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ABSTRACT

We propose Parallel WaveGAN, a distillation-free, fast, and small-
footprint waveform generation method using a generative adver-
sarial network. In the proposed method, a non-autoregressive
WaveNet is trained by jointly optimizing multi-resolution spectro-
gram and adversarial loss functions, which can effectively capture
the time-frequency distribution of the realistic speech waveform.
As our method does not require density distillation used in the
conventional teacher-student framework, the entire model can be
easily trained. Furthermore, our model is able to generate high-
fidelity speech even with its compact architecture. In particular,
the proposed Parallel WaveGAN has only 1.44 M parameters and
can generate 24 kHz speech waveform 28.68 times faster than real-
time on a single GPU environment. Perceptual listening test results
verify that our proposed method achieves 4.16 mean opinion score
within a Transformer-based text-to-speech framework, which is
comparative to the best distillation-based Parallel WaveNet sys-
tem.

Index Terms— Neural vocoder, text-to-speech, generative ad-
versarial networks, Parallel WaveNet, Transformer

1. INTRODUCTION

Deep generative models in text-to-speech (TTS) frameworks
have significantly improved the quality of synthetic speech sig-
nals [1–3]. Remarkably, autoregressive generative models such as
WaveNet have shown much superior performance over traditional
parametric vocoders [4–8]. However, they suffer from slow infer-
ence speed due to their autoregressive nature and thus are limited
in their applications to real-time scenarios.

One approach to address the limitation is to utilize fast
waveform generation methods based on a teacher-student frame-
work [9–11]. In this framework, a bridge defined as probability
density distillation transfers the knowledge of an autoregressive
teacher WaveNet to an inverse autoregressive flow (IAF)-based
student model [12]. Although the IAF student can achieve real-
time generation of speech with reasonable perceptual quality, there
remain problems in the training process: it requires not only a well
trained teacher model, but also a trial and error methodology to
optimize the complicated density distillation process.

To overcome the aforementioned problems, we propose a Par-
allel WaveGAN1, a simple and effective parallel waveform gen-
eration method based on a generative adversarial network (GAN)
[14]. Unlike the conventional distillation-based methods, the Par-
allel WaveGAN does not require the two-stage, sequential teacher-

1 Note that our work is not closely related to an unsupervised waveform
synthesis model, WaveGAN [13].

student training process. In the proposed method, only a non-
autoregressive WaveNet model is trained by optimizing the combi-
nation of multi-resolution short-time Fourier transform (STFT) and
adversarial loss functions that enable the model to effectively cap-
ture the time-frequency distribution of the realistic speech wave-
form. As a result, the entire training process becomes much easier
than the conventional methods, as well as the model can produce
natural sounding speech waveforms with a small number of model
parameters. Our contributions are summarized as follows:

• We propose a joint training method of the multi-resolution
STFT loss and the waveform-domain adversarial loss. This
approach effectively works for the conventional distillation-
based Parallel WaveNet (e.g., ClariNet), as well as for the
proposed distillation-free Parallel WaveGAN.

• As the proposed Parallel WaveGAN can be simply trained
without any teacher-student framework, our approach sig-
nificantly reduces both the training and inference time. In
particular, the training process becomes 4.82 times faster
(from 13.5 days to 2.8 days with two NVIDIA Telsa V100
GPUs) and the inference process becomes 1.96 times faster
(from 14.62 to 28.68 real-time2 to generate 24 kHz speech
waveforms with a single NVIDIA Telsa V100 GPU) com-
pared with the conventional ClariNet model.

• We combined the proposed Parallel WaveGAN with a TTS
acoustic model based on a Transformer [15–17]. The per-
ceptual listening tests verify that the proposed Parallel
WaveGAN achieves 4.16 MOS, which is competitive to the
best distillation-based ClariNet model.

2. RELATED WORK

The idea of using GAN in the Parallel WaveNet framework is not
new. In our previous work, the IAF student model was incorporated
as a generator and jointly optimized by minimizing the adversarial
loss along with the Kullback-Leibler divergence (KLD) and aux-
iliary losses [11]. As the GAN learns the distribution of realistic
speech signals, the method significantly improves the perceptual
quality of synthetic signal. However, the complicated training stage
based on density distillation limits its utilization.

