
Training of a Neural Network Classifier by Combining
Hyperplane with Exemplar Approach

Hahn-Ming Lee and Weng-Tang Wang
Department of Electronic Engineering

National Taiwan Institute of Technology
Taipei, Taiwan. E-mail : HMLEE @ TWNNTIT.BITNET

Abstract-A neural network classifier which
combines hyperplane with exemplar approach is
presented. The network structure does not have to
be specified before training and an appropriate
network structure will be build during training.
Perceptron-based algorithm is first applied to train
a linear threshold unit (LTU). The LTU will build a
hyperplane that classifies as many training
instances as possible. Afterwards, HB nodes that
represent hyperboxes will be generated to classify
the training instances that can not be classified by
the hyperplane. The proposed model also works
well on both clustered and strip-distributed
instances. Number of HB nodes generated depends
on the overlapping degree of training instances.
This classifier can classify continuous-valued and
nonlinearly separable instances. In addition, on-
line learning is supplied and learning speed is very
fast. Furthermore, the parameters used are few and
insensitive.

I. INTRODUCnON

The perceptron algorithm [l], one of the supervised
learning algorithms, converges for linearly separable
instances. The main drawback of the perceptron algorithm is
that nonlinearly separable instances can not be classified.
Although we can build a multi-layered perceptron 121 that
forms any shape of decision region to solve this problem,
unfortunately, it is quite complex and has not be proven that
it will converge as with single layer perceptron. Moreover,
there is no existing theory for determination of network
structure. According to Lippmann89 131, we know a training
algorithm which can "match classifier complexity to training
instances available" will obtain the best performance. In
addition, hyperplane classifier [3] algorithms, such as
perceptron and backpropagation, need low memory and have
low computation load but training time may be long. So as
to exemplar classifier 131 algorithms, they train rapidly but
have high memory and computation requirements. We can
see that, by combining these two approaches, the drawbacks

of each approach could be relieved. According to the above
description, we want to build a hyperplane and exemplar
combined classifier algorithm with appropriate network
structure generation ability for classifying continuous-valued
and nonlinearly separable instances.

On the other hand, taking advantage of fuzzy theory could
improve the learning ability of neural networks [4]-[61.
Therefore, our proposed classifier is concemed in combining
hyperplane and exemplar classifier algorithm and utilizes
fuzzy theory to classify continuous-valued and nonlinearly
separable instances. Besides, if instances are strip-
distributed, using the exemplar classifier algorithms is not a
good choice. In the proposed classifier, most of instances
are classified by the hyperplane and the hyperboxes are only
responsible for classification of the overlapped instances.
Therefore, number of hyperboxes needed is reduced and this
makes the classifier also suitable for strip-distributed
instances. The network structure of the classifier is
automatically generated and the number of hidden nodes
needed depends on the overlapping degree of training
instances. In addition, this classifier also consists of many
other features, for example, few nodes needed, on-line
learning, and fast learning speed. Furthermore, the
parameters needed are few and insensitive.

II. THE CLASSIFIER

This classifier is designed to generate a two-layered neural
network with a single node at the output. The complete
structure is illustrated in Fig.1. The first hidden layer is
composed of a linear threshold unit &TU) [l] and none or
some HB nodes that represent hyperboxes. HB nodes are
generated for classifying those training instances that can not
be correctly classified by the hyperplane (defined by the LTU
node). Therefore, the number of HB nodes generated depends
on the overlapping degree of training instances. The second
hidden layer contains only an output node. When an input
vector X is presented to the classifier, this classifier will
check whether X is contained in some hyperboxes. If it is,
the innermost hyperbox will send a correct classification
output to the output node. Otherwise, it will be classified

0-7803-0999-5~3/$03.00 01993 IEFiE 494

1 Classification Result

Input X
Fig. 1. The stmcture of the proposed calssifier.

by the hyperplane.

A . The LTU node

The hyperplane classifier algorithm used here is the pocket
algorithm [7]. The pocket-run-length [7] was used as a
stopping criterion. The LTU node shown in Fig.2 is first
trained to build a hyperplane. Where Gi in Fig.2 is the only
weight needed to be adjusted on ith connection. Another
weight on the ith connection is zero. Since a hyperplane can
be viewed as a special kind of a hyperbox, we use this
formulation to make it consistent with the representation of
the hyperboxes. The pocket algorithm will classify as many
training instances as possible.

