning (OBL) [100]. They applied BBO’s migration operator which allows 
information sharing between individuals. They also introduced a new mutation oper-
ator inspired by OBL. They evaluated their approach on five symbolic regression 
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problems. The found that the proposed BCGP method outperforms traditional CGP 
in terms of accuracy and the convergence speed.

6.4 � Coevolution

Šikulová et al. [14, 90] developed a combination of fitness prediction with coevolu-
tion in CGP to reduce the number of expensive full fitness evaluations. The method 
replaces some of the objective fitness evaluations with an alternative fitness calcu-
lated using a fitness predictor. The fitness predictors are coevolved in a second popu-
lation in order to provide accurate fitness predictions. The population of solutions is 
evaluated with the current best fitness predictor while the population of fitness pre-
dictors evolves to minimize the difference between the true fitness and the predicted 
fitness when measured using the current population of solutions.

Fitness predictors are represented as an adapted variable size array of pointers to 
elements of a subset of the training data. The population of candidate programs are 
evolved with the usual 1 + � evolutionary strategy and the population of fitness pre-
dictors are evolved with a simple genetic algorithm. They also use two archives one 
of fitness trainers and one containing the best evolved fitness predictors. The archive 

Fig. 6   Coevolution of populations of CGP programs (a) and fitness predictors (b)  [14]. Some of the 
objective fitness evaluations are replaced with an alternative fitness calculated using a fitness predictor. 
The population of solutions is evaluated with the current best fitness predictor. The population of fit-
ness predictors evolves to minimize the difference between the true fitness and the predicted fitness. An 
archive of fitness trainers (c) is used by the predictor population to evaluate evolved fitness predictors. 
Fitness predictors are represented using variable size array of pointers to elements of a subset of the 
training data (d)
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of fitness trainers is used by the predictor population for the evaluation of evolved 
fitness predictors. It contains copies of selected candidate programs obtained during 
the evolution. The fitness predictor from the other archive is used to evaluate candi-
date programs. The overall methodology is depicted in Fig. 6.

Drahosova et al. [14] evaluated their method on suites of varied symbolic regres-
sion problems and image filter design problems. They showed that the coevolution-
ary approach outperforms standard CGP in terms of CPU time required to converge.

7 � Acceleration of CGP

Vašíček and Slaný developed an efficient acceleration technique designed to speedup 
the evaluation of candidate solutions in CGP. The method translates a CGP phe-
notype to machine code that is consequently executed. An attractive feature of the 
method is that the translation mechanism requires only a marginal knowledge of tar-
get CPU instruction set. They exemplified the technique by applying it to a symbolic 
regression problem. It was shown that for a cost of small changes in a common CGP 
implementation, a significant speedup can be obtained even on a common desktop 
CPU.

Vašíček and Sekanina have also accelerated CGP for circuits, symbolic regres-
sion [113] and image filter design [114]. In the former, they designed and built an 
application-specific virtual reconfigurable circuit (VRC) and fitness unit, obtaining 
speedups of 40 times optimized software implementations. In image filter design 
CGP was implemented on a single FPGA and gave a significant speedup (170) in 
comparison with a software implementation.

Coevolutionary CGP (Sect.  6.4) has also been implemented in dedicated hard-
ware (FPGA) achieving 58 times speedups over highly optimized software imple-
mentations [31] .

Cartesian genetic programming (CGP) was one of the first genetic programming 
representations to take advantage of the general purpose computing capabilities of 
modern graphics processing units (GPUs)  [22]. The implementation of CGP on 
GPUs was benchmarked on regression and Boolean problems and when compared 
to a naive, CPU-based C# implementation, was able to execute evolved programs 
hundreds of times faster. Harding et al. also implemented CGP on clusters of GPUs. 
This made it possible to evaluate the population in parallel, which in turn increased 
the speed at which the population could be evaluated [25].

8 � Applications

Here we highlight some of the major application areas of CGP which are likely to 
continue to grow in the future.

Vašíček gives a thoughtful and insightful analysis concerning some of the prob-
lems that remain in moving CGP digital synthesis to industry [112]. He notes that 
when using CGP to optimise logically correct circuits a large number of new candi-
date solutions need to be generated and evaluated before a new candidate is found 
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with the same or better fitness (about 180 on average). He attributes this to the fact 
that random point mutation is very inefficient and that some form of mutation which 
is invested with domain knowledge could be much more efficient. Perhaps one can 
define mutation operations that replace small sub-structures in a phenotype with 
alternative but logically equivalent sub-structures?