Our aim is to minimize the effort to train the two-stage pipeline
of the conventional teacher-student framework. In other words, we
propose a novel method to train the Parallel WaveNet without any

2 The inference speed defined as k means that the system can generate
waveforms k times faster than real-time.
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distillation process. Juvela et al [18] has proposed a similar ap-
proach (e.g., GAN-excited linear prediction; GELP) that gener-
ates glottal excitations by using the adversarial training method.
However, since GELP requires linear prediction (LP) parameters
to convert glottal excitations to speech waveform, quality degrada-
tion may occur when the LP parameters contain inevitable errors
caused by the TTS acoustic model. To avoid this problem, our
method is designed to directly estimate the speech waveform. As
it is very difficult to capture the dynamic nature of speech signal
including both the vocal cord movement and the vocal tract res-
onance (represented by glottal excitations and LP parameters in
GELP, respectively), we propose a joint optimization method be-
tween the adversarial loss and multi-resolution STFT loss in order
to capture the time-frequency distributions of the realistic speech
signal. As a result, the entire model can be easily trained even with
a small number of parameters while effectively reducing the infer-
ence time and improving perceptual quality of synthesized speech.

3. METHOD

3.1. Parallel waveform generation based on GAN

GANs are generative models that are composed of two separate
neural networks: a generator (G) and a discriminator (D) [14].
In our method, a WaveNet-based model conditioned on an auxil-
iary feature (e.g., mel-spectrogram) is used as the generator, which
transforms the input noise to the output waveform in parallel. The
generator differs from the original WaveNet in that: (1) we use non-
causal convolutions instead of causal convolutions; (2) the input is
random noise drawn from a Gaussian distribution; (3) the model is
non-autoregressive at both training and inference steps.

The generator learns a distribution of realistic waveforms by
trying to deceive the discriminator to recognize the generator sam-
ples as real. The process is performed by minimizing the adversar-
ial loss3 (Ladv) as follows:

Ladv(G,D) = Ez∼N(0,I)

[
(1−D(G(z)))2

]
, (1)

where z denotes the input white noise. Note that the auxiliary fea-
ture for G is omitted for brevity.

On the other hand, the discriminator is trained to correctly clas-
sify the generated sample as fake while classifying the ground truth
as real using the following optimization criterion:

LD(G,D) = Ex∼pdata [(1−D(x))2] + Ez∼N(0,I)[D(G(z))2],
(2)

where x and pdata denote the target waveform and its distribution,
respectively.

3.2. Multi-resolution STFT auxiliary loss

To improve the stability and efficiency of the adversarial training
process, we propose a multi-resolution STFT auxiliary loss. Fig. 1
shows our framework combining the multi-resolution STFT loss
with the adversarial training method as described in section 3.1.

Similar to the previous work [11], we define a single STFT loss
as follows:

Ls(G) = Ez∼p(z),x∼pdata
[Lsc(x, x̂) + Lmag(x, x̂)] , (3)

3 Our method adopts least-squares GANs thanks to its training stability
[19–22].
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Fig. 1: An illustration of our proposed adversarial training
framework with the multi-resolution STFT loss.

where x̂ denotes the generated sample (i.e., G(z)), and Lsc and
Lmag denote spectral convergence and log STFT magnitude loss,
respectively, which are defined as follows [23]:

Lsc(x, x̂) =
‖ |STFT(x)| − |STFT(x̂)| ‖F

‖ |STFT(x)| ‖F
, (4)

Lmag(x, x̂) =
1

N
‖ log|STFT(x)| − log|STFT(x̂)| ‖1, (5)

where ‖ · ‖F and ‖ · ‖1 denote the Frobenius and L1 norms,
respectively; |STFT(·)| and N denote the STFT magnitudes and
number of elements in the magnitude, respectively.

