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Abstract-A neural network classifier which 
combines hyperplane with exemplar approach is 
presented. The network structure does not have to 
be specified before training and an appropriate 
network structure will be build during training. 
Perceptron-based algorithm is first applied to train 
a linear threshold unit (LTU). The LTU will build a 
hyperplane that classifies as many training 
instances as possible. Afterwards, HB nodes that 
represent hyperboxes will be generated to classify 
the training instances that can not be classified by 
the hyperplane. The proposed model also works 
well on both clustered and strip-distributed 
instances. Number of HB nodes generated depends 
on the overlapping degree of training instances. 
This classifier can classify continuous-valued and 
nonlinearly separable instances. In addition, on- 
line learning is supplied and learning speed is very 
fast. Furthermore, the parameters used are few and 
insensitive. 

I. INTRODUCnON 

The perceptron algorithm [l], one of the supervised 
learning algorithms, converges for linearly separable 
instances. The main drawback of the perceptron algorithm is 
that nonlinearly separable instances can not be classified. 
Although we can build a multi-layered perceptron 121 that 
forms any shape of decision region to solve this problem, 
unfortunately, it is quite complex and has not be proven that 
it will converge as with single layer perceptron. Moreover, 
there is no existing theory for determination of network 
structure. According to Lippmann89 131, we know a training 
algorithm which can "match classifier complexity to training 
instances available" will obtain the best performance. In 
addition, hyperplane classifier [3] algorithms, such as 
perceptron and backpropagation, need low memory and have 
low computation load but training time may be long. So as 
to exemplar classifier 131 algorithms, they train rapidly but 
have high memory and computation requirements. We can 
see that, by combining these two approaches, the drawbacks 

of each approach could be relieved. According to the above 
description, we want to build a hyperplane and exemplar 
combined classifier algorithm with appropriate network 
structure generation ability for classifying continuous-valued 
and nonlinearly separable instances. 

On the other hand, taking advantage of fuzzy theory could 
improve the learning ability of neural networks [4]-[61. 
Therefore, our proposed classifier is concemed in combining 
hyperplane and exemplar classifier algorithm and utilizes 
fuzzy theory to classify continuous-valued and nonlinearly 
separable instances. Besides, if instances are strip- 
distributed, using the exemplar classifier algorithms is not a 
good choice. In the proposed classifier, most of instances 
are classified by the hyperplane and the hyperboxes are only 
responsible for classification of the overlapped instances. 
Therefore, number of hyperboxes needed is reduced and this 
makes the classifier also suitable for strip-distributed 
instances. The network structure of the classifier is 
automatically generated and the number of hidden nodes 
needed depends on the overlapping degree of training 
instances. In addition, this classifier also consists of many 
other features, for example, few nodes needed, on-line 
learning, and fast learning speed. Furthermore, the 
parameters needed are few and insensitive. 

II. THE CLASSIFIER 

This classifier is designed to generate a two-layered neural 
network with a single node at the output. The complete 
structure is illustrated in Fig.1. The first hidden layer is 
composed of a linear threshold unit &TU) [l] and none or 
some HB nodes that represent hyperboxes. HB nodes are 
generated for classifying those training instances that can not 
be correctly classified by the hyperplane (defined by the LTU 
node). Therefore, the number of HB nodes generated depends 
on the overlapping degree of training instances. The second 
hidden layer contains only an output node. When an input 
vector X is presented to the classifier, this classifier will 
check whether X is contained in some hyperboxes. If it is, 
the innermost hyperbox will send a correct classification 
output to the output node. Otherwise, it will be classified 
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1 Classification Result 

Input X 
Fig. 1. The stmcture of the proposed calssifier. 

by the hyperplane. 

A . The LTU node 

The hyperplane classifier algorithm used here is the pocket 
algorithm [7]. The pocket-run-length [7] was used as a 
stopping criterion. The LTU node shown in Fig.2 is first 
trained to build a hyperplane. Where Gi in Fig.2 is the only 
weight needed to be adjusted on ith connection. Another 
weight on the ith connection is zero. Since a hyperplane can 
be viewed as a special kind of a hyperbox, we use this 
formulation to make it consistent with the representation of 
the hyperboxes. The pocket algorithm will classify as many 
training instances as possible. 

B. HBnodes 

A fuzzy set can be viewed as a template of a class [81 with 
fuzzy boundary. The membership value for instances located 
in fuzzy boundary is less than one and greater than zero. 
Boundary of kernel part of a class (instances whose 
membership value is equal to one) can be quickly defined by 
nested hyperboxes. Moreover, nested hyperboxes can be used 
to classify nonlinearly separable instances. Fig.3 illustrates 
two cases that instances can not be separated by a hyperplane. 
By using two(A and B)and three(A1, A2, and B) nested 

A To OUTPUT node 
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Fig.2. "he LTU node. 