In the synthesis of approximate circuits and programs Vašíček and Sekanina 
opened up an area of research which is rich with research opportunities [89, 116]. In 
many application areas (e.g. digital filters, artificial neural network) one can trade-
off accuracy with power consumption, speed, or other properties of digital circuits. 
However, to evolve large-scale approximate circuits with CGP requires an efficient 
method to determine the approximation error. They solved this using an equivalence 
checking algorithm operating over binary decision diagrams (BDD) [117]. Recent 
work has used CGP successfully to synthesize approximate circuits with formal 
guarantees of approximation error [9]. Impressively, they have been able to synthe-
sise aproximate 32-bit multipliers and 128-bit adders.

CGP has been successfully used in the design of various kinds of image fil-
ters  [24, 74, 88]. Sekanina pioneered the use of CGP for image filter design  [87] 
and showed that image filters could be automatically designed that were competitive 
with conventionally designed filters both in image quality and hardware cost. Hard-
ing demonstrated the advantages of employing extensive domain knowledge in CGP. 
He used a large function set (over 50) which included many Open Computer Vision 
operations.3 Using an island-based parallel implementation of CGP he examined its 
performance on various image related problems: noise reduction, recognising cell 
mitosis4 and object recognition for the iCub Humanoid Robot. He obtained excel-
lent results on all three problems and in particular the evolved iCub robot image fil-
ters were often extremely small and could track moving objects in live video stream 
under a range of lighting conditions. CGP using OpenCV is now being used com-
mercially to detect faults in machined metal.5

Artificial neural networks can be easily encoded in CGP by allowing all connec-
tions to have weights  [46, 48, 49]. These are referred to as CGPANNs. Evolving 
ANNs with CGP allows the benefits of the CGP representation and techniques to be 
carried over to the evolution of neural networks (e.g. heterogeneous neural activa-
tion functions [107]). Also, it has been shown that evolving ANNs with CGP pro-
duced networks whose performance is much less sensitive to topology choices than 
fixed topology evolved ANNs  [104]. Comparisons of CGPANNs with other neu-
roevolutionary methods on reinforcement learning tasks consistently show them to 
be competitive with many other neuroevolutionary methods  [103, 111]. Recurrent 
CGPANNs also show promise in time-series prediction  [111]. It should be noted 
that, in his PhD thesis, Turner  [102] used R package implementations6 of many 
machine learning techniques and compared their performance with CGPANNs on 

3  https​://openc​v.org/.
4  This was a competition at the 2012 International Conference on Pattern Recognition (ICPR).
5  machi​neint​ellig​ence.co.uk.
6  caret: Classification and Regression Training, 2014. R package version 6.0-37.

https://opencv.org/
http://machineintelligence.co.uk
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classification problems. This appeared to show that although CGPANNs performed 
reasonably well they were not as good as many other methods. There is an oddity 
here, as on one particular dataset (breast cancer) CGPANNs were compared with 
published results for 31 other machine learning papers [103] and CGPANNs proved 
to give better results than 21 other techniques. It is not clear why CGPANNs appear 
not to perform so well on classification problems. Clearly, this issue needs further 
investigation.

Various other types of ANNs have been evolved using CGP including convolu-
tional ANNs [99] and wavelet ANNs [47, 50]. There is now a growing literature on 
CGPANNs and they have been applied to many other applications including finan-
cial [130],medical [1–4], client prediction [5], load forecasting [41, 42, 45], internet 
traffic estimation [44] and signal reconstruction [51].

Other promising areas of application of CGP are in multi-step forecasting [15], 
and cryptography [75, 76]. Also further discussion of CGP applications is presented 
in  [62].

9 � Comprehensibility of CGP solutions

CGP phenotypes are often very small and interpretable, this is partly connected 
to the bias that CGP has towards small programs (see discussion in Sect. 4). This 
often means that CGP programs can be understood and offer insights and under-
standing into problem features and aspects that can be interesting and useful at the 
application level. This was seen in the small size of the object recognition filters 
(see Sect. 8), data classifiers  [23], the understandable successful Atari game-play-
ing strategies found by Wilson et  al.  [125] and the usefulness of CGP interpreta-
ble results to medical practitioners using the results of ICCGP [56, 58, 59]. CGP 
has also been used to create small readable data filters for drug discovery [17] and 
understandable intrusion detection programs  [6]. This white-box property of CGP 
can be highly valuable.

10 � Comparisons of CGP methods with other techniques

CGP has been applied to many application areas and benchmark problems. In 
Table  1, we summarize the comparative results published for CGP variants with 
other methods. The fourth column gives evidence for the high performance of CGP 
techniques. This is either by the ratio of minimum computational effort of tree-based 
GP (TGP) to CGP (above 1 means CGP is superior), or performance ranking com-
pared with other machine learning techniques, or by type of medal received at the 
annual human competitive workshop at the GECCO conference.7 CGP clearly excels 
in many domains but particularly in optimised circuits, image processing, classifica-
tion, reinforcement-learning, time-series prediction and sequence induction.