Our multi-resolution STFT loss is the sum of the STFT losses
with different analysis parameters (i.e., FFT size, window size, and
frame shift). Let M be the number of STFT losses, the multi-
resolution STFT auxiliary loss (Laux) is represented as follows:

Laux(G) =
1

M

M∑
m=1

L(m)
s (G). (6)

In the STFT-based time-frequency representation of signals, there
is a trade-off between time and frequency resolution; e.g., increas-
ing window size gives higher frequency resolution while reduc-
ing temporal resolution [24]. By combining multiple STFT losses
with different analysis parameters, it greatly helps the generator to
learn the time-frequency characteristics of speech [25]. Moreover,
it also prevents the generator from being overfit to a fixed STFT
representation, which may result in suboptimal performance in the
waveform-domain.

Our final loss function for the generator is defined as a linear
combination of the multi-resolution STFT loss and the adversarial
loss as follows:

LG(G,D) = Laux(G) + λadvLadv(G,D), (7)

where λadv denotes the hyperparameter balancing the two loss
terms. By jointly optimizing the waveform-domain adversarial
loss and the multi-resolution STFT loss, the generator can learn
the distribution of the realistic speech waveform effectively.



4. EXPERIMENTS

4.1. Experimental setup

4.1.1. Database

In the experiments, we used a phonetically and prosaically bal-
anced speech corpus recorded by a female professional Japanese
speaker. The speech signals were sampled at 24 kHz, each sample
was quantized by 16 bits. In total, 11,449 utterances (23.09 hours)
were used for training, 250 utterances (0.35 hours) were used for
validation, and another 250 utterances (0.34 hours) were used for
evaluation. The 80-band log-mel spectrograms with band-limited
frequency range4 (70 to 8000 Hz) were extracted and used as the in-
put auxiliary features for waveform generation models (i.e., local-
conditioning [4]). The frame and shift lengths were set to 50 ms
and 12.5 ms, respectively. The mel-spectrogram features were nor-
malized to have zero mean and unit variance before training.

4.1.2. Model details

The proposed Parallel WaveGAN consisted of 30 layers of dilated
residual convolution blocks with exponentially increasing three di-
lation cycles [4]. The number of residual and skip channels were
set to 64 and the convolution filter size was set to three. The dis-
criminator consisted of ten layers of non-causal dilated 1-D convo-
lutions with leaky ReLU activation function (α = 0.2). The strides
were set to one and linearly increasing dilations were applied for
the 1-D convolutions starting from one to eight except for the first
and last layers. The number of channels and filter size were the
same as the generator. We applied weight normalization to all con-
volutional layers for both the generator and the discriminator [26].

At the training stage, the multi-resolution STFT loss was com-
puted by the sum of three different STFT losses as described in
Table 1. The discriminator loss was computed by the average of
per-time step scalar predictions with the discriminator. The hyper-
parameter λadv in equation (7) was chosen to be 4.0 based on our
preliminary experiments. Models were trained for 400 K steps with
RAdam optimizer (ε = 1e−6) to stabilize training [27]. Note that
the discriminator was fixed for the first 100K steps, and two models
were jointly trained afterwards. The minibatch size was set to eight
and the length of each audio clip was set to 24 K time samples (1.0
second). The initial learning rate was set to 0.0001 and 0.00005
for the generator and discriminator, respectively. The learning rate
was reduced by half for every 200 K steps.

As baseline systems, we used both the autoregressive Gaussian
WaveNet and the parallel one (i.e., ClariNet) [10,11]. The WaveNet
consisted of 24 layers of dilated residual convolution blocks with
four dilation cycles. The number of residual and skip channels
were set to 128 and the filter size was set to three. The model was
trained for 1.5 M steps with RAdam optimizer. The learning rate
was set to 0.001, and it was reduced by half for every 200 K steps.
The minibatch size was set to eight and the length of each audio
clip was set to 12 K time samples (0.5 second).

To train the baseline ClariNet, the autoregressive WaveNet de-
scribed above was used as the teacher model. The ClariNet was
based on Gaussian IAFs [10], which consisted of six flows. Each
flow was parameterized by ten layers of dilated residual convolu-
tion blocks with an exponentially increasing dilation cycle. The
number of residual and skip channels were set to 64 and the filter

4We empirically found that using the band-limited features alleviates the
over-smoothing problem caused by acoustic models in TTS.

Table 1: The details of the multi-resolution STFT loss. A
Hanning window was applied before the FFT process.