B. HBnodes

A fuzzy set can be viewed as a template of a class [81 with
fuzzy boundary. The membership value for instances located
in fuzzy boundary is less than one and greater than zero.
Boundary of kernel part of a class (instances whose
membership value is equal to one) can be quickly defined by
nested hyperboxes. Moreover, nested hyperboxes can be used
to classify nonlinearly separable instances. Fig.3 illustrates
two cases that instances can not be separated by a hyperplane.
By using two(A and B)and three(A1, A2, and B) nested

A To OUTPUT node

output

Transfer function

output -
, if Go X> t

0, otherwise

Input X
1

Fig.2. "he LTU node.

Exemplars used here are hyperboxes. Each HB node
represents a hyperbox. The minimun and maximun values of
feature i of a hyperbox are the two weights, Li and Gi
respectively, on ith connection. Since we take fuzzy set as a
template of a class, using the fuzzy subsethood degree [131 as
the membership value makes the system work well. We use
Kosko's fuzzy subsethood equation [131 (described in Section
3) as the activation function of HB nodes. A HB node's
structure and its transfer function is illustrated in fig. 4.
Simpson [9] used the same representation, but the activation
function, transfer function, and the way hyperboxes used are
different. The activation function used here is more neat and
easily understood. When an input vector X is presented to

Fig.3. Nested hypehxes which can calssify nonlinearly

separable instances. hyperboxes respectively, instances can be easily classified.
495

To Output node

Y Transfer function

1, if S = 1 and (class
of input X = class of
the HB node = 1)

of input X = class of
the HB node = -1)

-1, if s = 1 and (class

A Classification Result

Transfer function

output =
-1, otherwise

Input X
Fig.4. The HB node.

the proposed classifier, at most one HE3 node is allowed to be
active (explained in Section 3).

C . The Output node

Fig.5 shows the structure and the function of the output
node. All connection weights between the first hidden layer
and the output node are 1. The output node receives the
information from both the LTU node and the HB nodes. The
activation function of the output node is weighted-Sum. If
input X is contained in some hyperboxes, only the
innermost hyperbox is allowed to be active (its output will be
either -1 or 1). then the weighted-sum operation will correct
the misclassification output coming from the LTU node.

III. LEARNING

Before detailing the learning procedure, we will explain
fuzzy subsethood theorem first.

Fig.5. The Output node.

For crisp set : A c B iff b'x E A -+ x E B .

For fuzzy set : A c B iff b' X i EX, m&i) I mb(xi).
Where m,(x) and mb(x) are the membership values of
element x belonging to fuzzy set A and B, respectively. The
degree S(A,B) which represents the degree fuzzy set A is a
subset of fuzzy set B is calculated by the equation :

S(A,B) = M (A n B) / M (A) , 0 I S(A,B) s 1 (1)

n

i-1
, which M (A) =

Fuzzy Set A is a subset of Fuzzy set B (S(A,B) = 1) if
and only if A is within the hyperbox F (f) , power set of
fuzzy set B. That is because M (A n B) = M (A) , and
S(A,B) = M (A) / M (A) = 1. If fuzzy set A is outside the
hyperbox F(?) as illustrated in Fig.6, then B*=A n B
and.

mdxi), m- = Min(m,(X), mb(X)).

B. The learning procedure
A . Fuzzy Subsethood Theorem

The membership value of a training instance belonging to a
hyperbox is measured by Kosko's fuzzy subsethood equation.
The membership value of a training instance belonging to a
hyperbox is measured by Kosko's fuzzy subsethood equation
[101. It is described as follows :

Set A is a subset of set B if and only if A belongs to
B's power set.

First of all, we use pocket algorithm and stopping
criterion mentioned in Section 2 to build a hyperplane which
classifies most of training instances. Afterwards,
hyperboxes will be generated to classify the training
instances that can not be classified by the hyperplane.

To avoid one feature overwhelms the others, input value
for each feature must be normalized. Normalized value of
each feature is between 0 and 1. The normalization equation
used is :

496

S (X , hyperbox 1') = M(WjrrZ) / MQ. (5)

n Power

Fig.6. Fuzzy subsethood theorem[lO]. S(A,B) = M(B *)/M (A).

where fq,,) and f i (min) are the maximun and minimun
values of feature i, respectively.

