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Abstract

We present a novel high-fidelity real-time neural vocoder
called VocGAN. A recently developed GAN-based vocoder,
MelGAN, produces speech waveforms in real-time. However,
it often produces a waveform that is insufficient in quality or
inconsistent with acoustic characteristics of the input mel spec-
trogram. VocGAN is nearly as fast as MelGAN, but it signifi-
cantly improves the quality and consistency of the output wave-
form. VocGAN applies a multi-scale waveform generator and
a hierarchically-nested discriminator to learn multiple levels of
acoustic properties in a balanced way. It also applies the joint
conditional and unconditional objective, which has shown suc-
cessful results in high-resolution image synthesis. In experi-
ments, VocGAN synthesizes speech waveforms 416.7x faster
on a GTX 1080Ti GPU and 3.24x faster on a CPU than real-
time. Compared with MelGAN, it also exhibits significantly
improved quality in multiple evaluation metrics including mean
opinion score (MOS) with minimal additional overhead. Ad-
ditionally, compared with Parallel WaveGAN, another recently
developed high-fidelity vocoder, VocGAN is 6.98x faster on a
CPU and exhibits higher MOS.

Index Terms: hierarchically-nested adversarial loss, generative
adversarial network, neural vocoder, speech synthesis

1. Introduction

Deep learning-based speech synthesis technology has rapidly
improved in recent years. In particular, the emergence of neu-
ral vocoders, such as WaveNet [1]] has significantly improved
the fidelity of end-to-end speech synthesizers [2]. However, for
production-ready text-to-speech (TTS) systems, real-time gen-
eration on both GPU and CPU is also important. WaveNet is
extremely slow because of the sequential auto-regressive struc-
ture. Parallel WaveNet [3] and ClariNet [4] produce speech
waveforms in real-time by leveraging a non-autoregressive par-
allel structure. However, they require a great deal of time and
effort to reproduce performance because of the complex struc-
ture and the complicated training procedure (e.g., density distil-
lation). On the other hand, flow-based models, such as Wave-
Glow [5] and FloWaveNet [6] can be directly learned by mini-
mizing the negative log-likelihood of training data while gener-
ating high-quality speech waveforms at high speeds on a GPU.
However, they require a huge number of parameters and heavy
computation. Thus, it cannot synthesize speech waveforms in
real-time without a GPU.

Some recent models have adopted the idea of the generative
adversarial network (GAN) to train neural vocoders. Parallel
WaveGAN [7] applies a WaveNet-based generator conditioned
on auxiliary features, such as mel spectrogram, and synthesizes
natural-sounding speech waveforms in real-time on a GPU. The
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Figure 1: Comparison of MelGAN and VocGAN. The green
boxes represent mel spectrograms, and the blue boxes represent
output waveforms.

researchers of [7] trained the generator using adversarial loss
and multi-resolution short-time Fourier transform (STFT) loss.
‘When combined with the Transformer TTS, Parallel WaveGAN
exhibited a higher MOS than WaveNet and ClariNet. However,
owing to its high computational complexity, Parallel WaveGAN
could not achieve real-time on a CPU.

MelGAN [8] is another GAN-based vocoder that can be
trained without density distillation or pretraining. In particular,
MelGAN’s generator consists of a carefully tuned lightweight
network that enables real-time synthesis on a CPU. MelGAN
applies multiple techniques to produce raw waveforms of high
temporal resolution. They apply the window-based objective
[9] to capture the high-frequency structure of an audio signal.
Furthermore, they apply the multi-scale discriminator [10] to
learn the structure of audio at different levels. The kernel-size
and stride of the transposed convolution are carefully chosen to
avoid producing checkerboard artifacts.

