
Vol.:(0123456789)

Genetic Programming and Evolvable Machines (2020) 21:129–168
https://doi.org/10.1007/s10710-019-09360-6

1 3

Cartesian genetic programming: its status and future

Julian Francis Miller1

Received: 12 October 2018 / Revised: 7 April 2019 / Published online: 6 August 2019
© The Author(s) 2019

Abstract
Cartesian genetic programming, a well-established method of genetic programming,
is approximately 20 years old. It represents solutions to computational problems as
graphs. Its genetic encoding includes explicitly redundant genes which are well-
known to assist in effective evolutionary search. In this article, we review and com-
pare many of the important aspects of the method and findings discussed since its
inception. In the process, we make many suggestions for further work which could
improve the efficiency of the CGP for solving computational problems.

Keywords  Cartesian genetic programming · Genetic programming · Evolutionary
algorithms

1  Introduction

The term “Cartesian genetic programming” (CGP)1 first appeared in 1999 [65].
Although, it was a generalisation of a method of encoding and evolving electronic
circuits that was first described in 1997 [71]. In 2000, it became established as a new
form of genetic programming [70]. Since that time CGP has been adopted by many
researchers, adapted by others and applied to many applications areas. This article
provides an extensive review of the different variants of CGP, and an analysis of
many important aspects of CGP. It discusses numerous open issues and questions.
The article contains many suggestions for further work which could lead to improve-
ments in the efficiency of the CGP for solving computational problems.

In contrast to tree-based genetic programming [53, 80], CGP encodes computa-
tional structures as directed graphs. Its invention was heavily influenced by earlier
work on creating and evolving genetic representations of circuits. These are most nat-
urally encoded as graphs and can be described using structures called netlists. CGP
uses a netlist-inspired address-based genotype consisting of integers pointers to an

 *	 Julian Francis Miller
	 julian.miller@york.ac.uk

1	 Department of Electronic Engineering, The University of York, York, UK

1  carte​siang​p.com.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10710-019-09360-6&domain=pdf
http://cartesiangp.com

130	 Genetic Programming and Evolvable Machines (2020) 21:129–168

1 3

either an array of primitive functions or data locations. Encoding graphs, rather than
trees has advantages in that nodes can be multiply used and graphs can have multiple
outputs. It is a very adaptable representation as it can easily represent many types of
computational structures, such as systems of equations, state-machines, neural net-
works, algorithms and electronic circuits. Another defining characteristic of CGP is
that the genotype can include non-coding genes. The genotype is recursively decoded
from program outputs to inputs and in so doing nodes can be ignored, these are non-
coding. As we shall the presence of non-coding genes has strongly influenced the
choice of search algorithm that is most suitable for CGP (see Sect. 2).

In the article, we discuss many variants of CGP that have been proposed. We
begin with a graph-based form of GP called parallel distributed GP (PDGP) which
was developed by Poli prior to CGP [77, 78]. This has many similarities with CGP
but also uses various graph-based crossover and mutation operators and restricted
graph connectivity. Modular CGP (MCGP) is based on standard CGP but has addi-
tional mutation operators which allow CGP-encoded sub-functions (called modules)
to be captured, re-used or modified. This was motivated by Koza’s work on auto-
matically defined functions in tree-based GP [54]. In real-valued CGP (RVCGP) all
genes are real-valued and a decoding step translates these into standard CGP genes.
This is attractive as it allows many methods for evolving genotypes used in evo-
lutionary algorithms work to be used to evolve programs (e.g. “flat” crossover see
Sect. 5).

Implicit-context CGP (ICCGP) removed the positional dependence of genes in
CGP by representing components by evolved entities called enzymes which are self-
assembled to form CGP-like phenotypes. Self-modifying CGP (SMCGP) extended
CGP by introducing new kinds of primitive functions (self-modifying) which car-
ried out transformations of the phenotype, this allowed sequences of phenotypes to
be evolved from a single genotype. It also required genes in CGP to use relative
addressing (also used in PDGP). Mixed-type CGP (MTCGP) borrowed some fea-
tures from SMCGP and also allowed CGP to handle different data types (i.e. scalar
and vector). Recurrent CGP (RCGP) is a simple extension to standard CGP which
allowed connections between primitive functions to be both feed-forward or feed-
back (i.e. breaking acyclicity). Iterative CGP (ICGP) introduced conditional loop-
genes into CGP which allowed CGP to encode algorithms.

Differentiable CGP (DCGP) is a form of CGP in which phenotypes are differen-
tiable. Primitive functions are truncated Taylor’s series and graph connections are
weighted. This allows gradient descent to be used to arrive at highly-tuned graphs.
We also discuss a recently developed form of graph-based GP called evolving
graphs by graph programming (EGGP) in which phenotypes are encoded using a
graph description language. This allows graphs to be manipulated more freely than
is possible in the standard form of CGP. We also discuss the recently proposed posi-
tional CGP (PCGP). This a real-valued form of CGP form in which graph nodes
have evolvable positions, and connections are made to the nearest node.

We also discuss in depth various promising forms of crossover, mutation and
search algorithms that have been suggested in the literature of CGP. It should be
noted that very recently, another review of CGP has appeared. It discusses CGP and

131

1 3

Genetic Programming and Evolvable Machines (2020) 21:129–168	

its variants and focuses in detail on their representational differences and evolution-
ary operators [62].

The plan of the article is as follows. First we review CGP-encoded representations
of programs that have been suggested in the literature (Sect. 3). We follow this with
a discussion of work done in mutation (Sect. 4) and crossover (Sect. 5). Section 6
discusses various search algorithms that have been investigated for CGP. In Sect. 7
we examine ways in which CGP can be made faster by using hardware. Section 8
discusses major applications of CGP including CGP encoded artificial neural net-
works. In Sect. 9 we discuss the relatively high comprehensibility of CGP programs.
We give comparisons of the efficiency and human-competitiveness of CGP to other
machine learning techniques in Sect. 10. The growing amount of publicly available
software for CGP is reviewed in Sect. 11. We close with sections on open questions
and suggestions for further investigation (Sect. 12) and conclusions. For reference
and completeness we begin with a description of the standard form of CGP.

2 � Aspects of standard CGP

2.1 � Representation

In its standard form CGP programs are representations of directed acyclic graphs.
These graphs are represented using a two-dimensional grid of computational nodes.
Hence the term “Cartesian”.

Each node in the directed graph represents a particular function and is encoded
by a number of integer genes. Each node has a function gene which is the address of
the computational function of the node in a user-defined look-up table of functions.
The remaining node genes are connection genes and say where the node gets its data
from. These genes represent addresses in a data structure (typically an array). Nodes
take their inputs from either the output of a node (in acyclic CGP, from a previous
column) or from a program input. The number of connection genes a node has is
chosen to be the maximum number of inputs that any function in the function look-
up table has. If any node function requires less inputs, the remaining connection
genes are ignored. The program data inputs are given the absolute data addresses 0
to ni − 1 where ni is the number of program inputs. The data outputs of nodes in the
genotype are given addresses sequentially, column by column, starting from ni to
ni + nn − 1 , where nn is the user-determined upper bound on the number of nodes. A
schematic is shown in Fig. 1.

If the problem requires no program outputs, the genotype is augmented with a
number of output genes ( Oi = no ). Each of these is an address of a node where the
program output data is taken from. Nodes in columns cannot be connected to each
other. In its standard form the graph in CGP is directed and feed-forward; this means
that a node may only have its inputs connected to either input data or the output
of a node in a previous column. However, as we will see in Sects. 3.7 and 3.8, this
restriction can be relaxed to allow recurrent or cyclic graphs. A schematic of the
genotype is shown in Fig. 1.

132	 Genetic Programming and Evolvable Machines (2020) 21:129–168

1 3

CGP has three user-selectable graph parameters that define the dimensional-
ity and connectivity of the encoded graphs. These are the number of columns,
the number of rows and levels-back. These are denoted by nc , nr and l, respec-
tively. The product of the first two parameters determine the maximum number
of computational nodes allowed: nn = ncnr . The parameter l, called levels-back,
controls the connectivity of the graph encoded. Levels-back constrains which col-
umns a node can get its inputs from. If l = 1 , a node can get its inputs only from
a node in the column on its immediate left or from a primary input. If l = 2 , a
node can have its inputs connected to the outputs of any nodes in the immedi-
ate left two columns of nodes or a primary input. If one wishes to allow nodes
to connect to any nodes on their left, then l = nc . Varying these parameters can
result in various kinds of graph topology. An important special case of these three
parameters occurs when the number of rows is chosen to be one and levels-back
is set to be the number of columns (one dimensional topology). In this case the
genotype can represent any bounded directed graph where the upper bound is
determined by the number of columns. The length of a CGP genotype is given by
Lcgp = nn(a + 1) + no.

2.2 � Search algorithm

Standard CGP uses a search algorithm (Algorithm 1) that is inspired by the 1 + �
evolutionary strategy [83] in which a single parent genotype is mutated to create �
offspring. An offspring that has a fitness better or equal to the parent becomes the
new parent for the next generation. This is still the most widely used search algo-
rithm for CGP. We discuss work suggesting other search algorithms in Sect. 6.

(1)Lcgp = nn(a + 1) + no

Fig. 1   Standard form of CGP representation. It is a grid of nodes whose functions are chosen from a set
of primitive functions. The grid has nc columns and nr rows. The number of program inputs n = ni and
the number of program outputs m = no . Each node is assumed to take as many inputs as the maximum
function arity a. Every data input and node output is labeled consecutively (starting at 0), which gives it
a unique data address which specifies where the input data or node output value can be accessed (shown
in the figure on the outputs of inputs and nodes)

133

1 3

Genetic Programming and Evolvable Machines (2020) 21:129–168	

Algorithm 1 CGP search algorithm

1: for all i such that 0 ≤ i < 1 + λ do
2: Randomly generate individual i
3: end for
4: Select the fittest individual, which is promoted as the parent
5: while Solution is not found or the generation limit is not reached do
6: for all i such that 0 ≤ i < λ do
7: Mutate the parent to generate offspring i
8: end for
9: Generate the new parent using the following rules:
10: if A single offspring has a better fitness than any other member of the population then
11: The offspring is chosen as parent
12: else if One or more offspring have an equal fitness to the parent then
13: Randomly choose one of these as parent
14: else
15: The parent chromosome remains the same as before
16: end if
17: end while

2.3 � Non‑coding genes

The reason that such a simple search strategy operating on such a small population
is effective is strongly connected with the presence of non-coding genes in the geno-
type. Non-coding genes arise in CGP when the outputs of nodes are not referenced
in the flow of data from program inputs to program outputs. It is this which leads to
both variable length phenotypes and evolutionary neutral drift in the genotype. It
should be noted that the genotype-phenotype mapping process in CGP incurs very
little computational overhead as it is only carried out once per genotype. The 1 + �

-inspired algorithm promotes neutral drift since often mutational offspring differ
only in inactive genes and so have equal fitness to their parent [69, 110, 119, 128,
129]. Such identical offspring can be detected before fitness evaluation so incur-
ring no fitness calculation. Thus, even when it appears that the algorithm is stuck
on a local optimum fitness value the search algorithm is exploring many possible
different solutions by mutating different genotypes. The maximum allowed size of
the genotype is highly influential here and Turner et al. investigated the relation-
ship between it and performance on a suite of hard benchmarks [110]. They found
that the relationship was approximately quadratic with a clear optimum value for
nn . Often the optimum number of nodes was quite large (hundreds or thousands of
nodes).

2.4 � Absence of bloat

CGP does not suffer from a phenomenon called bloat [105], in which over
evolutionary time, programs become larger [91]. Bloat has been described as
“program growth without (significant) return in terms of fitness” [80]. It was

134	 Genetic Programming and Evolvable Machines (2020) 21:129–168

1 3

thought that the lack of bloat in CGP was caused by either neutral genetic drift
(NGD) [66] or length bias (LB) [18]. The former argued that since NGD is bene-
ficial to search, it is beneficial to maintain a large number of inactive genes. This
provides a pressure to limit the number of active genes. LB argues that the lack
of bloat is a consequence of the genotype representation which has the property
that nodes closer to the program inputs are much more likely to be active since
they can be connected to by many nodes on their right. This causes a strong bias
towards small program sizes. Interestingly, both these hypotheses for the lack of
bloat in CGP have been disproved [105] where it was shown that when NGD is
disallowed in CGP bloat still does not occur. LB cannot be the reason why there
is no bloat since Recurrent CGP (see Sect. 3.7) has no length bias and yet it too
does not exhibit bloat. Thus the cause of lack of bloat in CGP is still an open
question.

3 � Alternative genotype representations

3.1 � Parallel distributed genetic programming

For completeness, and because of later discussion, we include a brief discus-
sion of a form of graph-based genetic programming that has a representation
that is similar to CGP. It is called parallel distributed GP. Poli proposed this in
1996 [77, 79]. Like CGP, PDGP represented graphs using a Cartesian grid of
nodes. Connection to nodes were restricted to the previous layer (i.e. in CGP
terms, with levels-back equal to 1) and the connection genes were relative (as
in SMCGP see Sect. 3.5) and counted back from a node position to the source
of node input. A pass-through (or wire) function was allowed so that nodes
could be connected to deeper layers. Poli devised various crossover operators.
They are all based around the idea of swapping sub-graphs defined by selecting
random crossover points in the parents to create offspring. One can choose the
first crossover point at random and the other must respect the limitation that the
graphs have a maximum depth (in CGP terms, a maximum number of columns).
By choosing crossover points either in either active or inactive nodes or both, he
described a number of types of crossover. He also discussed two forms of muta-
tion, one he called global in which a random sub-graph is generated and replaces
an existing sub-graph. Actually, he states that global mutation was implemented
by crossing over an individual with a randomly generated new individual [79].
The second mutation operator he called link which is the same as point muta-
tion in CGP. Using an evolutionary algorithm with population sizes of around
1000 and tournament selection with crossover and both types of mutation Poli
showed that PDGP was markedly more efficient at solving problems than stand-
ard tree-based GP (even with ADFs) and often the evolutionary algorithm was
most efficient with small grid sizes. PDGP was also used to evolve artificial neu-
ral networks [81].