After a training instance X is normalized and presented to
the proposed classifier, Kosko's fuzzy subsethood equation is
used as membership function indicating the degree to which
training instance X belongs to a hyperbox. Because the
hyperboxes generated in the proposed classifier may be located
in any position in [0,1]" instead of i n position [O.O],
coordinate transformation for training instance X and each
hyperbox is needed before applying Kosko's fuzzy subsethood
equation. The transformation procedure is described as
follows :

[Step 11 : Find the farest comer U; and nearest comer V; of
each hyperbox j to the training instance X.

[Step 21 : For each hyperbox j, let W; be the coordinate of
U;, and Z be the dummy coordinate of X. For
each value of feature i,

W;i = I Vji - Vji I and zi = I Xi -- Uji I , (4)

The degree of a training instance belonging to a expanded
hyperbox j is then calculated by the equation :

If hyperbox j is just a single point, the degree of a training
instance belonging to it is calculated by the equation :

S(X,hyperbox j) = 1 / (1 + M(Z)). (6)

If training instance X is not contained in any existing
hyperboxes (for each hyperbox j , S(X,Hyperbox j) < l),
the best matched hyperbox will be expanded to contain it .
The expansion criterion is : the expanded hyperbox will
never overlap with other hyperboxes that represent different
classes.

If expansion criterion can not be satisfied, then a new
hyperbox will be generated to contain training instance X.
At this time, this new hyperbox is just a point . Because
hyperboxes are only generated for training instances that can
not be classified by the hyperplane, hyperboxes needed are
few and the chance that cross-overlapped hyperboxes occurs
is reduced. Thus, if the expansion criterion can not be
satisfied, we would like to create a new hyperbox. A
hyperbox is expanded by the Fuzzy-AND and Fuzzy-OR
operation. That is,

L; = Fuzzy-AND(Li,xi) = Min (L i ,X i) ,

Gi = Fuzzy-OR(G;,x;) = Max (G;,x;)
(7)
(8)

If the size of a hyperbox exceeds the maximun allowed
size then a new hyperbox will be created. It is easy to see
that, on-line learning can be supplied if we allow the
hyperboxes to be expanded or generated during operation.
Fig.7 illustrates expanding situation of a hyperbox.

Because we allow hyperboxes to be nested, inner
hyperboxes represent the exceptions to the surrounding
hyperboxes. It may happen that a training instance X is
contained in many hyperboxes (these hyperboxes is nested).
For this situation, only the innermost hyperbox will be
chosen. An example is illustrates in Figure 8. In this case,

L x 0 U X

Fig. 7. The hyperbox expansion

497

Fig. 8. The nested hyperboxes.

training instance X will be classified as the class the
innermost hyperbox B represents.

IV. EXPERMENTALRESULTS

In this section, we present some experiment results
produced by the simulation of proposed training algorithm.
The experiment was simulated under PDP software
environmenttll] on SUN/ SPARC 11. In order to evaluate
the effectiveness of the proposed model, experimental results
[4 J of fuzzy perceptron and crisp perceptron running on IRIS
[4] data were taken and compared to the results of the
proposed model. The IRIS data set contains three classes,
each with 50 instances, of four continuous features. Since
only the Virginca, Versicolor of IRIS data are overlapped
distributed, and Setosa is linearly separable from the above
two classes, only Virginca and Versicolor were used in this
experiment.

Table I summarizes the comparison results of crisp
perceptron, fuzzy perceptron, and the proposed model. The
data of the fmt two rows is obtained from fuzzy perceptron,
and the data of the proposed model is the average of ten trials.
Pocket-run-length [7] used here is 12 and maximun allowed
size of a hyperbox was set to 0.3. Inner hyperbox's size
allowed was 0.25 times of outer hyperbox's. Notice that
crisp perceptron is unstable because of its decision boundary
deteriorates substantially as number of iteration changes.

Leaving-one-out [121 is another approach used here for
estimating classifier error rates. Maximun allowed size of a
hyperbox was set to 0.3 and the pocket-run-length was set to
12. leaving-one-out error rate of our proposed model is
0.076. It is the average of ten trials.