In spite of the techniques, the output quality of MelGAN
has room for improvement. It has been reported that apply-
ing instance normalization [[11] washes away important pitch
information, making the audio sound metallic. Although re-
searchers have significantly alleviated this issue by replacing in-
stance normalization with weight normalization [12], the prob-
lem has not yet been completely solved. The quality issues
of MelGAN includes degradation of both low-frequency com-
ponents (e.g..fundamental frequency (Fy)) and high-frequency
components (e.g.,noise). MelGAN also often produces a wave-
form inconsistent with acoustic characteristics of the input mel
spectrogram. These issues suggest that the network structure
and learning objective of MelGAN are not sufficient to correctly
learn the acoustic representations of audio signals.

In this paper, we present a novel GAN-based vocoder, Voc-
GAN (Vocoder GAN), that is nearly as fast as MelGAN and
significantly improves output quality and consistency with the
input mel spectrogram. VocGAN is an extension of MelGAN
and applies multiple techniques to overcome its limitations. Fig.
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Figure 2: Model architecture. x 2% denotes a down-sampling rate. up(u) denotes an up-sampling layer whose rate is u. conv and
pool(v) are convolutional layer and down-sampling pooling layer with a stride of v, respectively. res stack denotes a residual stack.

[[illustrates the differences between MelGAN and VocGAN. In-
spired by the work of [13]], we extend the generator to output
multiple waveforms at different scales. We train the generator
with adversarial losses computed by a set of resolution-specific
discriminators. This hierarchical structure helps to learn the var-
ious levels of acoustic properties in a balanced way. To each of
the resolution-specific discriminators, we apply the joint condi-
tional and unconditional (JCU) loss [14], which has produced
successful results in high-resolution image synthesis. We fur-
ther improve the output quality by combining the STFT loss,
which has exhibited good results in waveform synthesis [7].

In experiments, VocGAN synthesized speech waveforms
416.7x faster on a GTX 1080Ti GPU and 3.24x faster on a CPU
than real-time. Compared with MelGAN, it also exhibited sig-
nificantly improved quality in mel cepstrum distance (MCD),
Fop root mean square error (RMSE), perceptual evaluation of
speech quality (PESQ), and MOS with minimal additional over-
head. Additionally, compared with with Parallel WaveGAN,
VocGAN was 6.98x faster on a CPU and exhibits higher MOS.

2. Proposed Method
2.1. Baseline model

To develop a high-fidelity neural vocoder that produces wave-
forms in real-time without a GPU, we choose MelGAN [8] as
our baseline model. We improve MelGAN’s model structure
and its learning objective to overcome its quality degradation
issues. The generator of the baseline model was implemented
using a fully convolutional feed-forward network comprising
four up-sampling blocks whose up-sampling rates are 8, 8, 2,
and 2, respectively. Each up-sampling block contains a trans-
posed convolution and a residual stack comprising three dilated
convolution and a residual connection. The learning of the gen-
erator is guided using a multi-scale discriminator [10] that com-
putes an window-based objective [9] from multiple waveforms
down-sampled from the output waveform at different scales.

2.2. Multi-scale waveform generator

The hierarchically-nested adversarial objective [[13] has shown
effective in high-resolution image synthesis. It regularizes in-
termediate representations by inducing them to be useful for

synthesizing waveforms at various resolutions. This helps
the generator effectively learn not only the high-frequency
components, but also the low frequency ones. Although the
hierarchically-nested adversarial objective was originally devel-
oped for image synthesis, its benefit may also be effective in
improving the quality of raw waveforms as well. Therefore, we
adopt the idea of [13] to improve our neural vocoder.

Applying the hierarchically-nested objective to a neural
vocoder requires major modifications to the generator and the
discriminator. The generator takes as input a mel spectrogram
and outputs the corresponding raw waveform. The design of
our generator is based on the lightweight generator of Mel-
GAN. However, we significantly modify its structure to apply
the hierarchically-nested objective. As illustrated in the left part
of Fig. [2] the generator consists of six up-sampling blocks. The
up-sampling rate of the first two up-sampling blocks is four, and
that of the other blocks is two. The generator outputs not only
the final full-resolution waveform, but also multiple k¥ down-
sampled waveforms (1 < k£ < K) as side outputs, whose res-
olutions are 2%6 of the full-resolution, respectively. K denotes
the number of down-sampled waveforms. In this research, K
is fixed at four. The k£ down-sampled waveforms are generated
from the output of the top-five up-sampling blocks via the con-
volution layers. The waveforms produced by the generator are
formulated as Eq. (I).