STFT loss FFT size Window size Frame shift

L
(1)
s 1024 600 (25 ms) 120 (5 ms)

L
(2)
s 2048 1200 (50 ms) 240 (10 ms)

L
(3)
s 512 240 (10 ms) 50 (≈ 2 ms)

size was set to three. The weight coefficients to balance the KLD
and STFT auxiliary losses were set to 0.5 and 1.0, respectively.
The model was trained for 400 K steps with the same optimizer
settings of the Parallel WaveGAN. We also investigated ClariNet
with adversarial loss as a hybrid approach of GAN and density dis-
tillation [11]. The model structure was the same as the baseline
ClariNet, but it was trained with the mixture of KLD, STFT and
adversarial losses, where the weight coefficients to balance them
were set to 0.05, 1.0 and 4.0, respectively. The model was trained
for 200K steps with the fixed discriminator, and the generator and
discriminator were jointly optimized for the rest 200 K steps.

Throughout the waveform generation models, the input auxil-
iary features were upsampled by nearest neighbor upsampling fol-
lowed by 2-D convolutions so that the time-resolution of auxiliary
features matches the sampling rate of the speech waveform [11,28].
Note that the auxiliary features were not used for discriminators.
All the models were trained using two NVIDIA Tesla V100 GPUs.
Experiments were conducted on the NAVER smart machine learn-
ing (NSML) platform [29].

4.2. Evaluation

To evaluate the perceptual quality, we performed mean opinion
score (MOS)5 tests. Eighteen native Japanese speakers were asked
to make quality judgments about the synthesized speech samples
using the following five possible responses: 1 = Bad; 2 = Poor; 3 =
Fair; 4 = Good; and 5 = Excellent. In total, 20 utterances were ran-
domly selected from the evaluation set and were then synthesized
using the different models.

Table 2 shows the inference speed and the MOS test results
with respect to different generation models. The findings can be
summarized as follows: (1) the systems trained with the STFT loss
performed better than ones trained without the STFT loss (i.e., the
autoregressive WaveNet). Note that most listeners were unsatis-
fied with the high-frequency noise caused by the autoregressive
WaveNet system. This could be explained by the fact that only the
band-limited (70 - 8000 Hz) mel-spectrogram was used for local-
conditioning in the WaveNet, while the other systems were able
to directly learn full-band frequency information via STFT loss.
(2) The proposed multi-resolution STFT loss-based models showed
higher perceptual quality than the conventional single STFT losss-
based ones (comparing System 3 and 6 with System 2 and 5, re-
spectively). This confirms that the multi-resolution STFT loss ef-
fectively captured the time-frequency characteristics of the speech
signal, enabling to achieve better performance. (3) The proposed
adversarial loss did not work well with the ClariNet. However,
its advantage could be found when it was combined with a TTS
framework, which will be discussed in the next section. (4) Finally,
the proposed Parallel WaveGAN achieved 4.06 MOS. Although
its perceptual quality was relatively worse than the ClariNet’s, the

5Audio samples are available at the following URL:
https://r9y9.github.io/demos/projects/icassp2020/

https://r9y9.github.io/demos/projects/icassp2020/


Table 2: The inference speed and the MOS results with 95% confidence intervals: Acoustic features extracted from the recorded
speech signal were used to compose the input auxiliary features. The evaluation was conducted on a server with a single
NVIDIA Tesla V100 GPU. Note that the inference speed k means that the system was able to generate waveforms k times
faster than real-time.

System Model KLD-based STFT Adversarial Number of Model Inference MOSindex distillation loss loss layers size speed
System 1 WaveNet - - - 24 3.81 M 0.32×10−2 3.61±0.12
System 2 ClariNet Yes L

(1)
s - 60 2.78 M 14.62 3.88±0.11

System 3 ClariNet Yes L
(1)
s + L

(2)
s + L

(3)
s - 60 2.78 M 14.62 4.21±0.09

System 4 ClariNet Yes L
(1)
s + L

(2)
s + L

(3)
s Yes 60 2.78 M 14.62 4.21±0.09

System 5 Parallel WaveGAN - L
(1)
s Yes 30 1.44 M 28.68 1.36±0.07

System 6 Parallel WaveGAN - L
(1)
s + L

(2)
s + L

(3)
s Yes 30 1.44 M 28.68 4.06±0.10

System 7 Recording - - - - - - 4.46±0.08

Table 3: Training time comparison: All the experiments were
conducted on a server with two NVIDIA Tesla V100 GPUs.
Each vocoder model corresponds to System 1, 3, 4, and 6
described in Table 2, respectively. Note that the times for
ClariNets include the training time for the teacher WaveNet.