135

1 3

Genetic Programming and Evolvable Machines (2020) 21:129–168	

3.2 � Modular

Koza demonstrated the usefulness of automatically-defined functions (ADFs) in
tree-based GP [54]. Walker and Miller introduced an equivalent to ADFs for CGP
called modules [122, 123]. In modular CGP sub-functions or modules can be cap-
tured or destroyed by mutation operators. Capture or acquisition happens via two
random positions in the genotype. The genotype is extracted and placed in a mod-
ule list and the removal site replaced by a module containing the re-labelled sub-
genotype so that the meaning of the genotype is identical to the original genotype
before module acquisition. Empirical comparisons of results with and without
ADFs were made on a number of benchmarks and appeared to show that CGP
with module acquisition and evolution obtained solutions in much fewer num-
bers of evaluations that standard CGP, particularly on hard problems. However,
it should be noted that the comparisons with CGP were unfair in the sense that
the total size of allowed genotype in nodes with modules was much greater than
the number allowed in standard CGP. Thus, it still remains an open question as to
whether module acquisition is beneficial.

Noting that in modular CGP modules were acquired or destroyed randomly
(i.e. via mutation), Kaufmann and Platzner introduced some new techniques for
creating modules: age-based and cone-based [38]. The age-based module creation
operator identifies primitives nodes that have remained unchanged for a number
of generations and places these into modules (only primitive nodes can reside
in a module). The module is given an age that is the average of the ages of the
primitive nodes within it. Two candidates are generated using this operator and
the one that is older is chosen. In contrast to standard or age-based module crea-
tion, cone-based module acquisition (MA) aggregates only primitive nodes that
are within a structure called cone (see [38] for details). Cones are a widely-used
concept in circuit synthesis. They compare the computational effort (as defined
in [53]) of the original modular CGP with versions that allow either age-based
or cone-based MA on circuit synthesis and classification problems. They found
that in almost all cases the age-based technique was superior to the original MA.
However, cone-based MA largely proved superior only on circuit problems.

3.3 � Real‑valued

Clegg et al. devised a genotype representation for CGP in which all genes are
floating point numbers in the interval [0.0, 1.0] [10]. We refer to this as a real-
valued CGP representation (RVCGP). The motivation for devising this represen-
tation was that crossover in CGP might be more effective using a real-valued rep-
resentation. We will discuss this in more detail in Sect. 5. Real-valued CGP has
an additional decoding step in which a standard CGP genotype is obtained from
the real-valued genotype. The real-valued genotype still has genes grouped by
nodes consisting of a function gene and a number of connection genes.

136	 Genetic Programming and Evolvable Machines (2020) 21:129–168

1 3

Assume that the node function look-up table has nf functions. Standard CGP
node function integer genes, igf are obtained from the floating point gene, rgf  , by
examining which of nf segments of the interval [0.0, 1.0], rgf lies within. This is
accomplished with Eq. 2.

For instance assume there are four node functions. Then if rgf is less than 0.25
then igf = 0 while if rgf is greater than 0.25 and less than 0.5, igf = 1 , and so on.

Real-valued connection genes, rgc corresponding to node address, np are decoded
to standard integer connection genes, igc by dividing the unit interval into np seg-
ments. The equation that accomplishes this given in Eq. 3.

For instance, suppose that np = 6 , and there are two program inputs and four
nodes. Then the unit interval is divided into as many segments as the node address
(i.e. 6). If rgc is between 0 and 1/6 then igc = 0 , so that the first input to node 6 is
the first program input (whose address is 0), if rgc is between 5/6 and 1 then igc = 5
and the first input of node 6 is connected to the output of node 5 (the previous node).
Output genes are decoded in the same way as the connection genes corresponding to
node address of one more than the highest node address.

Using floating point values as genes for CGP has the potential to make the geno-
type more evolvable since when small changes are made to the genes the gene can
move gradually to a value which will result in genotype change (assuming Gaussian
mutation), whereas in standard CGP random mutations either abruptly moves a node
input connection to an entirely different node, or changes the function of the node.
Also, another motivation was to transform the discrete nature of CGP genotypes to
smooth functions of n variables [10]. Finally, it allowed the prospect that much of
the research into the optimization of real-valued vectors using evolutionary algo-
rithms could be applied to CGP and hence the evolution of programs or other com-
putational structures. Indeed, Clegg (see Sect. 5) used a form of crossover showing
it appeared to be beneficial for symbolic regression problems. However, in his mas-
ter’s thesis, Turner [101] examined RVCGP on three additional classes of computa-
tional problems, digital circuit synthesis, function optimisation and agent-based wall
avoidance. On these problems, it was found that RVCGP together with the crossover
operation performed worse than standard CGP. However, he found that implement-
ing the RVCGP representation but with the same selection and mutation methods as
CGP gave equivalent performance to CGP.

Meier et al. interpreted the RVCGP genes as mean values in a multivariate Gauss-
ian distribution [63]. From these distributions new genotypes can be sampled. They
defined an operator called forking which decides whether a genotype should be inter-
preted either as a point or as a distribution in genotype space. The decision to fork uses
population statistics based on an analysis of phenotypes (called fingerprints). Early
in evolution an individual’s phenotype is likely to be rare in the population, in which
case the forking operator is more likely to interpret the individual as a point. As evo-
lution progresses, individuals focus on fewer regions so that the current individual’s
phenotype may be shared by other individuals. In this case, its phenotype fingerprint

(2)igf = floor(rgf nf)

(3)igc = floor(rgcnp)

137

1 3

Genetic Programming and Evolvable Machines (2020) 21:129–168	

frequency increases and the forking operator will be more likely to interpret the current
individual as a distribution, so that sampling happens more frequently. They evaluated
their approach on four symbolic regression problems and found the forking operator
reduced the number of generations to converge to high fitness and the computation time
per run, as compared with standard RVCGP.

Walker et al. modified the RVCGP representation to encode transistor circuits [121].
Six floating point genes were used to specify each CGP node. Four genes defined the
transistor characteristics while two specify the node inputs. A three-stage genotype to
phenotype mapping was employed to obtain a valid circuit simulator netlists that could
be simulated using the SPICE simulator.

Wilson et al. used a recursive variant of the real-valued representation to evolve
highly effective Atari game playing agents in [125]. In addition, each node also had a
parameter gene which used used by some node functions and was also used to weight
the node output (as used in [52]).

3.4 � Implicit context

In the Sect. 2 we saw that in CGP all nodes and inputs have an address which expresses
where they are positioned in the genotype. Lones created a form of GP called enzyme
GP in which the structure of a program is not given explicitly (as in most forms of
GP) but is derived from connection choices made by each component of the program
in a bottom-up fashion. He argued that in biological genomes the location of genes is
relatively unimportant and criticized GP systems for being positionally dependent [60].
However, this point of view is at best debatable since some biological studies indicate
that genes are located in positional neighbourhoods [12]. Furthermore, it has been dis-
covered that a gene’s location in a chromosome does play a significant role in shaping
how an organism’s traits vary and evolve [84].

Smith et al. [95] adopted many aspects of Enzyme GP and proposed a new represen-
tation of CGP called implicit context CGP (ICCGP). In enzyme GP and ICCGP pro-
gram nodes are called enzymes. Each enzyme has a type (referred as ‘activity’), a num-
ber of binding vectors ( b1 , b2 ), an output vector called a shape, s and a function gene
(see Fig. 2). The elements of the vectors are integers in the range 0 to 255 (though in
some implementations real numbers between 0 and 1 are used). Type merely indicates
whether the enzyme is a program input, computational node or a program output. The
number of elements that a binding or shape vector have is given by the sum of the num-
ber of external program inputs, ni and the number of possible computational functions
in the function look-up table, nf .

As with CGP, the number of bindings (inputs) an enzyme has, is defined by the the
arity of the enzyme function. Enzyme’s of type 0 have only a shape as these represent
external inputs and enzyme’s of type 2 only have a single binding vector as these repre-
sent external outputs. An enzyme’s shape is defined as:

where f is a vector of the same length as the binding vectors, but whose only non-
zero element is 255 at position ni + f where f is the enzyme’s function gene. The

(4)s = 0.25 ∗ b1 + 0.25 ∗ b1 + 0.5 ∗ f

138	 Genetic Programming and Evolvable Machines (2020) 21:129–168

1 3

multiplying constants ensure that the elements of the shape vector are in the range 0
to 255. The idea behind shape is that it represents the affinity that a component has
to form connections with other components.

Genes are initialised randomly. An assembly process creates the phenotype. It
starts at the type 2 enzymes (i.e. outputs). These bind to other enzymes (types 0 or
1). Binding is how connections between computational nodes occur. The binding
vectors define whether and how strongly an enzyme can bind to another enzyme’s
shape. This is determined by the degree of matching between the binding of one
enzyme with the shape of another. Input enzymes have a shape, outputs a single
input binding. Connections between enzymes, inputs and outputs are determined
by which bindings form the strongest match with shapes. The smallest difference
between the elements of the binding vector and shape indicates the strongest match.
Construction of the phenotype is similar to standard CGP. It begins with outputs
binding to component or input shapes. Then these components bind and so on, until
all enzyme’s are bound. At this point a CGP-like phenotype can be obtained. The
genotype has Liccgp = (ni + nn + no)(ni + nf) elements. Genotypes are mutated via
point mutation and bindings and enzyme functions can be mutated at different rates.

The length of the genotype representation in ICCGP is much greater than in CGP
as each enzyme has (ni + nf) elements compared with na + 1 in CGP. For instance,
suppose we choose 100 nodes or enzymes (a modest figure in CGP). Assume also
that the problems we are trying to solve have many inputs (e.g. Boolean circuits with
say 50 inputs and five outputs) and there are many possible node functions (say 16)
then the genotype length would be (50 + 100 + 5)(50 + 16) = 10,230 genes com-
pared with 305 in standard GP! As a consequence, ICCGP has only been applied
with a very modest numbers of enzymes.

To date, as far as the author is aware, there has been only a single comparison
of the computational efficiency of ICCGP with CGP and this was in the very lim-
ited context of the three input parity function over a range of rectangular topology
parameters [8]. Thus, it remains unclear whether ICCGP offers any computational
benefits. Despite this ICCGP has been extensively and successfully applied to vari-
ous problems in medical diagnostics [56, 58, 59, 93, 94, 96–98].

3.5 � Self‑modifying

Self-modifying CGP introduced another type of node, a self-modifying (SM)
node, one that refers to the code itself [26, 28, 29]. Such nodes modify the phe-
notype. For instance, a node may be a deletion operation, which deletes CGP
nodes between two positions in the phenotype. Such operations imply that the
phenotype is iterated in something akin to a developmental process. The process
is as follows. The genotype is first duplicated to create the first phenotype. So
here phenotypes mean genotype-like strings of numbers in the same format as
CGP. The active self-modification nodes in the phenotype are applied one after
the other to produce a new phenotype. This process defines one iteration. This is
repeated until either there are no SM nodes in a phenotype or until a user-defined
limit on the number of iterations is reached.

139

1 3

Genetic Programming and Evolvable Machines (2020) 21:129–168	

The presence of SM nodes makes it more appropriate to replace absolute node
addressing as in standard CGP with relative addressing. The latter is where con-
nection genes count back from the node position. In addition, functions were
introduced that provided external inputs (via a circular register) or wrote calcula-
tions to external outputs. This was done so that SM operations could change the
number of inputs and outputs. SM nodes also require parameters which dictate
where they operate in the phenotype (i.e. copy nodes between n and m and insert
them at position p).

SMCGP can produce a sequence of phenotypes, each of which could solve
a different computational problem (e.g. produce a series of parity functions of
increasing number of inputs). This allows SMCGP to be applied to classes of
problems that non-developmental encodings can not solve. Indeed, it has been
shown that SMCGP could find provably general solutions to certain classes of
problems: parity, binary addition [26], computation of � and e [27]

Fig. 2   In ICCGP nodes are called enzymes. An enzyme has two binding vectors and a shape vector. Each
binding or shape vector has a number of elements equal to the sum of the number of program inputs and
the number of possible node functions. The shape vector is a function of the binding vectors and a vector
representing the enzyme function (Eq. 4). The binding and shape vectors determine how enzymes will
bind to other enzymes, and hence, assemble the CGP graph. The computational inputs are X and Y and
the enzyme has one computational output. In this example, the enzyme function is a simple if statement

140	 Genetic Programming and Evolvable Machines (2020) 21:129–168

1 3

It is interesting to note that even without the presence of SM nodes, SMCGP
introduced a possible modification of the standard CGP genotype representation
(relative addressing and input/output functions). This was actually used in place of
CGP in a number of papers [23, 24, 55]. However, to date, there has been no quanti-
tative comparative studies of the two CGP representations and their efficacy.

3.6 � Mixed‑type

Harding et al. [23] introduced a form of CGP called mixed-type CGP (MTCGP) in
which the data which flowed through the CGP graphs could have different types. In
MTCGP node functions inspect the types of the input values being passed to it, and
determine the most suitable operation to perform. This in turn determines the output
type of the function. Node functions return a default value in cases where there is no
suitable operation for the types being passed to the function. In MTCGP inputs can
be variable length vectors of reals or individual values. Since MTCGP can handle
multiple and mixed data types it allows a much wider range of node functions to be
used. They used relative addressing and input gathering and output producing func-
tions (as in SMCGP).

MTCGP was applied to a number of classification tasks in the UCI Machine
learning repository: Wisconsin breast cancer, phoneme, diabetes, and heart datasets.
For each of the classification tasks, the inputs presented to the program were both
the entire attribute vector as well as the individual attribute values of the vector.
They used a large set of primitive functions ranging over list processing, mathemat-
ical and statistical and compared results with a suite of well-known classification
methods producing highly respectable results. Often also, the evolved CGP pro-
grams were very small and readable.

Wilson et al. in their work on evolving human-readable Atari game playing
programs, extended multiple data types handling node functions to include also a
matrix type [125].

3.7 � Recurrent

CGP is usually described as a representation of acyclic graphs. However, it is
straightforward to extend it to recurrent or cyclic graphs [108, 109]. To do this, the
restriction that connection genes of a node must have values less than its position is
lifted, so that it can connect to itself and any other node. The genotype is decoded in
a very similar way to standard CGP to produce a list of active nodes. First the active
nodes need to be determined. This can be done recursively from output to inputs in
the usual way for CGP except that one only adds new nodes to the active list, not
ones already present (this breaks cycles). After this the following steps are carried
out

1.	 set all active nodes to output zero
2.	 apply the next set of program inputs
3.	 update all active nodes once from program inputs to program outputs

141

1 3

Genetic Programming and Evolvable Machines (2020) 21:129–168	

4.	 read the program outputs
5.	 repeat from 2 until all program input sets have been applied.