"fo,...,i}( :G(S) (1)
where s denotes the input mel spectrogram, Zo is the final full-
resolution waveform, and 21, ..., £k are the downsampled side
waveforms.

Additionally, we add skip connections from the input mel
spectrogram to each of the 2x up-sampling blocks to learn in-
termediate representations directly conditioned on the input mel
spectrogram. Thus, we improve acoustic characteristics consis-
tency with the input mel spectrogram.

2.3. Hierarchically-nested JCU discriminator

2.3.1. Hierarchically-nested structure

The hierarchically-nested discriminator of VocGAN comprises
five resolution-specific discriminators, as illustrated in the mid-



Table 1: The result of ablation study. MCD(dB) and Fy RMSE(Hz): the lower, the better. PESQ: the higher, the better.

Method KSS LJ
MCD FoRMSE PESQ | MCD FyRMSE PESQ

Baseline (MelGAN) 4.478 38.80 2.51 4.614 50.04 2.74
+ Hierarchically-nested structure and loss 3.986 37.84 2.66 3.827 49.39 291
+ JCU loss 3.441 35.39 2.93 3.551 45.87 3.06
+ Hierarchically-nested structure and loss + JCU loss 3.229 32.36 3.37 3.144 44.19 3.32
+ Hierarchically-nested structure and loss + STFT loss | 3.438 34.99 3.03 3.707 48.68 3.03
VocGAN 2.974 32.85 3.48 3.199 43.10 3.44
Ground Truth 0.0 0.0 4.5 0.0 0.0 4.5

dle part of Fig. [2 Each discriminator determines whether the
output waveform of the corresponding resolution is real or fake.
The hierarchically-nested discriminator leads the multi-scale
waveform generator to learn the spectrogram-to-waveform
mapping at five different resolutions. Thus, it helps the gen-
erator learn the mapping of both low- and high-frequency com-
ponents of acoustic features. Each of the resolution-specific dis-
criminators applies the JCU loss described in the next subsec-
tion. Moreover, for the final discriminator, we apply a multi-
scale JCU discriminator whose structure is similar to the multi-
scale discriminator of pix2pixHD [10] and MelGAN [8]].

Our hierarchically-nested discriminator differs from the
multi-scale discriminator of [8] and [10] in the following ways.
Ours takes as input multiple reduced-resolution samples that
are directly generated from the intermediate representations of
the generator, and the multi-scale discriminator takes a single
full-resolution waveform and produces the reduced-resolution
waveform by down-sampling the input waveform at various
rates. The former forces multiple intermediate layers to learn
how to generate reduced-resolution waveforms. As a result,
it directly induces the generator to learn the high- and low-
frequency features in more balanced way, which is important
for speech signal processing.

We apply the least-square adversarial objective [15] for the
resolution-specific discriminators, as shown in Eq. (2).

Vi(G, Dy) = %Es[nkmﬁ + %Em[(ka) 17 @

where xj, is the k-down-sampled ground-truth waveform, and
Vi (G, Dy) denotes the objective function for the k-down-
sampled waveform. Because the final discriminator comprises a
multi-scale discriminator, its objective Vo (G, Do) is defined by
the sum of objectives of the sub-discriminators. The loss func-
tions of the discriminator and generator are defined as Eq. (3)
and (@), respectively.