Fig9 shows the relationship between the maximun allowed
size of a hyperbox and the number of hyperboxes generated.
We can see that the number of hyperboxes generated is not
absolutely increased as the maximun allowed size of a hyper
size of a hyperbox is decreased. The number of hyperboxes

generated partly depends on the input sequence of training
instances and the position of generated hyperplane. Generally
speaking, the higher overlapping degree of training instances
is, the more hyperboxes are generated in the same condition.
Moreover, pocket-run-length and maximun size of a
hyperbox allowed are the two parameters needed to be
adjusted and they only affects the number of HB nodes
created

It is worthwhile to notice that if instances are strip-
distributed, using exemplars like hyperboxes as an approach

- Pocket run len = 8

- Pocket run len = 12

Pocket run len = 16 I.

Number of HB node

'I I , . I

c - -I- 4-\

I I 1

4.4
3.6
3.3

0.3 0.6 0.9 1.2

Maximun allowed hyperbox size
Fig 9. Relationship between hyperbox size and number of HB nodes.

498

is not a good choice. That is because number of hyperboxes
needed is large and the frequency that overlapping hyperboxes
occur may quite often in such situation. In our model, since
most of instances are classified by a hyperplane, number of
hyperboxes needed is reduced quite a lot. So, it works well
on both clustered and strip-distributed instances.

V. CONCLUSION

We have proposed a neural network classifier which
combines hyperplane with exemplar approach. The network
structure does not have to be specified before training and the
number of hidden nodes needed depends on the overlapping
degree of training instances. The proposed classifier utilizes
the pocket algorithm to classify most of instances. Nested
hyperboxes are then generated to classify these training
instances that can not be classified by the hyperplane. The
hyperplane can be viewed as a special kind of a hyperbox.
Kosko's fuzzy subsethood equation is utilized as the
membership function of a training instance belonging to a
hyperbox. This classifier also consists of many other
features, for example, it can classify continuous-valued and
nonlinearly separable instances , nodes needed are quite few,
on-line learning is supplied, learning parameters are few and
insensitive, and its learning speed is fast. Furthermore, the
proposed classifier is suitable for both clustered and strip-
distributed instances.

REFERENCE

Richard P. Lippman. "An introduction to computing with neural net,"
IEEEASSP magazine. pp. 4-22, April 1987.
D. E. Rumelhart, G. E. Hinton, and R.J. Williams, "Learning

internal representations by error propagation," Parallel
Distributed Processing : Explorations in the MicroBtructure of
cognition, Vol. 1, Cambridge : Bradford Books / Mit press,
1986.
Richard P.Lippmann, "Pattern classification using neural
networks,", IEEE Communications magazine, pp. 47-64,
November 1989.
James M. Keller and Douglas J. Hunt, "Incorporating fuzzy
membership function into perceptron algorithm," IEEE
Transactions. on Panern Analysis and Machine Intelligence.
Vol. PAMI-7, No. 6, pp. 693699, November 1985.
Gail A. Carpenter, Stephen Grosaberg, and David B. Roren,
"Fuzzy ART : fast stable learning and categorization of analog
patterns by an adaptive resonance ryatem,".Neural Networks,

W. Pedrycz, "Fuzzy logic in development of fundamentals of
pattern recognition," International Journal of Approximate
Reasoning. Vol. 5, pp. 251-264. 1991.
Stephen I. Gallant, "Connectionist expert system,"
Communication. ACM, Vol. 31, No. 2, pp. 152-169, 1988.
Bezdek, J. Pattern Rrecognition with Fuzzy Objective
Algorithms. Plenum Press: New York, NY, 1981.
Patric K. Simpson, "Fuzzy min-max neural networks,"
Singapore, 1991, pp. 1658-1669.

Vol. 4, pp. 759-771, 1991.

IJCNN.

[lo] Bart Kosok, Neural networh and fuzzy systems. Prentice-Hall,

[l l] I. McClelland and D. Rumelhard, Explorations in Parallel
Distributed Processing, Cambridge : Bradford Books/Mit
Press, 1988.

[12] Sholom M. Weiss and loannis Kapouleas, "An empirical
comparison of pattern recognition. neural nets, and machine
learning classification method," Proceeding of Eleventh
International Joint Conference on Artificial Intelligence,
Detroit, MI. 1989, pp. 781-787.

992.

499