Of course, in step 3 one could choose to update active nodes more than once
and use some function of the output values (i.e. the average). However, there would
always be the issue of when to stop.

To control the numbers of recurrent versus non-recurrent connections, Turner
et al. introduced a additional parameter called recurrent connection probability
which controlled the likelihood of recurrent and non-recurrent connections. The
performance of RCGP was compared with CGP on a number of benchmarks [108],
the Artificial Ant, Sunspot prediction and a number of integer sequences [109]. In
all cases RCGP outperformed CGP significantly. In addition RCGP outperformed
various published methods for the Fibonacci sequence. RCGP should be regarded as
“standard” CGP in that when the recurrent connection probability is zero it becomes
the original form of CGP.

3.8 � Iterative

In iterative CGP (ICGP) conditional cyclic loops can be represented [86]. To accom-
plish this a linear CGP geometry is assumed (i.e. one row and multiple columns)
with levels-back set to be the number of columns. All nodes have four genes. The
first gene is a node function gene, the next two are connection genes and the last
gene represents a Boolean condition which determines whether a loop should be
continued or terminated. The first connection of a node always refers to a node pre-
vious to the node (i.e. a standard feed-forward CGP connection). The second con-
nection gene is either ignored or represents a cycle. The gene is ignored if it refers
to a previous node or input. However, it may refer to a subsequent node (or itself)
in which case it defines a loop. The nodes between the position of the calling node
and the forward connection are then in a cycle. The condition gene is an address in
a look-up table of possible loop exit conditions. If it exits then the next instruction
is decided by the node immediately after the end of the loop, if it does not exit it
executes the instruction in the next node on the right. There is a single output gene
( OA ) which points to the last executed node (10). An example genotype is shown in
Fig. 3.

In the example, the nodes are executed in the following order: 1, 2, 3, 6, 7, 2, 8,
1, 9, 10. We have assumed that on the second call of node 2, condition 1 is met, so
execution passes to the next node after the loop (node 8) and thence to 1. We also
have assumed in this example that loop condition of node 1 (2) is also met thus caus-
ing program execution to move to the next node (9) after the loop terminates at node
(8). There are some rules required to enforce valid loops:

1.	 For any nodes inside an existing loop, branching genes can only connect to either
any previous node or input (acyclic) or a node with a higher index that is inside
the current loop (cyclic). For instance, in Fig. 3, the branching gene of nodes 3–6
can be valid if its value is lower than 7. However, any branching genes greater

142	 Genetic Programming and Evolvable Machines (2020) 21:129–168

1 3

than the node label would create loops within the already existing loop starting
at node 2 and ending at node 7.

2.	 For any nodes outside an existing loop, their branching genes can only connect
to a node that is outside any existing loops. For instance, because the nodes 2–7
are already in a loop, the branching gene of node 1 can only point to either the
input or nodes 8, 9, or 10.

Ryser-Welch applied iterative CGP to three classes of problems: travelling salesman,
mimicry and nurse-rostering [85, 86]. For these problems, the node operations were
very sophisticated and applied existing heuristic algorithms rather than merely a math-
ematical function of input data. In this way it was shown that new human-readable,
standalone problem-solving algorithms could be produced.

3.9 � Differentiable CGP

Genetic programming is normally considered as a derivative-free method, however in
an impressive paper Izzo et al. [33] show how it is possible to obtain a complete repre-
sentation of the differential properties of a program encoded by a genetic programming
expression. They applied this to CGP creating a new form of it called called differenti-
able CGP (dCGP). In dCGP all connections have weights (like artificial neural net-
works) and node functions are represented as truncated Taylor expansions of a given
order. They show that this allows arithmetic operators +, −, *, / to be extended to oper-
ate on truncated Taylor expansions. For instance, using this idea they show that a CGP
encoded function O0 = sigmoid(yz + 1)∕x can be written also as second order Taylor
expansion of differentials,

The dCGP approach means that not only can the output function of a CGP pro-
gram be computed at a given point but also all its derivatives up to a given order.

(5)
O0 = 0.881 − 0.881dx + 0.105dy + 0.105dz + 0.881dx2

− 0.0400dy2 − 0.0400dz2 − 0.105dxdz + 0.025dydz − 0.105dxdy

Fig. 3   An example of an iterative CGP genotype. There are ten nodes each with four genes. The node
function is shown underlined. The second gene represents a feed-forward connection. The third gene can
either refer to a previous node (in which case it is ignored) or refers to a subsequent node in which case
it represents a cycle or loop. The fourth node gene (in italics) is the address of a Boolean loop exit condi-
tion. It is shown on the cycles. In this example there are two nodes that are not referred to so are ignored
(shown dashed)

143

1 3

Genetic Programming and Evolvable Machines (2020) 21:129–168	

Their approach makes it possible to apply concepts such a back propagation to CGP
encoded programs.

They evaluate the dCGP technique on a suite of varied symbolic regression prob-
lems in which � and e appear. Newton’s method was used to back-propagate the
errors on ephemeral constants in evolved expressions to determine the constants in
the Taylor expansions. The fitness is the final error. They showed that they could
evolve the target formulae exactly (with all weights set to 1). However, they note a
drawback to this method: the number of ephemeral constants used as additional ter-
minals needs to be pre-determined. However, by associating weights to every edge
of the graph, the differential properties of the error with respect to weights can be
determined. This allows symbolic regression to be carried out with no extra terminal
inputs but the values for all the weights has to be determined. Since there can be
many weights, the dCGP method selects random weights and then iteratively back-
propagates the errors. They used a 1 + 4 evolutionary strategy to evolve the dCGP
expression and interestingly, each offspring, i = 1 to 4 received i mutations. They
also showed that dCGP could be applied to solve partial, ordinary differential equa-
tions and to search for expressions that are prime integrals of sets of differential
equations

3.10 � Graph programming

Recently, an interesting new method of evolving graphs has been proposed. It is
called evolving graphs by graph programming (EGGP) [7]. This method evolves
graphs directly rather than using linear or grid-based genotypes. Using a probabil-
istic extension to the graph programming language, GP2, Atkinson et al. are able to
evolve graphs. They show firstly that any CGP individual can be represented as an
EGGP individual, whereas the converse may not always hold when the number of
rows in a CGP individual is greater than one. Secondly they note that some feed-for-
ward preserving mutations in EGGP are not possible in the standard form of CGP.
Figure 4 shows how an allowable mutation in EGGP is not allowed in CGP. The

Fig. 4   Example of illegal CGP mutation but allowable graph transformation of a Boolean function. An
EGGP mutation which changes a connection (red) from node 2 to node 1 is replaced with a connection
(blue) directed to node 3. This mutation produces a valid circuit but is impossible in standard CGP as
mutations have values less than the node position (to guarantee having a feedforward) property Taken
from [7] (Color figure online)

144	 Genetic Programming and Evolvable Machines (2020) 21:129–168

1 3

EGGP approach is shown to significantly out-perform CGP on a collection of circuit
benchmarks (particularly the harder benchmarks).

However, it should be noted that since recurrent CGP allows both feedforward
and feedback connections the mutations which are illegal in standard CGP but pos-
sible in EGGP are also legal in recurrent GP. It may also be possible to introduce a
new mutation operator to make these currently illegal mutations possible in standard
CGP.

3.11 � Positional CGP

Positional CGP [126] is an interesting new real-valued representation of CGP in
which inputs, and nodes have evolvable positions. All node genes are floating point
numbers in range [0, 1], which correspond to the connections of each node n, xn and
yn , the node function fn , and a parameter gene cn which can be used to weight the
output of nodes or act as a parameter of a function. In addition, every node has a
position gene pn which determines the position of the node. Connections are formed
by converting the connection genes xn and yn to coordinates by multiplying the
genes by the node position, pn and then “snapping” these connections to the nearest
node. Inputs also have evolvable position genes, in but are constrained to the interval
[−1, 0] . Output genes do not have positions and take values in the interval [0, 1]. A
small example of the PCGP representation is shown in Fig. 5.

Since node positions are evolved, it is highly unlikely that two will occupy the
same position, even between different genotypes. Furthermore, over evolution,
nodes which are connected can have positional genes and connection genes which
are highly related. Finally, a node’s connection positions depend only on its position,
which is in its genes, rather than the node’s placement in the genotype. This allows
node genes to be exportable; the same genes in a different individual will form con-
nections in the same place. If multiple genes are exported together, entire sections
of the graph can be migrated between individuals. In PCGP, nodes can be added or

Fig. 5   Example of PCGP genotype. A PCGP genome (a), including input in and positional pn genes.
These are translated to input and node positions (b) and connection positions “snap” to the nearest node.
As in CGP, a resultant graph (c) and output program (d) are then extracted. Taken from [126]

145

1 3

Genetic Programming and Evolvable Machines (2020) 21:129–168	

removed from a genome without disturbing the existing connection scheme, unlike
in CGP, where a node addition and deletion causes a shift in all downstream node
positions. Experiments were carried out comparing PCGP with CGP on nine bench-
marks (three each of classification, symbolic regression and reinforcement learning).
Results showed PCGP to be superior to RVCGP on classification and regression
benchmarks but inferior on reinforcement problems.

3.12 � Genotype‑phenotype complexity

It is important to realise that translating a CGP genotype to a phenotype is done
once per genotype. Evaluating the fitness of a genotype is expected to far outweigh
this decoding time. However, on problems where fitness evaluation is very fast, the
decoding time for different CGP variants may be significant.

The decoding of genotype to phenotype in standard and PDGP is straightforward.
One begins at the output nodes and recursively activates nodes that are required
until inputs are encountered. Along the way, a list of active nodes and their connec-
tions are stored for later use (i.e. the phenotype). This decoding step only needs to
be carried out once per genotype. Data is only presented and fitness calculated using
the stored phenotype. In modular CGP, the decoding is more complex as the pheno-
type is a collection of CGP programs consisting of the main program and the CGP
code of all the modules. When modules are captured, the captured code is re-written
so that module code refers to its inputs in the same way as standard CGP refers
to program inputs. Also when modules are destroyed, the modular code has to be
translated back into standard CGP format. This “book-keeping” increases the time
complexity of the decoding step. A large number of modules would increase the
time taken for the decoding step. However, it is expected that for problems where
modules are beneficial the evolution time would be shortened. The decoding step
of RVCGP is little different from standard CGP, one merely requires an initial pass
to convert the real-valued representation into standard CGP. In positional CGP one
also needs to identify which nodes are located closest to the positions of the inputs
to the nodes, this is an extra step so will increase genotype-phenotype decoding
time. Self-modifying CGP requires self-modifying operations to be applied to the
old phenotype to generate the new one. This obviously adds to the genotype-pheno-
type decoding time. However, by using a limited list of self-modifying operations
one can control this complexity to acceptable limits. The decoding step in recurrent
and mixed-type CGP is little different to standard CGP unless in the former case
one recurses over the genotype multiple times (which is not done in practice, see
Sect. 3.7). The complexity of the genotype-phenotype mapping in iterative CGP is
slightly more complex due to branching conditions. Differentiable CGP has a geno-
type phenotype decoding that is little different from CGP, however gradient descent
of weights would certainly increase the time required for fitness evaluation. Implicit
context CGP as we have seen requires much larger genotype sizes and also under-
goes matching operations to find out which components bind to each other, so geno-
type-phenotype mapping time would be longer than standard CGP.

146	 Genetic Programming and Evolvable Machines (2020) 21:129–168

1 3

4 � Mutation

In standard CGP mutation either point or probabilistic mutation can be used.
In the former, the user decides the percentage of the total number of genes of a
parent genotype to be mutated to create an offspring. In probabilistic mutation
every gene is considered for mutation according to a user-defined probability.
Point mutation is easier to implement and more efficient than using a probabil-
istic mutation as one does not need to linearly walk through the genes to decide
which ones to mutate. However, choosing a discrete number of genes to mutate
means that only certain mutation rates can be chosen. Probabilistic mutation is
continuous and very low mutation probabilities can be chosen and investigated.
It is also sometimes useful to use different mutation rates for different classes of
genes (connection, function, output). However, the utility of this has not been
investigated in detail.

One of the very interesting aspects of the CGP representation is that a large
variety of phenotypes can be found by applying mutation. Since many genes in
CGP are redundant, often mutations occur only in the redundant regions, which
means that the mutated genotype has the same phenotype as its parent. In such
cases one does not need to carry out a fitness evaluation (see below). However,
other mutations might change an output gene. In this case the program output
comes from a formerly redundant node, which in turn may connect to previously
redundant genes. This can cause large changes in the phenotype.

Goldman and Punch compared several mutation strategies on a range of circuit
benchmarks [19]: Normal, Skip, Accumulate and Single. Normal is just standard
mutation (probabilistic) with no check for offspring having identical genotypes to
their parent. Skip checks offspring to see if the phenotype is identical to the par-
ent (by comparing active genes) and if so returns the fitness of the parent. Accu-
mulate continues to mutate an offspring until some of its active genes are differ-
ent from the parent. Single mutates the offspring until one active gene is changed.
They found that the performance of Skip and Accumulate were fairly insensitive
to mutation rate whereas Normal’s performance was very sensitive to mutation
probability. Overall, the performance of Single which has no mutation parameter
was close to the best performance of the other strategies.

There is a considerable length bias in standard CGP in favour of small pheno-
types [18]. In addition there is a strong positional bias in CGP in that it is much
more likely that nodes on the left side of the genotype (i.e. close to the inputs)
will be active. This is simply because the inputs of any node on the right of a
given node are allowed to connect to it. For instance the first node can be con-
nected to by the input of any node on its right. While the penultimate node on the
right can only be connected to by either the last node or an external output. These
biases mean that the location of inactive nodes in the genotype are not distributed
evenly and nodes toward the right (towards the outputs) are likely to have many
inactive nodes between them.

In a comprehensive and detailed study of CGP, Goldman and Punch investi-
gated two strategies for compensating for positional bias [20]: Reorder and DAG.