K
Lp(G,D) =Y _Vi(G, D) (©)
k=0
X1
Z §]Es [(Dk(Zk) 1)2] 4)
k=0

2.3.2. Joint conditional and unconditional loss

We combine the idea of JCU loss [14] to the hierarchically-
nested adversarial objective to further improve speech quality.
The right part of Fig. 2]shows the structures of our JCU discrim-
inators. In contrast to conventional adversarial loss, JCU loss
combines the conditional and unconditional adversarial losses
as Eq. (B)-(7). The conditional loss leads the generator to map
the acoustic feature of the input mel spectrogram to the wave-

form more accurately. Thus, it helps reduce the discrepancy be-
tween the acoustic characteristics of the input mel spectrogram
and the output waveform.

1 A
Vi/U(G, Dy,) = ~E.[Dy(3%)? + Di(ir, s)°]

2
3 B (D) — 17 + (Dalan, )~ 1] )
K
Lp (G, D) = > Vi/°Y(G, D) (6)
k=0
1
LeY (G, D) = Y SEs[(Dr(dn) = 1) + (De(in, 5) — 1)’]
k=0
(7

2.3.3. Feature matching loss

Similar to MelGAN, we use the feature-matching loss that was
first introduced in [10]. This loss is defined by the L, distance
between the discriminator feature maps computed from the real
and synthesized waveforms as Eq. (8). We apply the feature
matching loss to all of the resolution-specific discriminators.
This loss significantly stabilizes the training.

K Ty

Liw(G, D) EM[ZZ 1D (@x) — DO ()
k=0 t=1

®)

T} is the total number of layers in the k" resolution-specific
discriminator, and /V; is the number of elements in each layer.

2.4. Multi-resolution STFT loss

To improve the stability and efficiency of the adversarial train-
ing, we apply the multi-resolution STFT loss introduced in [7]]
as an auxiliary loss. In particular, this loss accelerates the speed
of the training convergence. The auxiliary loss is used for the
generator independently of the adversarial objectives. A sin-
gle STFT loss measures the frame-level difference between the
ground truth and the synthesized full-resolution waveform. The
multi-resolution STFT loss L g7 is the sum of multiple STFT
losses with different FFT sizes, window sizes, and frame shifts.
The total objective function for the generator combines all
losses mentioned above. In this research, we set o = 10.0 and

B = 1.0, as shown in Eq. ().
LG, D) = LEY(G. D)+aLru(G, D)+BLsrrr(G)
)



3. Experiments
3.1. Datasets and experimental settings

For experiments, we used the Korean Single Speaker Speech
(KSS) dataset [[16] and the LJSpeech dataset [17]. The KSS
dataset contains 12,853 scripts and accompanying audio sam-
ples recorded by a single Korean female speaker. The LISpeech
dataset contains 13,100 samples recorded by a single Ameri-
can female speaker. The total lengths are 12 and 24 hours, re-
spectively. We unified the sampling rates of the two datasets
to 22,050 Hz for training. We used 129 and 131 utterances for
validation and another 129 and 131 for testing. All remaining
samples were used for training. We conducted our experiment
on a server with an NVIDIA Tesla V100 GPU for training and
an Intel Xeon(R) E5-2620 v4 2.10GHz CPU and an NVIDIA
GTX 1080Ti GPU for testing.

3.2. Training and evaluation

We trained all models for 3,000 epochs. We used the Adam
optimizer [18] with a learning rate of 0.0001 with 51 = 0.5
and 52 = 0.9 for both generator and discriminator. We cut the
samples into 1 seconds audio clips and used them for training.
For multi-resolution STFT loss, we applied three STFT losses
with frame sizes of 512, 1,024 and 2,048, window sizes of 240,
600 and 1,200 and frame shifts of 50, 120 and 240, respectively.

We evaluated the proposed methods using three objective
metrics and one subjective metric. We used the MCD [19]] and
Fo RMSE between the ground truth and the synthesized wave-
form to measure how accurately the vocoder converted the mel
spectrogram into a waveform. To evaluate waveform quality,
we measured PESQ [20]], and we used MOS to evaluate subjec-
tive speech quality.