Exemplars used here are hyperboxes. Each HB node 
represents a hyperbox. The minimun and maximun values of 
feature i of a hyperbox are the two weights, Li and Gi 
respectively, on ith connection. Since we take fuzzy set as a 
template of a class, using the fuzzy subsethood degree [ 131 as 
the membership value makes the system work well. We use 
Kosko's fuzzy subsethood equation [ 131 (described in Section 
3) as the activation function of HB nodes. A HB node's 
structure and its transfer function is illustrated in fig. 4. 
Simpson [9] used the same representation, but the activation 
function, transfer function, and the way hyperboxes used are 
different. The activation function used here is more neat and 
easily understood. When an input vector X is presented to 

Fig.3. Nested hypehxes which can calssify nonlinearly 

separable instances. hyperboxes respectively, instances can be easily classified. 
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To Output node 
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of input X = class of 
the HB node = 1 ) 

of input X = class of 
the HB node = -1 ) 

-1, if s = 1 and (class 

A Classification Result 

Transfer function 

output = 
-1, otherwise 

Input X 
Fig.4. The HB node. 

the proposed classifier, at most one HE3 node is allowed to be 
active (explained in Section 3 ). 

C .  The Output node 

Fig.5 shows the structure and the function of the output 
node. All connection weights between the first hidden layer 
and the output node are 1. The output node receives the 
information from both the LTU node and the HB nodes. The 
activation function of the output node is weighted-Sum. If 
input X is contained in some hyperboxes, only the 
innermost hyperbox is allowed to be active (its output will be 
either -1 or 1). then the weighted-sum operation will correct 
the misclassification output coming from the LTU node. 

III. LEARNING 

Before detailing the learning procedure, we will explain 
fuzzy subsethood theorem first. 

Fig.5. The Output node. 

For crisp set : A c B iff b'x E A  -+ x E B .  

For fuzzy set : A c B iff b' X i  EX, m&i) I mb(xi). 
Where m,(x) and mb(x) are the membership values of 
element x belonging to fuzzy set A and B, respectively. The 
degree S(A,B) which represents the degree fuzzy set A is a 
subset of fuzzy set B is calculated by the equation : 

S(A,B) = M ( A  n B )  / M ( A ) ,  0 I S(A,B) s 1 (1) 

n 

i-1 
, which M ( A )  = 

Fuzzy Set A is a subset of Fuzzy set B (S(A,B) = 1) if 
and only if A is within the hyperbox F ( f ) ,  power set of 
fuzzy set B. That is because M ( A  n B )  = M ( A ) ,  and 
S(A,B)  = M ( A )  / M ( A )  = 1. If fuzzy set A is outside the 
hyperbox F(?) as illustrated in Fig.6, then B*=A n B 
and. 

mdxi), m- = Min(m,(X), mb(X)). 

B. The learning procedure 
A .  Fuzzy Subsethood Theorem 

The membership value of a training instance belonging to a 
hyperbox is measured by Kosko's fuzzy subsethood equation. 
The membership value of a training instance belonging to a 
hyperbox is measured by Kosko's fuzzy subsethood equation 
[ 101. It is described as follows : 

Set A is a subset of set B if and only if A belongs to 
B's power set. 

First of all, we use pocket algorithm and stopping 
criterion mentioned in Section 2 to build a hyperplane which 
classifies most of training instances. Afterwards, 
hyperboxes will be generated to classify the training 
instances that can not be classified by the hyperplane. 

To avoid one feature overwhelms the others, input value 
for each feature must be normalized. Normalized value of 
each feature is between 0 and 1. The normalization equation 
used is : 
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S ( X ,  hyperbox 1') = M(WjrrZ) / MQ. (5)  

n Power 

Fig.6. Fuzzy subsethood theorem[lO]. S(A,B) = M(B *)/M (A). 

where fq,,) and f i (min)  are the maximun and minimun 
values of feature i, respectively. 

After a training instance X is normalized and presented to 
the proposed classifier, Kosko's fuzzy subsethood equation is 
used as membership function indicating the degree to which 
training instance X belongs to a hyperbox. Because the 
hyperboxes generated in the proposed classifier may be located 
in any position in [0,1]" instead of i n  position [O.O], 
coordinate transformation for training instance X and each 
hyperbox is needed before applying Kosko's fuzzy subsethood 
equation. The transformation procedure is described as 
follows : 

[Step 11 : Find the farest comer U; and nearest comer V; of 
each hyperbox j to the training instance X. 

[Step 21 : For each hyperbox j, let W; be the coordinate of 
U;, and Z be the dummy coordinate of X. For 
each value of feature i, 

W;i = I Vji - Vji I and zi = I Xi -- Uji I ,  (4) 

The degree of a training instance belonging to a expanded 
hyperbox j is then calculated by the equation : 

If hyperbox j is just a single point, the degree of a training 
instance belonging to it is calculated by the equation : 

S(X,hyperbox j )  = 1 / (1 + M(Z)). (6) 

If training instance X is not contained in any existing 
hyperboxes (for each hyperbox j ,  S(X,Hyperbox j )  < l), 
the best matched hyperbox will be expanded to contain it . 
The expansion criterion is : the expanded hyperbox will 
never overlap with other hyperboxes that represent different 
classes. 