147

1 3

Genetic Programming and Evolvable Machines (2020) 21:129–168	

In the former, prior to mutation of a parent, the position of nodes in the parent are
shuffled without changing the semantics of the phenotype. Reorder is used once
each generation to shuffle the nodes of the parent’s genome. As the shuffling does
not semantically change the parent, it does not require re-evaluation. Reorder
causes active nodes to be, on average, more likely to be located halfway between
the input and output ends of the genotype. The DAG strategy allows connections
to be feedforward or feedback (as long as no cycle is created) and removes the
positional bias in CGP. In an extensive series of experiments they concluded that
Reorder had the best performance overall. Of course, this should also be com-
bined with Skip. Further, when Reorder (or DAG) was not used, the number of
nodes never used during evolution was between 43% or higher (depending on
benchmark problem)! They also found that large numbers of nodes compute a
constant value irrespective of the program input. They suggested also that the
advantage of large amounts of inactive nodes is purely that they provide mutation
with random nodes for exploratory purposes (i.e. useful previously found sub-
structures are not stored in inactive code). This accords with the author’s unpub-
lished finding that randomising inactive genes prior to mutation appears not to
cause any performance impact. It would be interesting to reduce the rate at which
inactive nodes were randomised by mutation to see if allowing memory of past
useful structures in inactive code gives some advantages.

It would also be interesting to investigate how mutation could be defined so
that the chance of any node being connected would be equal for all nodes. This
would require mutation to be dependent on position so that the connection gene
is much more likely to be changed to connect to nodes that are nearer to it. A
simple way to achieve this would be to record the number of mutations that have
occurred so far at each node location during an entire evolutionary run. A new
mutation could be restricted to choosing to mutate only the least mutated node.
This would ensure that any node was equally likely to be connected to.

Kalkreuth [34] introduced an interesting new pair of mutation operators into
standard CGP: inactive node activation and active node deactivation. He referred
to these as “insertion” and “deletion” respectively. An insertion mutation chooses
an inactive node and changes one or more connection genes in the genotype
to make it active. Conversely, deletion alters connections to an active node so
that the node becomes inactive. He examined the impact of the new mutation
operators (operating together with the standard point mutation) on three Boolean
benchmarks and a suite of symbolic regression problems. On all problems, the
two operators gave improved performance. More detailed studies are required to
confirm and strengthen these findings.

Vašíček and Sekanina made a breakthrough in the optimisation of digital cir-
cuits by showing how circuits with many inputs could be optimised using CGP by
starting with a state-of-the-art logically correct reference circuit and employing
a SAT solver algorithm to decide if an evolved circuit was logically correct. If
it is incorrect it receives a fitness of zero, if correct the fitness is the difference
between the genotype size in nodes and the number of gates utilised. This tech-
nique has allowed the optimisation of industrial-sized digital circuits [120].

148	 Genetic Programming and Evolvable Machines (2020) 21:129–168

1 3

In this technique, Vašíček [120] discovered the surprising result that there is
no need to utilise inactive nodes in CGP when optimising fully functional digital
circuits! He defined a “zero neutrality” search process by ensuring that mutation
respects the following conditions: (a) inactive gates are unchanged (b) active gates
(or primary output) can not connect to an inactive gates and finally, (c) the second
input connection of single-input gates are not mutated. He compared the perfor-
mance of this mutation against standard CGP on a suite of 100 industrial-sized cir-
cuits and found that the performance of the two were statistically indistinguishable.
This needs more investigation on a wider set of problems.

The genotypes in the initial population were exactly the size of the circuits syn-
thesised by the ABC algorithm.2 In other words there was no redundancy in the ini-
tial circuits and redundancy could only arise by some gates not being required (i.e.
by successful optimisation). It would be interesting to see what the results would
have if the initial genotype had been larger than that produced by ABC by adding
inactive gates. Vassilev et al. [118] found that smaller three-bit multipliers were
found by encoding a working multiplier with a small amount of redundancy. This
is also supported in the work of Gajda and Sekanina [16] who discovered while
optimising digital circuits that in long evolutionary runs strictly selecting circuits
which had fewer gates did not produce as small circuits as merely choosing circuits
that were functionally correct (that is with lower fitness). They showed that the fre-
quency of occurrence of correct circuits was greater using the weaker fitness crite-
rion. This highlights the importance of neutral drift for exploration and the impor-
tance of maintaining redundancy.

5 � Crossover

In standard CGP crossover is not used. In his original paper on CGP [65], Miller
found that crossover appeared to have little effect on the efficiency of CGP and for
the most part, subsequent work ignored crossover.

In real-valued CGP Clegg et al. [10] used a simple method of real-valued geno-
type crossover called “flat” crossover [82] which generated two offspring, oi from
two parent genotypes, pi using Eq. 6, where 0 < ri < 1 is randomly generated and
i = 0, 1

Kalkreuth et al. [36] investigated RVCGP using adaptive crossover, mutation and
selection. Adaptation of these operators is based on maximising the diversity of phe-
notypes in the population. They compared their technique with Clegg’s RVCGP on
a number of symbolic regression problems showing that the new approach improved
performance.

(6)oi = (1 − ri)p1 + rip2

2  Berkley Logic Synthesis and Verification Group: ABC: A System for Sequential Synthesis and verifi-
cation. http://www.eecs.berke​ley.edu/*alanm​i/abc/.

http://www.eecs.berkeley.edu/%2aalanmi/abc/

149

1 3

Genetic Programming and Evolvable Machines (2020) 21:129–168	

Walker et al. devised a multi-chromosome representation which could be applied
to special classes of problems [124]. They looked at seven multiple output digital
circuit problems and instead of allocating as many output genes as circuit outputs
they divided the genotype into as many chromosomes as the number of outputs. For
the problems chosen (all digital circuits) the fitness of each chromosomes could be
assessed independently. The parent genotype in the 1 + � EA was constructed by
choosing each of the fittest chromosomes. For all benchmarks this produced spec-
tacularly better results than the one chromosome version. Indeed for one problem it
was possible to evolve a solution approximately 392 faster than using a single chro-
mosome with the same total number of nodes.

However, most computational problems do not have the property that multiple
outputs can be evaluated for fitness independently. It would be interesting to inves-
tigate a multi-chromosome form of CGP in such cases. One way this could be done
would be to allow multiple chromosomes each providing a single output and also
having an additional “coordinator”chromosome which uses the outputs of the other
chromosomes as inputs. Fitness would be determined from the coordinator chromo-
some only. This would allow parent genotypes to produce offspring by crossover of
non-coordinator chromosomes. Indeed, the coordinator chromosome would be free
to utilise any or all of the non-coordinator chromosomes.

Slaný and Sekanina examined how various crossover operators and standard
mutation affected the smoothness and ruggedness of the series of fitness values of
the best population member in each generation. They examined this in the domain
of CGP applied to image filter design. They found that either point mutation (with
� = 7 ) or single-point crossover where only one offspring of the crossover operation
is mutated and included into the new population, generated the smoothest fitness
landscape.

In their work on new techniques for acquiring modules in modular CGP (see
Sect. 3.2), Kaufmann and Platzner also investigated a cone-based crossover operator
to be used with a genetic algorithm (rather than 1 + �-ES). This generates a recom-
bined chromosome by transplanting a cone of a donor chromosome into a clone of a
recipient chromosome. They investigated the utility of the crossover operator using
various population sizes using a genetic algorithm. They found smaller population
sizes worked best in the new approach but it only performed better than the original
modular CGP technique on two of the six benchmark problems (two and three-bit
multipliers).

Kalkreuth et al. have recently investigated sub-graph crossover in CGP [35]. Sub-
graph crossover is like single-point crossover except that the active nodes both sides
of the crossover point are preserved. The crossover point is always chosen so that
it lies between nodes. This idea of sub-graph crossover is that it should reduce the
disruption caused by single-point crossover in standard CGP and truly recombine
meaningful sub-graphs. If after single-point crossover active genes would change
then the connection genes on the right of the crossover point are randomly re-gen-
erated to preserve the active genes on the left of the crossover point. They used a
standard genetic algorithm with population size 50 and tournament selection. They
evaluated the utility of the new crossover operator for a range of crossover rates on a
suite of benchmark problems in circuit design, symbolic regression and image filter

150	 Genetic Programming and Evolvable Machines (2020) 21:129–168

1 3

design. Often high crossover rates were beneficial and in all cases a nonzero crosso-
ver rate performed better than without crossover. However, they did not compare
their results with standard CGP so it still remains unclear whether crossover has util-
ity over purely mutational CGP.

Kalkreuth and Husa have recently proposed block crossover [32]. This is defined
using the one-dimensional representation of CGP. First before carrying out block
crossover blocks must be identified in two parent genotypes. Blocks are groups of
nodes that meet the following criteria: (1) The block contains a desired number of
nodes, (2) All nodes in the block are directly linked through their inputs or outputs,
(3) All nodes in the block are part of the genotype’s active path. Block crossover
then randomly selects one block from each genotype and swaps them. The position
of the nodes transferred as part of the block may change inside the new genotype.
However, their mutual links are preserved and the function performed by the block
stays the same. After block crossover, point mutation is applied. They conducted
parameter sweeps with standard CGP ( 1 + � ) versus genetic algorithms using block
crossover on a suite of Boolean functions and symbolic regression problems. They
found that there was no single set of crossover parameters that worked best over the
problems. They also found that the best value of � varied with problem. Although it
is possible for crossover operators to outperform the standard 1 + � strategy, if both
methods have their parameters fine-tuned, the 1 + � strategy usually remains as the
overall best strategy.

6 � Search algorithms

6.1 � Evolutionary strategy and hybrid algorithms

Although the most usual search algorithm used in CGP is � + � evolutionary strat-
egy with � = 1 and � = 4 , sometimes larger values of � have been chosen. For
instance � = 14 [16] was used in digital circuit optimisation and � = 8 in the evolu-
tion of image filters [88].

Recently Milano et al. [64] examined the robustness to mutation and the evolv-
ability of CGP genotypes encoding digital circuits. Mutational robustness is capabil-
ity of a system to preserve its functionality after mutations. Evolvability is the likeli-
hood of producing adaptive heritable phenotypic variations as a result of mutation
(we are not considering crossover). Their experiments used a 20 × 20 array of two
input logic gates (AND, OR, NAND, NOR) and the aim was to find a functionally
correct even-5 parity function (a moderately difficult task).

They studied two � + � evolutionary strategies. The first uses � + 1 and the sec-
ond is 1 + � . In � + 1 each of � parent are mutated to produce a single offspring,
then the best � individuals from the 2� genotypes are chosen as the new popula-
tion. Having 𝜇 > 1 allows the population to have a greater genetic diversity, since
multiple mutational searches take place around the multiple parents. However, they
observe that in this method the offspring of individuals that are more robust to muta-
tions have more chance to be selected than the offspring of individuals that are less

151

1 3

Genetic Programming and Evolvable Machines (2020) 21:129–168	

robust. They show that this drives evolution to produce small phenotypes and it has
markedly worse performance than 1 + �.

They proposed a new algorithm which they call a Parallel Stochastic Hill Climber
(PSHC) is a combination of � + 1 and 1 + 1 . The aim is to preserve population diver-
sity while maintaining strong selection pressure. In this algorithm each of the �
parents, pi is adapted using a 1 + 1 evolutionary strategy for a certain number of
steps. The best candidate solution obtained after this phase, ṕi is then used to replace
pi and, also with a certain low probability, the worst individual of the population.
Additionally, they allow a certain degree of stochasticity in the 1 + 1 phase by add-
ing a random variation to the fitness, however at the end of this phase the decision
whether or not to replace pi by ṕi is on the basis of the true fitness.

They found that performance of the PSHC algorithm is statistically significantly
better than the 1 + � algorithm.

Hybrid search algorithms have also received attention in the work of Kaufmann
and Platzner [39]. They investigated in particular hybrids of 1 + � (as a form of local
search) with either of the multi-objective algorithms, NSGAII [13] and SPEA [131].
They found that for some multi-objective benchmarks and for all digital circuit
benchmarks the hybrid algorithms outperform NSGAII and SPEA.

6.2 � Simulated annealing and unusual � + � evolutionary strategies

Kaufmann et al. recently conducted a large and detailed empirical study of the per-
formance of CGP various � + � with a wide range of values of � and � and also
looked at simulated annealing (SA) [37]. They also used Iterated Race for Auto-
matic Algorithm Configuration (iRace) [61] to optimise CGP parameters, nc , nr , � , �
and the mutation rate. They found that for harder digital circuit problems (e.g. 3-bit
multiplier, and even-parity with higher than six inputs) SA was the best performing
search algorithm. SA worked best with unusual topologies (e.g. 300 columns and
10 rows, or 150 columns and 8 rows). They also examined the performance of vari-
ous � + � strategies on a suite of symbolic regression problems where they found
that large values of � and � performed very well (e.g. � = 22 , � = 4096 ). How-
ever, unfortunately, they did not choose a fixed maximum number of nodes ( nn = k ,
where k is a constant). nn is an extremely important parameter for CGP. It is easy
to see why. Choosing nn to be small constrains neutral drift markedly and it is well
understood that neutral drift in CGP is an extremely important search mechanism
(Sect. 2.3).

6.3 � Balanced CGP

Yazdani and Shanbehzadeh [127] pointed out that CGP does not have any possibil-
ity of sharing information among solutions. To achieve this they suggested incorpo-
rating features from biogeography-based optimization (BBO) [92] and opposition-
based learning (OBL) [100]. They applied BBO’s migration operator which allows
information sharing between individuals. They also introduced a new mutation oper-
ator inspired by OBL. They evaluated their approach on five symbolic regression

152	 Genetic Programming and Evolvable Machines (2020) 21:129–168

1 3

problems. The found that the proposed BCGP method outperforms traditional CGP
in terms of accuracy and the convergence speed.

6.4 � Coevolution

Šikulová et al. [14, 90] developed a combination of fitness prediction with coevolu-
tion in CGP to reduce the number of expensive full fitness evaluations. The method
replaces some of the objective fitness evaluations with an alternative fitness calcu-
lated using a fitness predictor. The fitness predictors are coevolved in a second popu-
lation in order to provide accurate fitness predictions. The population of solutions is
evaluated with the current best fitness predictor while the population of fitness pre-
dictors evolves to minimize the difference between the true fitness and the predicted
fitness when measured using the current population of solutions.