7  http://www.human​-compe​titiv​e.org/award​s.

http://www.human-competitive.org/awards
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11 � Software

CGP implementations are available in a number of languages: C, C++, Java, Mat-
lab, Python, Julia.8 The three most extensive packages are described below.

A cross-platform, open source, extensive and extensible software library9 has 
been written in C by Andrew Turner  [106]. The package includes standard and 
recurrent CGP including Artificial Neural Networks. It has been designed to be sim-
ple to use and adapt. It defines a well documented CGP Application Programming 
Interface (API). This means that the user does not need to understand or edit the 
underlying implementation in order to use the CGP library. Also users can bene-
fit from backwards compatible updates to the library. A compiled library has the 
advantage that it can be used natively by the C and C++ programming languages 
but also imported into other languages including Python. The CGP library can also 
be compiled for a wide range of operating systems as it only depend upon standard 
C libraries.

Differentiable CGP [33] is available in C++ and Python.10 It includes examples 
and tutorials on a number of problem types.

Recently, a freely downloadable flexible toolbox called CGP4Matlab11 has been 
developed  [73] that allows CGP to be run within MATLAB. The toolbox is par-
ticularly suited to signal and image processing. As a demonstration Miragaia et al. 
used the toolbox for pitch estimation and obtained results comparable with the 
state-of-the-art.

12 � Open questions and issues

We discuss a number of ideas, questions and open issues that are worthy of fur-
ther investigation. It is very important when new algorithms and methods are pro-
posed that they are evaluated on suites of different computational problems using 
benchmarks recommended by the wider research community. At present although 
the many operators and algorithmic variants look promising and interesting, further 
investigation is required to establish whether they have general advantages. Con-
ducting experiments on the basis of both a fixed number of fitness evaluations and 
a fixed budget of active nodes processed appears offer promise for fair comparisons 
with different parameters or methods. Indeed, this could be adopted generally in the 
GP community.

10  http://dario​izzo.githu​b.io/d-CGP/index​.html.
11  https​://githu​b.com/tiago​inaci​o/cgp4m​atlab​.

8  carte​siang​p.com.
9  http://www.cgpli​brary​.co.uk/files​2/About​-txt.html.

http://darioizzo.github.io/d-CGP/index.html
https://github.com/tiagoinacio/cgp4matlab
http://cartesiangp.com
http://www.cgplibrary.co.uk/files2/About-txt.html
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12.1 � Modularity

The design of an effective form of modularity in CGP is still an open question. 
Although, Koza showed that automatically defined functions were very useful in 
tree-based GP and particularly so in harder computational problems  [54]. Their 
usefulness in CGP is less clear. Since CGP encodes graphs, nodes can be multiply 
used, perhaps this makes independent modules less necessary. We have already 
discussed a form of multichromosome CGP in which the outputs of independent 
secondary chromosomes can be used by a primary chromosome. This links with 
the idea of modules as one could easily view the secondary chromosomes as pos-
sible modules. It will be interesting to see if this improves the efficiency of CGP 
on a range of computational problems.

12.2 � Representation

The way CGP programs are represented in a genotype is an important issue. We 
have examined a number of these discussed in the literature. Since RVCGP and 
PCGP are more general than standard CGP they both look promising to investi-
gate in much more detail. They allow types of mutation and crossover that are 
difficult to express in standard integer-based CGP. The addition of evolvable node 
positions in PCGP is an interesting aspect that requires further investigation.

12.3 � Mutation

Mutation is extremely important in CGP. More sophisticated mutation opera-
tors that take account of the presence of inactive nodes appear to be more effec-
tive (i.e. Goldman and Punch’s Reorder and Kalkreuth’s insertion and deletion). 
Mutation operators that eliminate the length bias and the non-uniform location 
of inactive nodes also have the promise of being more effective. Making node 
outputs on the right of nodes accessible, via mutation, to nodes on the left (even 
when no recurrence is desired) as discussed in Sect. 3.10 is clearly important. The 
merits of mutating different numbers of genes in the generation of mutational off-
spring (as used by Izzo, see Sect. 3.9) needs also to be investigated. Turner et al. 
showed that never mutating explicitly inactive genes significantly worsens the 
evolutionary search compared with allowing mutations to both active and inac-
tive genes  [110]. They also speculated that having two different mutation rates 
for inactive and active genes may be more effective than a single rate, indeed if 
the role of inactive material is solely to provide mutation with a supply of purely 
random alterations then a high inactive mutation rate may lead to a more effective 
search. Finally, in biology there are many forms of mutation (e.g. gene transpos-
ing and duplication), perhaps this may inspire new types of mutation in CGP.
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12.4 � Crossover

Crossover is still very underdeveloped in CGP, this may partly be because the muta-
tion of genotypes with inactive genes already allows mutation to make both small 
changes and large changes. Nevertheless, Poli suggested a number of forms of 
crossover for PDGP which could be transferred and investigated in CGP. In addition 
multi-chromosome crossover looks like a good candidate to investigate. Kalkreuth’s 
crossover operators need to be evaluated on a wide range of problems.