If expansion criterion can not be satisfied, then a new 
hyperbox will be generated to contain training instance X. 
At this time, this new hyperbox is just a point . Because 
hyperboxes are only generated for training instances that can 
not be classified by the hyperplane, hyperboxes needed are 
few and the chance that cross-overlapped hyperboxes occurs 
is reduced. Thus, if the expansion criterion can not be 
satisfied, we would like to create a new hyperbox. A 
hyperbox is expanded by the Fuzzy-AND and Fuzzy-OR 
operation. That is, 

L; = Fuzzy-AND(Li,xi) = Min (L i ,X i ) ,  

Gi = Fuzzy-OR(G;,x;) = Max (G;,x;) 
(7) 
(8) 

If the size of a hyperbox exceeds the maximun allowed 
size then a new hyperbox will be created. It is easy to see 
that, on-line learning can be supplied if we allow the 
hyperboxes to be expanded or generated during operation. 
Fig.7 illustrates expanding situation of a hyperbox. 

Because we allow hyperboxes to be nested, inner 
hyperboxes represent the exceptions to the surrounding 
hyperboxes. It may happen that a training instance X is 
contained in many hyperboxes (these hyperboxes is nested). 
For this situation, only the innermost hyperbox will be 
chosen. An example is illustrates in Figure 8. In this case, 

L x 0 U X  

Fig. 7. The hyperbox expansion 
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Fig. 8. The nested hyperboxes. 

training instance X will be classified as the class the 
innermost hyperbox B represents. 

IV. EXPERMENTALRESULTS 

In this section, we present some experiment results 
produced by the simulation of proposed training algorithm. 
The experiment was simulated under PDP software 
environmenttll] on SUN/ SPARC 11. In order to evaluate 
the effectiveness of the proposed model, experimental results 
[4 J of fuzzy perceptron and crisp perceptron running on IRIS 
[4] data were taken and compared to the results of the 
proposed model. The IRIS data set contains three classes, 
each with 50 instances, of four continuous features. Since 
only the Virginca, Versicolor of IRIS data are overlapped 
distributed, and Setosa is linearly separable from the above 
two classes, only Virginca and Versicolor were used in this 
experiment. 

Table I summarizes the comparison results of crisp 
perceptron, fuzzy perceptron, and the proposed model. The 
data of the fmt two rows is obtained from fuzzy perceptron, 
and the data of the proposed model is the average of ten trials. 
Pocket-run-length [7] used here is 12 and maximun allowed 
size of a hyperbox was set to 0.3. Inner hyperbox's size 
allowed was 0.25 times of outer hyperbox's. Notice that 
crisp perceptron is unstable because of its decision boundary 
deteriorates substantially as number of iteration changes. 

Leaving-one-out [ 121 is another approach used here for 
estimating classifier error rates. Maximun allowed size of a 
hyperbox was set to 0.3 and the pocket-run-length was set to 
12. leaving-one-out error rate of our proposed model is 
0.076. It is the average of ten trials. 

Fig9 shows the relationship between the maximun allowed 
size of a hyperbox and the number of hyperboxes generated. 
We can see that the number of hyperboxes generated is not 
absolutely increased as the maximun allowed size of a hyper 
size of a hyperbox is decreased. The number of hyperboxes 

generated partly depends on the input sequence of training 
instances and the position of generated hyperplane. Generally 
speaking, the higher overlapping degree of training instances 
is, the more hyperboxes are generated in the same condition. 
Moreover, pocket-run-length and maximun size of a 
hyperbox allowed are the two parameters needed to be 
adjusted and they only affects the number of HB nodes 
created 

It is worthwhile to notice that if instances are strip- 
distributed, using exemplars like hyperboxes as an approach 

- Pocket run len = 8 

- Pocket run len = 12 

Pocket run len = 16 I. 

Number of HB node 

'I I , .  I 

c - -I- 4-\ 

I I 1 

4.4 
3.6 
3.3 

0.3 0.6 0.9 1.2 

Maximun allowed hyperbox size 
Fig 9. Relationship between hyperbox size and number of HB nodes. 

498 



is not a good choice. That is because number of hyperboxes 
needed is large and the frequency that overlapping hyperboxes 
occur may quite often in such situation. In our model, since 
most of instances are classified by a hyperplane, number of 
hyperboxes needed is reduced quite a lot. So, it works well 
on both clustered and strip-distributed instances. 

V. CONCLUSION 

We have proposed a neural network classifier which 
combines hyperplane with exemplar approach. The network 
structure does not have to be specified before training and the 
number of hidden nodes needed depends on the overlapping 
degree of training instances. The proposed classifier utilizes 
the pocket algorithm to classify most of instances. Nested 
hyperboxes are then generated to classify these training 
instances that can not be classified by the hyperplane. The 
hyperplane can be viewed as a special kind of a hyperbox. 
Kosko's fuzzy subsethood equation is utilized as the 
membership function of a training instance belonging to a 
hyperbox. This classifier also consists of many other 
features, for example, it can classify continuous-valued and 
nonlinearly separable instances , nodes needed are quite few, 
on-line learning is supplied, learning parameters are few and 
insensitive, and its learning speed is fast. Furthermore, the 
proposed classifier is suitable for both clustered and strip- 
distributed instances. 
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