Fitness predictors are represented as an adapted variable size array of pointers to
elements of a subset of the training data. The population of candidate programs are
evolved with the usual 1 + � evolutionary strategy and the population of fitness pre-
dictors are evolved with a simple genetic algorithm. They also use two archives one
of fitness trainers and one containing the best evolved fitness predictors. The archive

Fig. 6   Coevolution of populations of CGP programs (a) and fitness predictors (b) [14]. Some of the
objective fitness evaluations are replaced with an alternative fitness calculated using a fitness predictor.
The population of solutions is evaluated with the current best fitness predictor. The population of fit-
ness predictors evolves to minimize the difference between the true fitness and the predicted fitness. An
archive of fitness trainers (c) is used by the predictor population to evaluate evolved fitness predictors.
Fitness predictors are represented using variable size array of pointers to elements of a subset of the
training data (d)

153

1 3

Genetic Programming and Evolvable Machines (2020) 21:129–168	

of fitness trainers is used by the predictor population for the evaluation of evolved
fitness predictors. It contains copies of selected candidate programs obtained during
the evolution. The fitness predictor from the other archive is used to evaluate candi-
date programs. The overall methodology is depicted in Fig. 6.

Drahosova et al. [14] evaluated their method on suites of varied symbolic regres-
sion problems and image filter design problems. They showed that the coevolution-
ary approach outperforms standard CGP in terms of CPU time required to converge.

7 � Acceleration of CGP

Vašíček and Slaný developed an efficient acceleration technique designed to speedup
the evaluation of candidate solutions in CGP. The method translates a CGP phe-
notype to machine code that is consequently executed. An attractive feature of the
method is that the translation mechanism requires only a marginal knowledge of tar-
get CPU instruction set. They exemplified the technique by applying it to a symbolic
regression problem. It was shown that for a cost of small changes in a common CGP
implementation, a significant speedup can be obtained even on a common desktop
CPU.

Vašíček and Sekanina have also accelerated CGP for circuits, symbolic regres-
sion [113] and image filter design [114]. In the former, they designed and built an
application-specific virtual reconfigurable circuit (VRC) and fitness unit, obtaining
speedups of 40 times optimized software implementations. In image filter design
CGP was implemented on a single FPGA and gave a significant speedup (170) in
comparison with a software implementation.

Coevolutionary CGP (Sect. 6.4) has also been implemented in dedicated hard-
ware (FPGA) achieving 58 times speedups over highly optimized software imple-
mentations [31] .

Cartesian genetic programming (CGP) was one of the first genetic programming
representations to take advantage of the general purpose computing capabilities of
modern graphics processing units (GPUs) [22]. The implementation of CGP on
GPUs was benchmarked on regression and Boolean problems and when compared
to a naive, CPU-based C# implementation, was able to execute evolved programs
hundreds of times faster. Harding et al. also implemented CGP on clusters of GPUs.
This made it possible to evaluate the population in parallel, which in turn increased
the speed at which the population could be evaluated [25].

8 � Applications

Here we highlight some of the major application areas of CGP which are likely to
continue to grow in the future.

Vašíček gives a thoughtful and insightful analysis concerning some of the prob-
lems that remain in moving CGP digital synthesis to industry [112]. He notes that
when using CGP to optimise logically correct circuits a large number of new candi-
date solutions need to be generated and evaluated before a new candidate is found

154	 Genetic Programming and Evolvable Machines (2020) 21:129–168

1 3

with the same or better fitness (about 180 on average). He attributes this to the fact
that random point mutation is very inefficient and that some form of mutation which
is invested with domain knowledge could be much more efficient. Perhaps one can
define mutation operations that replace small sub-structures in a phenotype with
alternative but logically equivalent sub-structures?

In the synthesis of approximate circuits and programs Vašíček and Sekanina
opened up an area of research which is rich with research opportunities [89, 116]. In
many application areas (e.g. digital filters, artificial neural network) one can trade-
off accuracy with power consumption, speed, or other properties of digital circuits.
However, to evolve large-scale approximate circuits with CGP requires an efficient
method to determine the approximation error. They solved this using an equivalence
checking algorithm operating over binary decision diagrams (BDD) [117]. Recent
work has used CGP successfully to synthesize approximate circuits with formal
guarantees of approximation error [9]. Impressively, they have been able to synthe-
sise aproximate 32-bit multipliers and 128-bit adders.

CGP has been successfully used in the design of various kinds of image fil-
ters [24, 74, 88]. Sekanina pioneered the use of CGP for image filter design [87]
and showed that image filters could be automatically designed that were competitive
with conventionally designed filters both in image quality and hardware cost. Hard-
ing demonstrated the advantages of employing extensive domain knowledge in CGP.
He used a large function set (over 50) which included many Open Computer Vision
operations.3 Using an island-based parallel implementation of CGP he examined its
performance on various image related problems: noise reduction, recognising cell
mitosis4 and object recognition for the iCub Humanoid Robot. He obtained excel-
lent results on all three problems and in particular the evolved iCub robot image fil-
ters were often extremely small and could track moving objects in live video stream
under a range of lighting conditions. CGP using OpenCV is now being used com-
mercially to detect faults in machined metal.5

Artificial neural networks can be easily encoded in CGP by allowing all connec-
tions to have weights [46, 48, 49]. These are referred to as CGPANNs. Evolving
ANNs with CGP allows the benefits of the CGP representation and techniques to be
carried over to the evolution of neural networks (e.g. heterogeneous neural activa-
tion functions [107]). Also, it has been shown that evolving ANNs with CGP pro-
duced networks whose performance is much less sensitive to topology choices than
fixed topology evolved ANNs [104]. Comparisons of CGPANNs with other neu-
roevolutionary methods on reinforcement learning tasks consistently show them to
be competitive with many other neuroevolutionary methods [103, 111]. Recurrent
CGPANNs also show promise in time-series prediction [111]. It should be noted
that, in his PhD thesis, Turner [102] used R package implementations6 of many
machine learning techniques and compared their performance with CGPANNs on

3  https​://openc​v.org/.
4  This was a competition at the 2012 International Conference on Pattern Recognition (ICPR).
5  machi​neint​ellig​ence.co.uk.
6  caret: Classification and Regression Training, 2014. R package version 6.0-37.

https://opencv.org/
http://machineintelligence.co.uk

155

1 3

Genetic Programming and Evolvable Machines (2020) 21:129–168	

classification problems. This appeared to show that although CGPANNs performed
reasonably well they were not as good as many other methods. There is an oddity
here, as on one particular dataset (breast cancer) CGPANNs were compared with
published results for 31 other machine learning papers [103] and CGPANNs proved
to give better results than 21 other techniques. It is not clear why CGPANNs appear
not to perform so well on classification problems. Clearly, this issue needs further
investigation.

Various other types of ANNs have been evolved using CGP including convolu-
tional ANNs [99] and wavelet ANNs [47, 50]. There is now a growing literature on
CGPANNs and they have been applied to many other applications including finan-
cial [130],medical [1–4], client prediction [5], load forecasting [41, 42, 45], internet
traffic estimation [44] and signal reconstruction [51].

Other promising areas of application of CGP are in multi-step forecasting [15],
and cryptography [75, 76]. Also further discussion of CGP applications is presented
in [62].

9 � Comprehensibility of CGP solutions

CGP phenotypes are often very small and interpretable, this is partly connected
to the bias that CGP has towards small programs (see discussion in Sect. 4). This
often means that CGP programs can be understood and offer insights and under-
standing into problem features and aspects that can be interesting and useful at the
application level. This was seen in the small size of the object recognition filters
(see Sect. 8), data classifiers [23], the understandable successful Atari game-play-
ing strategies found by Wilson et al. [125] and the usefulness of CGP interpreta-
ble results to medical practitioners using the results of ICCGP [56, 58, 59]. CGP
has also been used to create small readable data filters for drug discovery [17] and
understandable intrusion detection programs [6]. This white-box property of CGP
can be highly valuable.

10 � Comparisons of CGP methods with other techniques

CGP has been applied to many application areas and benchmark problems. In
Table 1, we summarize the comparative results published for CGP variants with
other methods. The fourth column gives evidence for the high performance of CGP
techniques. This is either by the ratio of minimum computational effort of tree-based
GP (TGP) to CGP (above 1 means CGP is superior), or performance ranking com-
pared with other machine learning techniques, or by type of medal received at the
annual human competitive workshop at the GECCO conference.7 CGP clearly excels
in many domains but particularly in optimised circuits, image processing, classifica-
tion, reinforcement-learning, time-series prediction and sequence induction.

7  http://www.human​-compe​titiv​e.org/award​s.

http://www.human-competitive.org/awards

156	 Genetic Programming and Evolvable Machines (2020) 21:129–168

1 3

Ta
bl

e 
1  

C
om

pa
ra

tiv
e

pe
rfo

rm
an

ce
 o

f s
om

e
C

G
P

va
ria

nt
s w

ith
 o

th
er

 te
ch

ni
qu

es

Ty
pe

 o
f C

G
P

C
om

pu
ta

tio
na

l p
ro

bl
em

C
om

pa
re

d
w

ith
Sp

ee
d-

up
, r

an
ki

ng
, e

vi
de

nc
e

St
an

da
rd

Ev
en

-5
 p

ar
ity

 [6
5]

TG
P

13
.6

4
A

pp
ro

x.
 c

irc
ui

ts
 [9

]
–

B
ro

nz
e

20
18

A
pp

ro
x.

 c
irc

ui
ts

 [1
16

]
–

G
ol

d
20

15
B

en
t c

irc
ui

ts
 [3

0]
–

B
ro

nz
e

20
14

O
pt

im
is

ed
 c

irc
ui

ts
 [1

15
]

–
Si

lv
er

 2
01

1
Im

pu
ls

e
bu

rs
t n

oi
se

 [8
8]

6
ty

pe
s o

f c
on

ve
nt

io
na

l m
ed

ia
n

fil
te

r
co

nv
en

tio
na

l m
ed

ia
n

fil
te

r
H

ig
he

st
PS

N
R

a in
 1

2/
15

 im
ag

es
Im

ag
e

no
is

e
re

co
ve

ry
 [8

8]
Su

pe
rio

r M
D

PP
b in

 a
ll

ca
se

s
M

od
ul

ar
 [1

23
]

Ev
en

-6
 p

ar
ity

TG
P

1.
37

Se
xt

ic
 p

ol
yn

om
ia

l r
eg

r.
TG

P
2.

16
Q

ui
nt

ic
 p

ol
yn

om
ia

l r
eg

r.
TG

P
33

.4
3

La
w

n
m

ow
er

 (s
iz

e
=

 9
6)

TG
P

12
.5

H
IF

F
fu

nc
tio

n
G

A
71

.0
IC

C
G

P
[5

7]
Pa

rk
in

so
n’

s d
is

ea
se

 d
ys

ki
ne

si
a

pr
ed

. m
od

el
–

G
ol

d
m

ed
al

SM
C

G
P

[2
6]

Ev
en

-7
 p

ar
ity

TG
P

4.
54

M
ix

ed
-ty

pe
 [2

3]
C

an
ce

r c
la

ss
ifi

ca
tio

n
11

 m
et

ho
ds

1s
t

Ph
on

em
e

cl
as

si
fic

at
io

n
9

m
et

ho
ds

7t
h

D
ia

be
te

s c
la

ss
ifi

ca
tio

n
12

 m
et

ho
ds

4t
h

H
ea

rt
cl

as
si

fic
at

io
n

5
m

et
ho

ds
5t

h
Re

cu
rr

en
t [

10
9]

Fi
bo

na
cc

i s
er

ie
s i

nd
uc

tio
n

6
m

et
ho

ds
1s

t
PC

G
P

[1
25

]
A

ta
ri

ga
m

e
str

at
eg

y
56

 g
am

es
9

m
et

ho
ds

1s
t o

n
9

ga
m

es

157

1 3

Genetic Programming and Evolvable Machines (2020) 21:129–168	

Ta
bl

e 
1  

(c
on

tin
ue

d)

Ty
pe

 o
f C

G
P

C
om

pu
ta

tio
na

l p
ro

bl
em

C
om

pa
re

d
w

ith
Sp

ee
d-

up
, r

an
ki

ng
, e

vi
de

nc
e

C
G

PA
N

N
 [1

03
, 1

11
]

La
se

r t
im

e-
se

rie
s

9
m

et
ho

ds
1s

t

M
ac

ke
y-

gl
as

s t
im

e-
se

rie
s

9
m

et
ho

ds
1s

t

Su
ns

po
t t

im
e-

se
rie

s
9

m
et

ho
ds

1s
t

Po
le

-b
al

an
ci

ng
13

 m
et

ho
ds

4t
h

A
rm

-th
ro

w
in

g
3

m
et

ho
ds

1s
t

M
on

ks
 c

la
ss

ifi
ca

tio
n

31
 m

et
ho

ds
9t

h

B
re

as
t c

an
ce

r [
4]

 c
la

ss
ifi

ca
tio

n
21

 m
et

ho
ds

6t
h

C
lie

nt
 re

qu
es

ts
 fo

r [
5]

 re
so

ur
ce

 a
llo

ca
tio

n
11

 m
et

ho
ds

1s
t

Fo
re

ig
n

cu
rr

en
cy

 e
xc

ha
ng

e
ra

te
 p

re
di

ct
io

n
[1

30
]

8
m

et
ho

ds
1s

t

El
ec

tri
ca

l l
oa

d
fo

re
ca

sti
ng

 [4
2]

8
m

et
ho

ds
1s

t

Ve
ry

 sh
or

t t
er

m
 lo

ad
 fo

re
ca

sti
ng

 [4
5]

10
 m

et
ho

ds
1s

t

A
ud

io
 si

gn
al

 re
co

ns
tru

ct
io

n
[5

1]
8

m
et

ho
ds

1s
t

a  Pe
ak

 si
gn

al
 to

 n
oi

se
 ra

tio
b  M

ea
n

di
ffe

re
nc

e
pe

r p
ix

el

158	 Genetic Programming and Evolvable Machines (2020) 21:129–168

1 3

11 � Software

CGP implementations are available in a number of languages: C, C++, Java, Mat-
lab, Python, Julia.8 The three most extensive packages are described below.