12.5 � Weighted CGP

We saw that in differentiable CGP connections were augmented with weights. This 
begs the following question. How well would weighted CGP work in comparison 
with unweighted? Weighted CGP could be seen as a generalization of artificial neu-
ral networks where node functions could be chosen from a much larger set of math-
ematical functions (possibly including neural functions also). Of course, evolved 
solutions using such a large set may make these solutions uninterpretable rather like 
standard neural networks, however weighted GP has not been investigated in the 
literature. It remains to be seen whether it will increase the efficiency in evolving 
solutions to computational problems. However, introducing weights would certainly 
negatively impact on the comprehensibility of CGP evolved solutions.

12.6 � Applying CGP to general optimisation problems

Genetic programming and evolutionary algorithms are usually applied to different 
classes of computational problems. Since CGP allows multiple outputs, these outputs 
could be interpreted as a potential solution to a computational problem. This would 
mean that CGP could be applied to many kinds of optimisation problems not tackled 
with GP. Using a function set of mathematical operations, it would be possible to use it 
to generate from a set of constant inputs, a vector of real-valued numbers. Alternatively, 
one could use CGP to generate a new solution vector from a previous one. The ele-
ments of these vectors could be mapped into the required ranges for many fixed length 
search problems. This would allow CGP to be used as a search algorithm for many 
problems where evolutionary algorithms are currently used (e.g. Function optimisa-
tion, TSP, Bin-packing etc). This is interesting as one would be evolving programs to 
generate vectors rather than evolving the vectors directly. This might have advantages, 
for instance, some vector elements could be functions of each other (thus indicating a 
lower dimensional problem) something that is difficult to discover using standard evo-
lutionary algorithms. In addition, evolution would be working in a completely different 
genotype space which may have advantages. This idea has already received preliminary 
investigation for TSP12 [11] and function optimisation [68].

12  To obtain a permutation from an indexed vector of real-numbers one merely has to sort the numbers 
and the re-arranged indexes form a permutation.
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12.7 � CGP encoded ANNs

Using backpropagation to adjust weights of CGP encoded ANNs has the potential to 
produce compact highly optimal neural networks. Of course, this could be computa-
tionally very expensive. It would be interesting to investigate hybrid algorithms using 
standard CGP search together with phases of local search with backpropagation. One 
of the advantanges of using CGP to encode and evolve neural networks is that discover-
ies that make CGP more efficient have the potential to make CGPANNs a more effi-
cient technique. In principle, the beneficial relationship could work the other way too. 
In the light of Turner’s findings on CGPANNs for classification, further investigation 
needs to be carried to discover the best way of doing classification with CGPANNs. 
Another interesting possibility is to use the techniques of module acquisition to create 
modular CGPANNs. Finally, using SMCGP and choosing all primitive functions to be 
neural (i.e. sigmoid or hyperbolic tangent) would lead to self-modifying ANNs [67]. 
This would mean that one could evolve CGPANNs that could modify themselves pro-
ducing a sequence of neural networks each solving a different problem.

12.8 � Search algorithms and real‑Valued CGP

One of the advantages of the real-valued CGP representation is that it could be evolved 
using evolutionary optimisation solvers such as CMAES  [21] and other approaches. 
It allows many methods found to be useful in the genetic and evolutionary algo-
rithms community to be brought to bear on the evolution of programs. Indeed, even 
CGPANNs could be represented using RVCGP.

12.9 � Evolving “brain‑like” multiple problem solvers

CGP has been used to produce programs that develop new types of ANNs, these 
are referred to as developmental ANNs  [40, 43, 72]. Khan et  al. evolved genotypes 
that produced a dynamic neural network in which neurons, connections and weights 
changed during problem solving [40, 43]. They applied the technique to the evolution 
of intelligent agents, checkers and maze solving. Recently, Miller et al. have simplified 
the model in [43] so that two evolved programs (one for a neuron soma and the other 
for the dendrite) can solve multiple problems simultaneously [72]. The eventual aim is 
the moonshot challenge of producing programs that can build an artificial brain that can 
learn for itself and solve an arbitrary number of different problems.

13 � Conclusion

We have examined the current status of Cartesian genetic programming and dis-
cussed a number of different or enhanced representations of the genotype. We also 
looked at issues with, and current thinking on mutation, crossover and the evolution-
ary algorithms used to evolve programs. We have made many suggestions for future 
investigations that may lead to more efficient CGP techniques in the future. CGP is 
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in a healthy state with an increasing number of researchers taking it up, improving 
and analyzing it, and applying it to new classes of problems.
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