Model Training time (days)
WaveNet 7.4
ClariNet 12.7
ClariNet-GAN 13.5
Parallel WaveGAN (ours) 2.8

Parallel WaveGAN was able to generate speech signal 1.96 times
faster than the ClariNet. Furthermore, the benefit of the proposed
method could be found in its simple training procedure. We mea-
sured the total training time for obtaining the optimal models, as
described in Table 3. Because the Parallel WaveGAN did not re-
quire any complicated density distillation, it only took 2.8 training
days to be optimized, which was 2.64 and 4.82 times faster than
the autoregressive WaveNet and the ClariNet, respectively.

4.3. Text-to-speech

To verify the effectiveness of the proposed method as the vocoder
of the TTS framework, we combined the Parallel WaveGAN with
the Transformer-based parameter estimator [15–17].

To train the Transformer, we used the phoneme sequences as
input and mel-spectrograms extracted from the recorded speech
as output. The model consisted of a six-layer encoder and a six-
layer decoder, each was based on multi-head attention (with eight
heads). The configuration followed the prior work [17], but the
model was modified to accept accent as an external input for pitch
accent language (e.g., Japanese) [30]. The model was trained for
1000 epochs using RAdam optimizer with warmup learning rate
scheduling [15]. Initial learning rate was set to 1.0 and dynamic
batch size (average 64) strategy was used to stabilize training.

In the synthesis step, the input phoneme and accent sequences
were converted to the corresponding mel-spectrograms by the
Transformer TTS model. By inputting resulting acoustic parame-
ters, vocoder models generated the time-domain speech signal.

To evaluate the quality of the generated speech samples, we
performed MOS tests. The test setups were the same as those
described in section 4.2, but we used the autoregressive WaveNet
and the parallel generation models trained with the multi-resolution
STFT loss in the test (System 1, 3, 4, and 6 described in Table 2,
respectively). The results of the MOS tests are shown in Table 4,
of which findings can be summarized as follows: (1) the ClariNet

Table 4: MOS results with 95% confidence intervals: Acous-
tic features generated from the Transformer TTS model were
used to compose the input auxiliary features.

Model MOS
Transformer + WaveNet 3.33±0.11
Transformer + ClariNet 4.00±0.10
Transformer + ClariNet-GAN 4.14±0.10
Transformer + Parallel WaveGAN (ours) 4.16±0.09

Recording 4.46±0.08

trained with the adversarial loss performed better than the system
trained without the adversarial loss, although their perceptual qual-
ities were almost same in the analysis/synthesis case (System 3 and
4 shown in Table 2). This implies that the use of adversarial loss
was advantageous for improving the model’s robustness to the pre-
diction errors caused by the acoustic model. (2) The merits of the
adversarial training were also beneficial to the proposed Parallel
WaveGAN system. Consequently, the Parallel WaveGAN with the
Transformer TTS model achieved 4.16 MOS, which was compa-
rable to the best distillation-based Parallel WaveNet system (i.e.,
ClariNet-GAN).

5. CONCLUSION

We proposed Parallel WaveGAN, a distillation-free, fast, and
small-footprint waveform generation method based on GAN. By
jointly optimizing waveform-domain adversarial loss and multi-
resolution STFT loss, our model was able to learn how to generate
realistic waveforms without any complicated probability density
distillation. Experimental results demonstrated that our proposed
method achieved 4.16 MOS within the Transformer-based TTS
framework competitive to the conventional distillation-based ap-
proaches, generating 24 kHz speech waveform 28.68 times faster
than real-time with only 1.44 M model parameters. Future re-
search includes improving the multi-resolution STFT auxiliary
loss to better capture the characteristics of speech (e.g., introduc-
ing phase-related loss), and verifying its performance to a variety
of corpora, including expressive ones.
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