A cross-platform, open source, extensive and extensible software library9 has
been written in C by Andrew Turner [106]. The package includes standard and
recurrent CGP including Artificial Neural Networks. It has been designed to be sim-
ple to use and adapt. It defines a well documented CGP Application Programming
Interface (API). This means that the user does not need to understand or edit the
underlying implementation in order to use the CGP library. Also users can bene-
fit from backwards compatible updates to the library. A compiled library has the
advantage that it can be used natively by the C and C++ programming languages
but also imported into other languages including Python. The CGP library can also
be compiled for a wide range of operating systems as it only depend upon standard
C libraries.

Differentiable CGP [33] is available in C++ and Python.10 It includes examples
and tutorials on a number of problem types.

Recently, a freely downloadable flexible toolbox called CGP4Matlab11 has been
developed [73] that allows CGP to be run within MATLAB. The toolbox is par-
ticularly suited to signal and image processing. As a demonstration Miragaia et al.
used the toolbox for pitch estimation and obtained results comparable with the
state-of-the-art.

12 � Open questions and issues

We discuss a number of ideas, questions and open issues that are worthy of fur-
ther investigation. It is very important when new algorithms and methods are pro-
posed that they are evaluated on suites of different computational problems using
benchmarks recommended by the wider research community. At present although
the many operators and algorithmic variants look promising and interesting, further
investigation is required to establish whether they have general advantages. Con-
ducting experiments on the basis of both a fixed number of fitness evaluations and
a fixed budget of active nodes processed appears offer promise for fair comparisons
with different parameters or methods. Indeed, this could be adopted generally in the
GP community.

10  http://dario​izzo.githu​b.io/d-CGP/index​.html.
11  https​://githu​b.com/tiago​inaci​o/cgp4m​atlab​.

8  carte​siang​p.com.
9  http://www.cgpli​brary​.co.uk/files​2/About​-txt.html.

http://darioizzo.github.io/d-CGP/index.html
https://github.com/tiagoinacio/cgp4matlab
http://cartesiangp.com
http://www.cgplibrary.co.uk/files2/About-txt.html

159

1 3

Genetic Programming and Evolvable Machines (2020) 21:129–168	

12.1 � Modularity

The design of an effective form of modularity in CGP is still an open question.
Although, Koza showed that automatically defined functions were very useful in
tree-based GP and particularly so in harder computational problems [54]. Their
usefulness in CGP is less clear. Since CGP encodes graphs, nodes can be multiply
used, perhaps this makes independent modules less necessary. We have already
discussed a form of multichromosome CGP in which the outputs of independent
secondary chromosomes can be used by a primary chromosome. This links with
the idea of modules as one could easily view the secondary chromosomes as pos-
sible modules. It will be interesting to see if this improves the efficiency of CGP
on a range of computational problems.

12.2 � Representation

The way CGP programs are represented in a genotype is an important issue. We
have examined a number of these discussed in the literature. Since RVCGP and
PCGP are more general than standard CGP they both look promising to investi-
gate in much more detail. They allow types of mutation and crossover that are
difficult to express in standard integer-based CGP. The addition of evolvable node
positions in PCGP is an interesting aspect that requires further investigation.

12.3 � Mutation

Mutation is extremely important in CGP. More sophisticated mutation opera-
tors that take account of the presence of inactive nodes appear to be more effec-
tive (i.e. Goldman and Punch’s Reorder and Kalkreuth’s insertion and deletion).
Mutation operators that eliminate the length bias and the non-uniform location
of inactive nodes also have the promise of being more effective. Making node
outputs on the right of nodes accessible, via mutation, to nodes on the left (even
when no recurrence is desired) as discussed in Sect. 3.10 is clearly important. The
merits of mutating different numbers of genes in the generation of mutational off-
spring (as used by Izzo, see Sect. 3.9) needs also to be investigated. Turner et al.
showed that never mutating explicitly inactive genes significantly worsens the
evolutionary search compared with allowing mutations to both active and inac-
tive genes [110]. They also speculated that having two different mutation rates
for inactive and active genes may be more effective than a single rate, indeed if
the role of inactive material is solely to provide mutation with a supply of purely
random alterations then a high inactive mutation rate may lead to a more effective
search. Finally, in biology there are many forms of mutation (e.g. gene transpos-
ing and duplication), perhaps this may inspire new types of mutation in CGP.

160	 Genetic Programming and Evolvable Machines (2020) 21:129–168

1 3

12.4 � Crossover

Crossover is still very underdeveloped in CGP, this may partly be because the muta-
tion of genotypes with inactive genes already allows mutation to make both small
changes and large changes. Nevertheless, Poli suggested a number of forms of
crossover for PDGP which could be transferred and investigated in CGP. In addition
multi-chromosome crossover looks like a good candidate to investigate. Kalkreuth’s
crossover operators need to be evaluated on a wide range of problems.

12.5 � Weighted CGP

We saw that in differentiable CGP connections were augmented with weights. This
begs the following question. How well would weighted CGP work in comparison
with unweighted? Weighted CGP could be seen as a generalization of artificial neu-
ral networks where node functions could be chosen from a much larger set of math-
ematical functions (possibly including neural functions also). Of course, evolved
solutions using such a large set may make these solutions uninterpretable rather like
standard neural networks, however weighted GP has not been investigated in the
literature. It remains to be seen whether it will increase the efficiency in evolving
solutions to computational problems. However, introducing weights would certainly
negatively impact on the comprehensibility of CGP evolved solutions.

12.6 � Applying CGP to general optimisation problems

Genetic programming and evolutionary algorithms are usually applied to different
classes of computational problems. Since CGP allows multiple outputs, these outputs
could be interpreted as a potential solution to a computational problem. This would
mean that CGP could be applied to many kinds of optimisation problems not tackled
with GP. Using a function set of mathematical operations, it would be possible to use it
to generate from a set of constant inputs, a vector of real-valued numbers. Alternatively,
one could use CGP to generate a new solution vector from a previous one. The ele-
ments of these vectors could be mapped into the required ranges for many fixed length
search problems. This would allow CGP to be used as a search algorithm for many
problems where evolutionary algorithms are currently used (e.g. Function optimisa-
tion, TSP, Bin-packing etc). This is interesting as one would be evolving programs to
generate vectors rather than evolving the vectors directly. This might have advantages,
for instance, some vector elements could be functions of each other (thus indicating a
lower dimensional problem) something that is difficult to discover using standard evo-
lutionary algorithms. In addition, evolution would be working in a completely different
genotype space which may have advantages. This idea has already received preliminary
investigation for TSP12 [11] and function optimisation [68].

12  To obtain a permutation from an indexed vector of real-numbers one merely has to sort the numbers
and the re-arranged indexes form a permutation.

161

1 3

Genetic Programming and Evolvable Machines (2020) 21:129–168	

12.7 � CGP encoded ANNs

Using backpropagation to adjust weights of CGP encoded ANNs has the potential to
produce compact highly optimal neural networks. Of course, this could be computa-
tionally very expensive. It would be interesting to investigate hybrid algorithms using
standard CGP search together with phases of local search with backpropagation. One
of the advantanges of using CGP to encode and evolve neural networks is that discover-
ies that make CGP more efficient have the potential to make CGPANNs a more effi-
cient technique. In principle, the beneficial relationship could work the other way too.
In the light of Turner’s findings on CGPANNs for classification, further investigation
needs to be carried to discover the best way of doing classification with CGPANNs.
Another interesting possibility is to use the techniques of module acquisition to create
modular CGPANNs. Finally, using SMCGP and choosing all primitive functions to be
neural (i.e. sigmoid or hyperbolic tangent) would lead to self-modifying ANNs [67].
This would mean that one could evolve CGPANNs that could modify themselves pro-
ducing a sequence of neural networks each solving a different problem.

12.8 � Search algorithms and real‑Valued CGP

One of the advantages of the real-valued CGP representation is that it could be evolved
using evolutionary optimisation solvers such as CMAES [21] and other approaches.
It allows many methods found to be useful in the genetic and evolutionary algo-
rithms community to be brought to bear on the evolution of programs. Indeed, even
CGPANNs could be represented using RVCGP.

12.9 � Evolving “brain‑like” multiple problem solvers

CGP has been used to produce programs that develop new types of ANNs, these
are referred to as developmental ANNs [40, 43, 72]. Khan et al. evolved genotypes
that produced a dynamic neural network in which neurons, connections and weights
changed during problem solving [40, 43]. They applied the technique to the evolution
of intelligent agents, checkers and maze solving. Recently, Miller et al. have simplified
the model in [43] so that two evolved programs (one for a neuron soma and the other
for the dendrite) can solve multiple problems simultaneously [72]. The eventual aim is
the moonshot challenge of producing programs that can build an artificial brain that can
learn for itself and solve an arbitrary number of different problems.

13 � Conclusion

We have examined the current status of Cartesian genetic programming and dis-
cussed a number of different or enhanced representations of the genotype. We also
looked at issues with, and current thinking on mutation, crossover and the evolution-
ary algorithms used to evolve programs. We have made many suggestions for future
investigations that may lead to more efficient CGP techniques in the future. CGP is

162	 Genetic Programming and Evolvable Machines (2020) 21:129–168

1 3

in a healthy state with an increasing number of researchers taking it up, improving
and analyzing it, and applying it to new classes of problems.

Acknowledgements  Thanks to the anonymous reviewers and to Dennis Wilson for their helpful
comments.

Open Access  This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

	 1.	 A.M. Ahmad, G.M. Khan, Bio-signal processing using Cartesian genetic programming evolved
artificial neural network (CGPANN), in 2012 10th International Conference on Frontiers of Infor-
mation Technology (FIT) (IEEE, 2012), pp. 261–268

	 2.	 A.M. Ahmad, G.M. Khan, S.A. Mahmud, Classification of arrhythmia types using Cartesian
genetic programming evolved artificial neural networks, in Engineering Applications of Neural
Networks, ed. by L. Iliadis, C. Jayne (Springer, Berlin, 2013), pp. 282–291

	 3.	 A.M. Ahmad, G.M. Khan, S.A. Mahmud, Classification of mammograms using Cartesian genetic
programming evolved artificial neural networks, in AIAI, IFIP Advances in Information and Com-
munication Technology, vol. 436 (Springer, 2014), pp. 203–213

	 4.	 A.M. Ahmad, G.M. Khan, S.A. Mahmud, J.F. Miller, Breast cancer detection using Cartesian
genetic programming evolved artificial neural networks, in Proceedings of the 14th Annual Confer-
ence on Genetic and Evolutionary Computation (2012), pp. 1031–1038

	 5.	 J. Ali, F. Zafari, G.M. Khan, S.A. Mahmud, Future clients’ requests estimation for dynamic
resource allocation in cloud data center using CGPANN, in 2013 12th International Conference on
Machine Learning and Applications (ICMLA), vol. 2 (IEEE, 2013), pp. 331–334

	 6.	 H. Alyasiri, J. Clark, D. Kudenko, Applying Cartesian genetic programming to evolve rules for
intrusion detection system, in Proceedings of the 10th International Joint Conference on Computa-
tional Intelligence—Volume 1: IJCCI (SciTePress, 2018), pp. 176–183

	 7.	 T. Atkinson, D. Plump, S. Stepney, Evolving graphs by graph programming, in Proceedings of the
European Conference on Genetic Programming, LNCS, vol. 10781 (2018), pp. 35–51

	 8.	 X. Cai, S.L. Smith, A.M. Tyrrell, Positional independence and recombination in Cartesian Genetic
programming, in European Conference on Genetic Programming, LNCS, vol. 3905 (2006), pp.
351–360

	 9.	 M. Češka, J. Matyáš, V. Mrazek, L. Sekanina, Z. Vašíček, T. Vojnar, Approximating complex
arithmetic circuits with formal error guarantees: 32-bit multipliers accomplished, in Proceedings of
the 36th International Conference on Computer-Aided Design, ICCAD ’17 (IEEE Press, 2017), pp.
416–423

	 10.	 J. Clegg, J.A. Walker, J.F. Miller, A new crossover technique for Cartesian genetic programming,
in Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation (ACM,
2007), pp. 1580–1587

	 11.	 K.D. Clegg, J.F. Miller, K. Massey, M. Petty, Travelling salesman problem solved ‘in materio’ by
evolved carbon nanotube device, in Parallel Problem Solving from Nature—PPSN XIII (Springer,
2014), pp. 692–701

	 12.	 S. De, M. Babu, Genomic neighbourhood and the regulation of gene expression. Curr. Opin. Cell
Biol. 22, 326–333 (2010)

	 13.	 K. Deb, S. Agrawal, A. Pratap, T. Meyarivan, A fast elitist non-dominated sorting genetic algo-
rithm for multi-objective optimization: NSGA-II, in Parallel Problem Solving from Nature PPSN
VI, LNCS, vol. 1917 (2000), pp. 849–858

	 14.	 M. Drahošová, L. Sekanina, M. Wiglasz, Adaptive fitness predictors in coevolutionary Cartesian
genetic programming. Evolut. Comput. 26(4), 1–27 (2018)

http://creativecommons.org/licenses/by/4.0/

163

1 3

Genetic Programming and Evolvable Machines (2020) 21:129–168	

	 15.	 I. Dzalbs, T. Kalganova, Multi-step ahead forecasting using Cartesian genetic programming, in
Inspired by Nature: Essays PresInspired by Nature: Essays Presented to Julian F. Miller on the
Occasion of his 60th Birthday, ed. by S. Stepney, A. Adamatzky (Springer, Berlin, 2018), pp.
235–246

	 16.	 Z. Gajda, L. Sekanina, An efficient selection strategy for digital circuit evolution, in Evolvable Sys-
tems: From Biology to Hardware, LNCS, vol. 6274 (2010), pp. 13–24

	 17.	 A.B. Garmendia-Doval, J.F. Miller, S.D. Morley, Cartesian genetic programming and the post
docking filtering problem, in Genetic Programming Theory and Practice II, ed. by U.M. O’Reilly,
T. Yu, R. Riolo, B. Worzel (Springer, New York, 2005), pp. 225–244

	 18.	 B.W. Goldman, W.F. Punch, Length bias and search limitations in Cartesian genetic programming,
in Proceeding of the Fifteenth Annual Conference on Genetic and Evolutionary Computation Con-
ference (ACM, 2013), pp. 933–940

	 19.	 B.W. Goldman, W.F. Punch, Reducing wasted evaluations in Cartesian genetic programming, in
Proceedings of the European Conference on Genetic Programming, vol. 7831 (Springer, 2013), pp.
61–72