3.3. Experimental results
3.3.1. Ablation study

‘We conducted an ablation study to analyze the effect of the pro-
posed methods on both KSS and LJSpeech datasets. Starting
from the baseline model, MelGAN, which applies the multi-
scale discriminator and the feature-matching loss, we added
each of the proposed methods one at a time measuring MCD,
Fy RMSE, and PESQ. Table [T] displays the results. Applying
the hierarchically-nested objective and structures significantly
improved the speech quality in all metrics, especially MCD.
Replacing conventional least-squares loss with JCU loss drew
significant improvement as well. The hierarchically-nested JCU
objective that combines the two improvement techniques exhib-
ited even more significant improvement. Combined with only
the hierarchically-nested adversarial objective, multi-resolution
STFT loss exhibited significant improvement in all metrics.
However, it improved only PESQ slightly when combined with
hierarchically-nested JCU objective. Additionally, we observed
that the multi-resolution STFT loss accelerated the learning
speed during the early stage. As shown in Fig. 3| the Fp trajec-
tory of the synthesized waveform using the proposed method
was significantly closer to the ground truth than that of the
waveform synthesized by the baseline model.

3.3.2. Comparison with existing models

We compared the proposed method with two recently developed
neural vocoders: MelGAN and Parallel WaveGAN. To compare
subjective speech quality, we measured the MOS score of the
speech waveforms synthesized by each vocoder. First, we syn-
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Figure 3: Fy trajectories of speech waveforms. Blue solid
(both): ground truth. Red dashed (left): MelGAN. Green
dashed (right): VocGAN.
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Table 2: MOS with 95% confidence intervals. The unit of in-
ference speed is real-time factor that measures how many times
Saster than real-time.

Inference Speed
GPU CPU

MelGAN 3.898+0.091 574.7x  3.73x

Parallel WaveGAN  4.0984+0.085 125.0x  0.47x

VocGAN (proposed)  4.2024+0.081 416.7x  3.24x
Ground Truth 4.7214+0.052 - -

Method MOS

thesized raw waveforms from 20 mel spectrograms randomly
selected from the KSS test dataset using each vocodelﬂ Then,
14 subjects rated the quality of the synthesized voices with a
score in the range of 1 (worst) to 5 (best). Additionally, we
measured the synthesis speed of the three vocoders. We used
only one CPU core, and optionally, one GPU to measure syn-
thesis speed.

The results are presented in Table VocGAN outper-
formed MelGAN and Parallel WaveGAN in MOS scoring. The
Paralle] WaveGAN exhibited a higher MOS than did MelGAN.
However, the speed of Parallel WaveGAN was 4.6x and 7.94x
slower than MelGAN on a GPU and on a CPU, respectively.
The main reason of the slow speed is that the generator of Par-
allel WaveGAN is based on a WaveNet-based model that was
significantly heavier than those of MelGAN and VocGAN. Mel-
GAN was the fastest, and VocGAN was slower than MelGAN,
but the difference was not very large. The synthesis speed of
VocGAN was 416.7x and 3.24x faster than real-time on a GPU
and a CPU, respectively.

4. Conclusion

In this paper, we proposed VocGAN, a GAN-based high-fidelity
real-time vocoder. Comprising a multi-scale waveform gener-
ator and a hierarchically-nested JCU discriminator, VocGAN
produced high-quality waveforms. We further improved its sta-
bility and efficiency of learning and the quality of the wave-
form by applying multi-resolution STFT loss as an auxiliary
loss. The proposed method was nearly as fast as MelGAN, but
it improved speech quality and consistency with the input mel
spectrogram. VocGAN exhibited outperforming speech quality
compared with Parallel WaveGAN and MelGAN. The synthe-
sis speed of VocGAN is 416.7x and 3.24x faster than real-time
on a GPU and a CPU, respectively. We expect this work, when
combined with a recent feed forward acoustic model [21], will
help build a real-time system with CPU.

I The audio samples are presented in the following URL:
https://nc-ai.github.io/speech/publications/
vocgan/
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