	 20.	 B.W. Goldman, W.F. Punch, Analysis of Cartesian genetic programming’s evolutionary mecha-
nisms. IEEE Trans. Evolut. Comput. 19(3), 359–373 (2015)

	 21.	 N. Hansen, A. Ostermeier, Completely derandomized self-adaptation in evolution strategies. Evo-
lut. Comput. 9(2), 159–195 (2001)

	 22.	 S. Harding, W. Banzhaf, Fast genetic programming on GPUS, in Proceedings of the European
Conference on Genetic Programming, LNCS, vol. 4445 (2007), pp. 90–101

	 23.	 S. Harding, V. Graziano, J. Leitner, J. Schmidhuber, MT-CGP: mixed type Cartesian genetic pro-
gramming, in Proceedings of the Fourteenth International Conference on Genetic and Evolution-
ary Computation Conference (ACM, 2012), pp. 751–758

	 24.	 S. Harding, J. Leitner, J. Schmidhuber, Genetic Programming Theory and Practice X. Cartesian
Genetic Programming for Image Processing (Springer, Berlin, 2013), pp. 31–44

	 25.	 S. Harding, J.F. Miller, Cartesian Genetic Programming on the GPU (Springer, Berlin, 2013), pp.
249–266

	 26.	 S. Harding, J.F. Miller, W. Banzhaf, Developments in Cartesian genetic programming: self-modi-
fying CGP. Genet. Program. Evolvable Mach. 11(3–4), 397–439 (2010)

	 27.	 S. Harding, J.F. Miller, W. Banzhaf, Self modifying Cartesian genetic programming: finding algo-
rithms that calculate pi and e to arbitrary precision, in Proceedings of the 12th Annual Conference
on Genetic and Evolutionary Computation (ACM, 2010), pp. 579–586

	 28.	 S.L. Harding, J.F. Miller, W. Banzhaf, Self-modifying Cartesian genetic programming, in Proceed-
ings of the 9th Annual Conference on Genetic and Evolutionary Computation, GECCO ’07 (2007),
pp. 1021–1028

	 29.	 S.L. Harding, J.F. Miller, W. Banzhaf, Self-Modifying Cartesian Genetic Programming (Springer,
Berlin, 2011), pp. 101–124

	 30.	 R. Hrbacek, V. Dvorak, Bent function synthesis by means of Cartesian genetic programming,
in Parallel Problem Solving from Nature—PPSN XIII, ed. by T. Bartz-Beielstein, J. Branke, B.
Filipič, J. Smith (Springer, Berlin, 2014), pp. 414–423

	 31.	 R. Hrbacek, M. Šikulová, Coevolutionary Cartesian genetic programming in FPGA, in Proceed-
ings of the Conference on Artificial Life (2013), pp. 431–438

	 32.	 J. Husa, R. Kalkreuth, A comparative study on crossover in Cartesian genetic programming, in
Proceedings of the European Conference on Genetic Programming, LNCS, vol. 10781 (2018), pp.
203–219

	 33.	 D. Izzo, F. Biscani, A. Mereta, Differentiable genetic programming, in Proceedings of the Euro-
pean Conference on Genetic Programming, Lecture Notes in Computer Science, vol. 10196 (2017),
pp. 35–51

	 34.	 R. Kalkreuth, Towards Advanced Phenotypic Mutations in Cartesian Genetic Programming (2018).
CoRR arXiv:abs/1803.06127

	 35.	 R. Kalkreuth, G. Rudolph, A. Droschinsky, A new subgraph crossover for Cartesian genetic pro-
gramming, in Proceedings of the European Conference Genetic Programming, LNCS, vol. 10196
(2017), pp. 294–310

	 36.	 R. Kalkreuth, G. Rudolph, J. Krone, Improving convergence in Cartesian genetic programming
using adaptive crossover, mutation and selection, in 2015 IEEE Symposium Series on Computa-
tional Intelligence (2015), pp. 1415–1422

164	 Genetic Programming and Evolvable Machines (2020) 21:129–168

1 3

	 37.	 P. Kaufmann, R. Kalkreuth, Parametrizing Cartesian genetic programming: an empirical study, in
KI 2017: Advances in Artificial Intelligence, LNCS, vol. 10505 (2017), pp. 316–322

	 38.	 P. Kaufmann, M. Platzner, Advanced techniques for the creation and propagation of modules in
Cartesian genetic programming, in Proceedings of the Conference on Genetic and Evolutionary
Computation (2008), pp. 1219–1226

	 39.	 P. Kaufmann, M. Platzner, Combining local and global search: a multi-objective evolutionary algo-
rithm for Cartesian genetic programming, in Inspired by Nature: Essays Presented to Julian F.
Miller on the Occasion of his 60th Birthday, ed. by S. Stepney, A. Adamatzky (Springer, Berlin,
2018), pp. 175–194

	 40.	 G.M. Khan, Evolution of Artificial Neural Development—In Search of Learning Genes, Studies in
Computational Intelligence, vol. 725 (Springer, Berlin, 2018)

	 41.	 G.M. Khan, S. Khan, F. Ullah, Short-term daily peak load forecasting using fast learning neural
network, in 2011 11th International Conference on Intelligent Systems Design and Applications
(ISDA) (IEEE, 2011), pp. 843–848

	 42.	 G.M. Khan, A.R. Khattak, F. Zafari, S.A. Mahmud, Electrical load forecasting using fast learn-
ing recurrent neural networks, in The 2013 International Joint Conference on Neural Networks
(IJCNN) (IEEE, 2013), pp. 1–6

	 43.	 G.M. Khan, J.F. Miller, D.M. Halliday, Evolution of Cartesian genetic programs for development
of learning neural architecture. Evolut. Comput. 19(3), 469–523 (2011)

	 44.	 G.M. Khan, F. Ullah, S.A. Mahmud, MPEG-4 internet traffic estimation using recurrent CGPANN,
in Engineering Applications of Neural Networks, ed. by L. Iliadis, H. Papadopoulos, C. Jayne
(Springer, Berlin, 2013), pp. 22–31

	 45.	 G.M. Khan, F. Zafari, S.A. Mahmud, Very short term load forecasting using Cartesian genetic pro-
gramming evolved recurrent neural networks (CGPRNN), in 2013 12th International Conference
on Machine Learning and Applications (ICMLA), vol. 2 (IEEE, 2013), pp. 152–155

	 46.	 M.M. Khan, A.M. Ahmad, G.M. Khan, J.F. Miller, Fast learning neural networks using Cartesian
genetic programming. Neurocomputing 121, 274–289 (2013)

	 47.	 M.M. Khan, S.K. Chalup, A. Mendes, Parkinson’s disease data classification using evolvable wave-
let neural networks, in Proceedings of Second Australasian Conference on Artificial Life and Com-
putational Intelligence (2016), pp. 113–124

	 48.	 M.M. Khan, G.M. Khan, J.F. Miller, Evolution of neural networks using Cartesian genetic pro-
gramming, in Proceedings of the IEEE Congress on Evolutionary Computation, CEC (2010), pp.
1–8

	 49.	 M.M. Khan, G.M. Khan, J.F. Miller, Evolution of optimal ANNs for non-linear control problems
using Cartesian genetic programming, in Proceedings of the 2010 International Conference on
Artificial Intelligence (2010), pp. 339–346

	 50.	 M.M. Khan, A. Mendes, P. Zhang, S.K. Chalup, Evolving multi-dimensional wavelet neural net-
works for classification using Cartesian genetic programming. Neurocomputing 247, 39–58 (2017)

	 51.	 N.M. Khan, G.M. Khan, Audio signal reconstruction using Cartesian genetic programming evolved
artificial neural network (CGPANN), in ICMLA (IEEE, 2017), pp. 568–573

	 52.	 K. Knezevic, S. Picek, J.F. Miller, Amplitude-oriented mixed-type CGP classification, in Proceed-
ings of the Genetic and Evolutionary Computation Conference Companion (2017), pp. 1415–1418

	 53.	 J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selec-
tion (MIT Press, Cambridge, 1992)

	 54.	 J.R. Koza, Genetic Programming II: Automatic Discovery of Reusable Programs (MIT Press,
Cambridge, 1994)

	 55.	 J. Leitner, S. Harding, A. Förster, J. Schmidhuber, Mars terrain image classification using Car-
tesian genetic programming, in 11th International Symposium on Artificial Intelligence, Robotics
and Automation in Space (i-SAIRAS) (2012)

	 56.	 M. Lones, J.E. Alty, P. Duggan-Carter, A.J. Turner, D.R. Jamieson, S.L. Smith, Classification and
characterisation of movement patterns during levodopa therapy for Parkinson’s disease, in Pro-
ceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolution-
ary Computation, GECCO Comp ’14 (2014), pp. 1321–1328

	 57.	 M.A. Lones, J.E. Alty, J. Cosgrove, P. Duggan-Carter, S. Jamieson, R.F. Naylor, A.J. Turner, S.L.
Smith, A new evolutionary algorithm-based home monitoring device for Parkinson’s dyskinesia. J.
Med. Syst. 41(11), 176 (2017)

165

1 3

Genetic Programming and Evolvable Machines (2020) 21:129–168	

	 58.	 M.A. Lones, S.L. Smith, J.E. Alty, S.E. Lacy, K.L. Possin, D.S. Jamieson, A.M. Tyrrell, Evolving
classifiers to recognize the movement characteristics of Parkinson’s disease patients. IEEE Trans.
Evolut. Comput. 18(4), 559–576 (2014)

	 59.	 M.A. Lones, S.L. Smith, A.T. Harris, A.S. High, S.E. Fisher, D.A. Smith, J. Kirkham, Discriminat-
ing normal and cancerous thyroid cell lines using implicit context representation Cartesian genetic
programming, in IEEE Congress on Evolutionary Computation (2010), pp. 1–6

	 60.	 M.A. Lones, A.M. Tyrrell, Biomimetic representation with enzyme genetic programming. Genet.
Program. Evolvable Mach. 3(3), 315–315 (2002)

	 61.	 M. Lopez-Ibanez, J. Dubois-Lacoste, L.P. Cáceres, M. Birattari, T. Stützle, The irace package:
iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–58 (2016)

	 62.	 A. Manazir, K. Raza, Recent developments in Cartesian genetic programming and its variants.
ACM Comput. Surv. 51(6), 122:1–122:29 (2019)

	 63.	 A. Meier, M. Gonter, R. Kruse, Accelerating convergence in Cartesian genetic programming by
using a new genetic operator, in Proceeding of the Fifteenth Annual Conference on Genetic and
Evolutionary Computation Conference (ACM, 2013), pp. 981–988

	 64.	 N. Milano, P. Pagliuca, S. Nolfi, Robustness, Evolvability and Phenotypic Complexity: Insights
from Evolving Digital Circuits (2017). arXiv:1712.04254

	 65.	 J.F. Miller, An empirical study of the efficiency of learning Boolean functions using a Cartesian
genetic programming approach, in Proceedings of the Genetic and Evolutionary Computation
Conference, vol. 2 (1999), pp. 1135–1142

	 66.	 J.F. Miller, What bloat? Cartesian genetic programming on Boolean problems, in 2001 Genetic
and Evolutionary Computation Conference Late Breaking Papers (2001), pp. 295–302

	 67.	 J.F. Miller, Chapter 8: Neuro-centric and holocentric approaches to the evolution of develop-
mental neural networks, in Growing Adaptive Machines: Combining Development and Learn-
ing in Artificial Neural Networks, ed. by T. Kowaliw, N. Bredeche, R. Doursat (Springer, Berlin,
2014), pp. 227–249

	 68.	 J.F. Miller, M. Mohid, Function optimization using Cartesian genetic programming, in Pro-
ceeding of the fifteenth annual conference companion on Genetic and evolutionary computation
conference companion (ACM, 2013), pp. 147–148

	 69.	 J.F. Miller, S. Smith, Redundancy and computational efficiency in Cartesian genetic program-
ming. IEEE Trans Evolut. Comput. 10(2), 167–174 (2006)

	 70.	 J.F. Miller, P. Thomson, Cartesian genetic programming, in Proceedings of the European Con-
ference on Genetic Programming, vol. 1820 (Springer, 2000), pp. 121–132

	 71.	 J.F. Miller, P. Thomson, T. Fogarty, Chapter 6: Designing electronic circuits using evolutionary
algorithms. Arithmetic circuits: a case study, in Genetic Algorithms and Evolution Strategies in
Engineering and Computer Science: Recent Advancements and Industrial Applications, ed. by
D. Quagliarella, J. Periaux, C. Poloni, G. Winter (Wiley, Hoboken, 1997)

	 72.	 J.F. Miller, D.G. Wilson, S. Cussat-Blanc, Chapter 8: Evolving developmental programs that
build neural networks for solving multiple problems, in Genetic Programming Theory and Prac-
tice XVI, ed. by W. Banzhaf, L. Spector, L. Sheneman (Springer, Berlin, 2019), pp. 137–176

	 73.	 R. Miragaia, G. Reis, F. Fernandéz, T. Inácio, C. Grilo, CGP4Matlab—a Cartesian genetic pro-
gramming MATLAB toolbox for audio and image processing, in Applications of Evolutionary
Computation, LNCS, vol. 10784 (Springer, 2018), pp. 455–471

	 74.	 P.C.D. Paris, E.C. Pedrino, M.C. Nicoletti, Automatic learning of image filters using Cartesian
genetic programming. Integr. Comput. Aided Eng. 22(2), 135–151 (2015)

	 75.	 S. Picek, C. Carlet, S. Guilley, J.F. Miller, D. Jakobovic, Evolutionary algorithms for Boolean
functions in diverse domains of cryptography. Evolut. Comput. 24(4), 667–694 (2016)

	 76.	 S. Picek, D. Jakobovic, J.F. Miller, L. Batina, M. Cupic, Cryptographic Boolean functions.
Appl. Soft Comput. 40(C), 635–653 (2016)

	 77.	 R. Poli, Parallel distributed genetic programming. Technical Report CSRP-96-15, Department
of Computer Science, University of Birmingham, UK (1996)

	 78.	 R. Poli, Some steps towards a form of parallel distributed genetic programming, in Proceedings
of the First On-line Workshop on Soft Computing (1996), pp. 290–295

	 79.	 R. Poli, Parallel distributed genetic programming, in New Ideas in Optimization, ed. by M.
Dorigo, D. Corne, F.W. Glover (McGraw-Hill Ltd., London, 1999), pp. 403–432

	 80.	 R. Poli, W.B. Langdon, McN.F. Phee, A field guide to genetic programming (2008). Published
via http://lulu.com and freely available at http://www.gp-field​-guide​.org.uk. Accessed Apr 2019

http://lulu.com
http://www.gp-field-guide.org.uk

166	 Genetic Programming and Evolvable Machines (2020) 21:129–168

1 3

	 81.	 J. Pujol, R. Poli, Evolving the topology and the weights of neural networks using a dual repre-
sentation. Appl. Intell. 8(1), 73–84 (1998)

	 82.	 N.J. Radcliffe, Equivalence class analysis of genetic algorithms. Complex Syst. 5, 183–205
(1991)

	 83.	 I. Rechenberg, Evolutionsstrategie - Optimierung technischer Systeme nach Prinzipien der biol-
ogischen Evolution. Ph.D. Thesis, Technical University of Berlin, Germany (1971)

	 84.	 M.V. Rockman, S.S. Skrovanek, L. Kruglyak, Selection at linked sites shapes heritable pheno-
typic variation in C. elegans. Science 330(6002), 372–376 (2010)

	 85.	 P. Ryser-Welch, Evolving comprehensible and scalable solvers using CGP for solving some real-world
inspired problems. Ph.D. Thesis, Department of Electronic Engineering, University of York (2017).
http://ethes​es.white​rose.ac.uk/19011​/1/final​Thesi​sv3.pdf. Accessed Apr 2019

	 86.	 P. Ryser-Welch, J.F. Miller, J. Swan, M.A. Trefzer, Iterative Cartesian genetic programming: creating
general algorithms for solving travelling salesman problems, in Proceedings of the European Confer-
ence on Genetic Programming, LNCS, vol. 9594 (2016), pp. 294–310

	 87.	 L. Sekanina, Image filter design with evolvable hardware, in Applications of Evolutionary Computing,
LNCS, vol. 2279, ed. by S. Cagnoni, J. Gottlieb, E. Hart, M. Middendorf, G.R. Raidl (Springer, Berlin,
2002), pp. 255–266

	 88.	 L. Sekanina, S.L. Harding, W. Banzhaf, T. Kowaliw, Image Processing and CGP (Springer, Berlin,
2011), pp. 181–215

	 89.	 M. Shafique, R. Hafiz, M.U. Javed, S. Abbas, L. Sekanina, Z. Vašíček, V. Mrazek, Adaptive and energy-
efficient architectures for machine learning: challenges, opportunities, and research roadmap, in 2017
IEEE Computer Society Annual Symposium on VLSI (ISVLSI) (2017), pp. 627–632

	 90.	 M. Šikulová, L. Sekanina, Coevolution in Cartesian genetic programming, in Proceedings of the Euro-
pean Conference on Genetic Programming, LNCS, vol. 7244 (2012), pp. 182–193

	 91.	 S. Silva, E. Costa, Dynamic limits for bloat control in genetic programming and a review of past and cur-
rent bloat theories. Genet. Program. Evolvable Mach. 10(2), 141–179 (2009)

	 92.	 D. Simon, Biogeography-based optimization. IEEE Trans. Evolut. Comput. 12, 702–713 (2008)
	 93.	 S.L. Smith, Cartesian genetic programming and its application to medical diagnosis. IEEE Comput.

Intell. Mag. 6(4), 56–67 (2011)
	 94.	 S.L. Smith, P. Gaughan, D.M. Halliday, Q. Ju, N.M. Aly, J.R. Playfer, Diagnosis of Parkinson’s disease

using evolutionary algorithms. Genet. Program. Evolvable Mach. 8(4), 433–447 (2007)
	 95.	 S.L. Smith, S. Leggett, A.M. Tyrrell, An implicit context representation for evolving image processing

filters. Appl. Evolut. Comput. 3449, 407–416 (2005)
	 96.	 S.L. Smith, M.A. Lones, Medical applications of Cartesian genetic programming, in Inspired by Nature:

Essays Presented to Julian F. Miller on the Occasion of his 60th Birthday, ed. by S. Stepney, A.
Adamatzky (Springer, Berlin, 2018), pp. 247–266

	 97.	 S.L. Smith, M.A. Lones, M. Bedder, J.E. Alty, R. Cosgrove, R.J. Maguire, M.E. Pownall, D. Ivanoiu, C.
Lyle, A. Cording, C.J. Elliott, Computational approaches for understanding the diagnosis and treat-
ment of Parkinson’s disease. IET Syst. Biol. 9(6), 226–23 (2015)

	 98.	 S.L. Smith, J.A. Walker, J.F. Miller, Medical Applications of Cartesian Genetic Programming (Springer,
Berlin, 2011), pp. 309–336

	 99.	 M. Suganuma, S. Shirakawa, T. Nagao, A genetic programming approach to designing convolutional
neural network architectures, in Proceedings of the Genetic and Evolutionary Computation Confer-
ence (2017), pp. 497–504

	100.	 H. Tizhoosh, Opposition-based learning: a new scheme for machine intelligence, in Proceedings of
International Conference on Computational Intelligence for Modeling Control and Automation, vol. 1
(2005), pp. 695–701

	101.	 A.J. Turner, Improving crossover techniques in a genetic program. Masters Thesis, Department of
Electronics, University of York (2012). http://www.andre​wjame​sturn​er.co.uk. Accessed Apr 2019

	102.	 A.J. Turner, Evolving artificial neural networks using Cartesian genetic programming. Ph.D. The-
sis, Department of Electronic Engineering, University of York (2017). http://ethes​es.white​rose.
ac.uk/12035​/. Accessed Apr 2019

	103.	 A.J. Turner, J.F. Miller, Cartesian genetic programming encoded artificial neural networks: a compari-
son using three benchmarks, in Proceedings of the Conference on Genetic and Evolutionary Computa-
tion (GECCO-13) (2013), pp. 1005–1012

	104.	 A.J. Turner, J.F. Miller, The importance of topology evolution in neuroevolution: a case study using
Cartesian genetic programming of artificial neural networks, in Research and Development in Intel-
ligent Systems XXX, ed. by M. Bramer, M. Petridis (Springer, Berlin, 2013), pp. 213–226

http://etheses.whiterose.ac.uk/19011/1/finalThesisv3.pdf
http://www.andrewjamesturner.co.uk
http://etheses.whiterose.ac.uk/12035/
http://etheses.whiterose.ac.uk/12035/

167

1 3

Genetic Programming and Evolvable Machines (2020) 21:129–168	

	105.	 A.J. Turner, J.F. Miller, Cartesian genetic programming: Why no bloat?, in Proceedings of the Euro-
pean Conference on Genetic Programming, LNCS, vol. 8599 (2014), pp. 193–204

	106.	 A.J. Turner, J.F. Miller, Introducing a cross platform open source Cartesian genetic programming
library. Genet. Program. Evolvable Mach. 16(1), 83–91 (2014)

	107.	 A.J. Turner, J.F. Miller, NeuroEvolution: the importance of transfer function evolution and heterogene-
ous networks, in Proceedings of the 50th Anniversary Convention of the AISB (2014), pp. 158–165

	108.	 A.J. Turner, J.F. Miller, Recurrent Cartesian genetic programming, in 13th International Conference
on Parallel Problem Solving from Nature (PPSN 2014), LNCS, vol. 8672 (2014), pp. 476–486

	109.	 A.J. Turner, J.F. Miller, Recurrent Cartesian genetic programming applied to famous mathematical
sequences, in Proceedings of the Seventh York Doctoral Symposium on Computer Science & Electron-
ics (2014), pp. 37–46

	110.	 A.J. Turner, J.F. Miller, Neutral genetic drift: an investigation using Cartesian genetic programming.
Genet. Program. Evolvable Mach. 16(4), 531–558 (2015)

	111.	 A.J. Turner, J.F. Miller, Recurrent Cartesian genetic programming of artificial neural networks. Genet.
Program. Evolvable Mach. 18(2), 185–212 (2017)

	112.	 Z. Vašíček, Bridging the gap between evolvable hardware and industry using Cartesian genetic pro-
gramming, in Inspired by Nature: Essays Presented to Julian F. Miller on the Occasion of his 60th
Birthday, ed. by S. Stepney, A. Adamatzky (Springer, Berlin, 2018), pp. 39–55

	113.	 Z. Vašíček, L. Sekanina, Hardware accelerators for Cartesian genetic programming, in Proceedings of
the European Conference on Genetic Programming, LNCS, vol. 4971 (2008), pp. 230–241

	114.	 Z. Vašíček, L. Sekanina, Hardware accelerator of Cartesian genetic programming with multiple fitness
units. Comput. Inform. 29, 1359–1371 (2010)

	115.	 Z. Vašíček, L. Sekanina, Formal verification of candidate solutions for post-synthesis evolutionary
optimization in evolvable hardware. Genet. Program. Evolvable Mach. 12(3), 305–327 (2011)

	116.	 Z. Vašíček, L. Sekanina, Evolutionary approach to approximate digital circuits design. IEEE Trans.
Evolut. Comput. 19(3), 432–444 (2015)

	117.	 Z. Vašíček, L. Sekanina, Evolutionary design of complex approximate combinational circuits. Genet.
Program. Evolvable Mach. 17(2), 169–192 (2016)

	118.	 V.K. Vassilev, J.F. Miller, Embedding landscape neutrality to build a bridge from the conventional to
a more efficient three-bit multiplier circuit, in Proceedings of the Genetic and Evolutionary Computa-
tion Conference (2000), p. 539. http://carte​siang​p.com/julia​n-mille​r. Accessed Apr 2019

	119.	 V.K. Vassilev, J.F. Miller, The advantages of landscape neutrality in digital circuit evolution, in Pro-
ceedings of International Conference on Evolvable Systems, LNCS, vol. 1801 (Springer, 2000), pp.
252–263

	120.	 Z. Vašíček, Cartesian GP in optimization of combinational circuits with hundreds of inputs and thou-
sands of gates, in Proceedings of European Conference on Genetic Programming, LNCS, vol. 9025
(2015), pp. 139–150

	121.	 J.A. Walker, J.A. Hilder, A.M. Tyrrell, Evolving variability-tolerant CMOS designs, in Evolvable
Systems: From Biology to Hardware, LNCS, vol. 5216, ed. by M. Sipper, D. Mange, A. Pérez-Uribe
(Springer, Berlin, 2008), pp. 308–319

	122.	 J.A. Walker, J.F. Miller, Evolution and acquisition of modules in Cartesian genetic programming, in
Proceedings of European Conference on Genetic Programming, vol. 3003 (2004), pp. 187–197

	123.	 J.A. Walker, J.F. Miller, The automatic acquisition, evolution and reuse of modules in Cartesian
genetic programming. IEEE Trans. Evolut. Comput. 12(4), 397–417 (2008)

	124.	 J.A. Walker, K. Völk, S.L. Smith, J.F. Miller, Parallel evolution using multi-chromosome Cartesian
genetic programming. Genet. Program. Evolvable Mach. 10(4), 417–445 (2009)

	125.	 D.G. Wilson, S. Cussat-Blanc, H. Luga, J.F. Miller, Evolving simple programs for playing Atari
games, in Proceedings of the Genetic and Evolutionary Computation Conference (2018), pp. 229–236

	126.	 D.G. Wilson, J.F. Miller, S. Cussat-Blanc, H. Luga, Positional Cartesian Genetic Programming (2018).
arXiv:1810.04119

	127.	 S. Yazdani, J. Shanbehzadeh, Balanced Cartesian genetic programming via migration and opposition-
based learning: application to symbolic regression. Genet. Program. Evolvable Mach. 16(2), 133–150
(2015)

	128.	 T. Yu, J. Miller, Neutrality and the evolvability of Boolean function landscape, in Genetic Program-
ming, Lecture Notes in Computer Science, vol. 2038, ed. by L. Sekanina, T. Hu, N. Lourenço, H. Rich-
ter, P. García-Sánchez (Springer, Berlin, 2001), pp. 204–217

	129.	 T. Yu, J.F. Miller, Through the interaction of neutral and adaptive mutations, evolutionary search finds
a way. Artif. Life 12(4), 525–551 (2006)

http://cartesiangp.com/julian-miller

168	 Genetic Programming and Evolvable Machines (2020) 21:129–168

1 3

	130.	 F. Zafari, G.M. Khan, M. Rehman, S.A. Mahmud, Evolving recurrent neural network using Cartesian
genetic programming to predict the trend in foreign currency exchange rates. Appl. Artif. Intell. 28(6),
597–628 (2014)

	131.	 E. Zitzler, M. Laumanns, L. Thiele, SPEA2: improving the strength Pareto evolutionary algorithm.
Technical Report 103, ETH Zurich (2001)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	Cartesian genetic programming: its status and future
	Abstract
	1 Introduction
	2 Aspects of standard CGP
	2.1 Representation
	2.2 Search algorithm
	2.3 Non-coding genes
	2.4 Absence of bloat

	3 Alternative genotype representations
	3.1 Parallel distributed genetic programming
	3.2 Modular
	3.3 Real-valued
	3.4 Implicit context
	3.5 Self-modifying
	3.6 Mixed-type
	3.7 Recurrent
	3.8 Iterative
	3.9 Differentiable CGP
	3.10 Graph programming
	3.11 Positional CGP
	3.12 Genotype-phenotype complexity

	4 Mutation
	5 Crossover
	6 Search algorithms
	6.1 Evolutionary strategy and hybrid algorithms
	6.2 Simulated annealing and unusual evolutionary strategies
	6.3 Balanced CGP
	6.4 Coevolution

	7 Acceleration of CGP
	8 Applications
	9 Comprehensibility of CGP solutions
	10 Comparisons of CGP methods with other techniques
	11 Software
	12 Open questions and issues
	12.1 Modularity
	12.2 Representation
	12.3 Mutation
	12.4 Crossover
	12.5 Weighted CGP
	12.6 Applying CGP to general optimisation problems
	12.7 CGP encoded ANNs
	12.8 Search algorithms and real-Valued CGP
	12.9 Evolving “brain-like” multiple problem solvers

	13 Conclusion
	Acknowledgements
	References

